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The notion of the geometric mean of two positive reals is extended by Ando (1978) to the case of
positive semidefinite matrices A and B. Moreover, an interesting generalization of the geometric
mean A #B of A and B to convex functions was introduced by Atteia and Raı̈ssouli (2001) with a
different viewpoint of convex analysis. The present work aims at providing a further development
of the geometric mean of convex functions due to Atteia and Raı̈ssouli (2001). A new algorithmic
self-dual operator for convex functions named “the geometric mean of parameterized arithmetic
and harmonicmeans of convex functions” is proposed, and its essential properties are investigated.

1. Introduction

The notion of geometric means is extended by Ando [1] to the case of positive semidefinite
matricesA and B as the maximumA #B of allX ≥ 0 for which

(
A X
X B

)
is positive semidefinite.

If A is invertible, then A #B = A1/2(A−1/2BA−1/2)1/2A1/2. The geometric mean A #B appears
in the literature with many applications in matrix inequalities, semidefinite programming
(scaling point [2, 3]), geometry (geodesic middle [4, 5]), statistical shape analysis (intrinsic
mean [6, 7]), and symmetric matrix word equations [8–10]. The most important property
of the geometric mean is that it has a Riccati matrix equation as the defining equation.
The geometric mean is the unique positive definite solution of the Riccati matrix equation
XA−1X = B.

An interesting generalization of the geometric mean A #B to convex functions was
introduced by Atteia and Raı̈ssouli [11]with a different viewpoint of the convex analysis. The
natural idea to make an extension from positive semidefinite matrices to convex functions is
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nothing but the association of a positive semidefinite matrix A with the quadratic convex
function qA(x) = (1/2)〈Ax, x〉. Atteia and Raı̈ssouli [11] provided a general algorithm to
construct the (self-dual) geometric mean and the square root of convex functions. As pointed
out in [12], self-dual operators are important in convex analysis and also arise in PDE.

The present work aims at providing a further development of the geometric mean
of the convex functions mentioned above. We develop a new algorithmic self-dual operator
for convex functions named “the geometric mean of parameterized arithmetic and harmonic
means of convex functions” by exploiting the proximal average of convex functions by
Bauschke et al. [13] and investigate its essential properties such as limiting behaviors, self-
duality, and monotonicity with respect to parameters. While doing so, we will see that the
geometric mean due to Atteia and Raı̈ssouli [11] can be interpreted as an element of “the
geometric mean of parameterized arithmetic and harmonic means of convex functions” with
the particular parameter μ = 0.

In fact, this work is motivated by a recent result due to Kim et al. [14] concerned with
a new matrix mean. Actually, the geometric mean of parameterized arithmetic and harmonic
means of convex functions is an extension of the newmatrix mean to a convex function mean
under a standard setting with two convex functions.

2. Geometric Mean and A #H-Mean of Parameter μ

We begin with the algorithm of finding the geometric mean of two proper convex lower
semicontinuous functions f and g introduced by Atteia and Raı̈ssouli [11, Proposition 4.4]
and some comments on the procedure. Let f, g ∈ Γ with dom f ∩ dom g /= ∅ where Γ denotes
the class of proper convex lower semicontinuous functions from the Euclidean space R

n to
(−∞,+∞]. Set two sequences of convex functions βn(f, g) and β∗n(f, g) recursively:

β0
(
f, g
)
=

1
2
(
f + g

)
, β∗0

(
f, g
)
=
(
1
2
(
f∗ + g∗))∗

,

βn+1
(
f, g
)
=

1
2
(
βn
(
f, g
)
+ β∗n

(
f, g
))

where β∗n
(
f, g
)
=
(
βn
(
f∗, g∗))∗,

(2.1)

where f∗ stands for the Fenchel conjugate of f .
It is claimed that all the βn(f, g) and β∗n(f, g) do belong to Γ [11, Proposition 4.4].

However, to ensure this property, we need more. Indeed, we see

β∗0
(
f, g
)
=
(
1
2
(
f∗ + g∗))∗

=
(
1
2
(
f � g

)∗)∗
, (2.2)

where � stands for the infimal convolution. As is well known, f � g can take −∞ as a value so
it may not be proper. This happens for two simple linear functionals f(x) = x and g(x) = −x
in the one-dimensional case. So the properness of β∗0(f, g) equivalent to that of f � g is not
safe. Exactly the same problem may occur whenever β∗n(f, g) is defined. Moreover, it is not
sure that βn+1(f, g) is proper because dom βn(f, g) ∩ dom β∗n(f, g) can be empty. Thus the
basic necessity that βn(f, g) and β∗n(f, g) belong to Γ is not guaranteed under the general
assumption only that f, g ∈ Γwith dom f ∩ dom g /= ∅ in [11]. Hence it is necessary to impose
a suitable condition to meet this demand. For that purpose, recall that a function f ∈ Γ is
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called cofinite if the recession function f0+ of f satisfies (f0+)(y) = +∞, for all y /= 0 (see [15,
page 116]). Then f is cofinite if and only if dom f∗ = R

n by means of [15, Corollary 13.3.1].
The terminology “cofinite” is renewed as “coercive” in [16, 3.26 Theorem].

Now we take a look at Atteia and Raı̈ssouli [11, Proposition 4.4] with a refined proof.

Proposition 2.1 (See Atteia and Raı̈ssouli [11, Proposition 4.4]). Let dom f ∩ dom g /= ∅. If
either f or g is cofinite, then all βn(f, g) and β∗n(f, g) belong to Γ and βn(f, g) is cofinite for all n ≥ 0.
Hence the geometric mean f # g due to Atteia and Raı̈ssouli [11], that is, the limit

f # g = lim
n→∞

βn
(
f, g
)
, (2.3)

is well defined and proper convex on dom β0(f, g). In particular, it belongs to Γ under the assumption
that either dom β0(f, g) = dom β∗0(f, g) or dom β0(f, g) is closed. Moreover, f # g = (f∗ # g∗)∗

under the condition dom β0(f, g) = dom β∗0(f, g).

Proof. Without loss of generality, we may assume that g is cofinite. Clearly, β0(f, g) =
(1/2)(f + g) ∈ Γ since dom β0(f, g) = dom f ∩ dom g /= ∅. In addition, β0(f, g) is still cofinite
by [15, Theorem 9.3]. Then β∗0(f, g) = ((1/2)(f∗ + g∗))∗ = (1/2) � (f � g) ∈ Γ by virtue of [15,
Corollary 9.2.2]. Thus dom β∗0(f, g) = (1/2)(dom f + dom g) ⊇ dom β0(f, g). By induction,
assume that

βn
(
f, g
)
, β∗n
(
f, g
) ∈ Γ, βn

(
f, g
)
is cofinite, dom βn

(
f, g
) ⊆ dom β∗n

(
f, g
)
. (2.4)

Then dom βn+1(f, g) = dom βn(f, g) ∩ dom β∗n(f, g) = dom βn(f, g), so βn+1(f, g) ∈ Γ.
Moreover, βn+1(f, g) is cofinite because βn(f, g) is cofinite. It is readily checked that

β∗n+1
(
f, g
)
=
(
βn+1
(
f∗, g∗))∗ = (1

2
(
βn
(
f, g
))∗ + 1

2
(
β∗n
(
f, g
))∗)∗

. (2.5)

Hence β∗n+1(f, g) = (1/2) � (βn(f, g)� β∗n(f, g)) ∈ Γ. In this case, dom β∗n+1(f, g) =
(1/2)(dom βn(f, g) + dom β∗n(f, g)) ⊇ dom βn(f, g) = dom βn+1(f, g). Thus we obtain that

∀n, dom βn
(
f, g
)
= dom f ∩ dom g = dom β0

(
f, g
)
,

∀n, dom β∗n
(
f, g
) ⊇ dom βn

(
f, g
)
= dom β0

(
f, g
)
.

(2.6)

According to Atteia and Raı̈ssouli [11, Proposition 4.4], we have

βn+1
(
f, g
) − β∗n+1

(
f, g
) ≤ 1

2
(
βn
(
f, g
) − β∗n

(
f, g
))
, ∀n ≥ 0;

β∗0
(
f, g
) ≤ · ≤ β∗n

(
f, g
) ≤ β∗n+1

(
f, g
) ≤ · ≤ βn+1

(
f, g
) ≤ βn

(
f, g
) ≤ · ≤ β0

(
f, g
)
.

(2.7)

Hence the geometric mean f # g is well defined and belongs to Γ under the given hypothesis.
(If dom β0(f, g) is closed, we define an increasing sequence γn(f, g) ∈ Γ by

γn
(
f, g
)
= β∗n

(
f, g
)
+ δC, (2.8)
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where δC denotes the indicator function of the closed convex set C = dom β0(f, g). Obviously,
f # g is the common limit of βn(f, g) and γn(f, g), hence, belongs to Γ.)

For the equality f # g = (f∗ # g∗)∗, we have

(
f∗ # g∗)∗(x) = sup

y∈Rn

[〈
y, x
〉 − (f∗ # g∗)(y)]

= sup
y∈Rn

[〈
y, x
〉 − lim

n→∞
βn
(
f∗, g∗)(y)]

= sup
y∈Rn

[〈
y, x
〉 − lim

n→∞
β∗n
(
f∗, g∗)(y)]

= sup
y∈Rn

[〈
y, x
〉 − lim

n→∞
(
βn
(
f, g
))∗(

y
)]

≤ sup
y∈Rn

[〈
y, x
〉 − (βn(f, g))∗(y)], ∀n

=
(
βn
(
f, g
))∗∗(x) = βn

(
f, g
)
(x), ∀n.

(2.9)

Hence

(
f∗ # g∗)∗(x) ≤ lim

n→∞
βn
(
f, g
)
(x) =

(
f # g

)
(x). (2.10)

On the other hand,

(
f∗ # g∗)∗(x) = sup

y∈Rn

[〈
y, x
〉 − (f∗ # g∗)(y)]

= sup
y∈Rn

[〈
y, x
〉 − lim

n→∞
βn
(
f∗, g∗)(y)]

≥ sup
y∈Rn

[〈
y, x
〉 − βn

(
f∗, g∗)(y)], ∀n

=
(
βn
(
f∗, g∗))∗(x) = β∗n

(
f, g
)
(x), ∀n.

(2.11)

Thus

(
f∗ # g∗)∗(x) ≥ lim

n→∞
β∗n
(
f, g
)
(x) =

(
f # g

)
(x). (2.12)

Therefore we get

f # g =
(
f∗ # g∗)∗. (2.13)
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Remark 2.2. (1) The well definedness of f∗ # g∗ is readily checked by the assumption g is
cofinite. (Without this condition, f∗ # g∗ may not be well defined so that the identity f # g =
(f∗ # g∗)∗ breaks down.)With the additional property that dom f∗ is closed, we have f∗ # g∗ ∈
Γ. Hence

(
f # g

)∗ = f∗ # g∗. (2.14)

(2) Proposition 2.1 provides a sufficient condition to entail the validity of [11, Proposition
4.4]. It is also mentioned in [11, Remark 4.5] that if f and g are finite-valued, dom β0(f, g) =
dom β∗0(f, g) is satisfied. But even though it is true, β∗0(f, g) can be identically −∞ as shown
in the case of f(x) = x and g(x) = −x in R so that the limiting process using (2.7) may not be
available any more. So some restrictions should be imposed to properly define the geometric
mean of two convex functions f and g ∈ Γ. Of course, for an f ∈ Γ, the geometric mean f # f
and the convex square root f1/2 of f (see [11, Definition 4.7]) are always well defined because
q is cofinite. What is a minimal assumption? That is a question to be answered.

Throughout this paper, we adopt the following modified definition of proximal
average for the convenience of presentation. For μ ≥ 0, with q = (1/2)‖ · ‖2,

pμ(f, λ) =
(
λ1
(
f1 + μq

)∗ + · · · + λm
(
fm + μq

)∗)∗ − μq, (2.15)

where f = (f1, . . . , fm), g = (g1, . . . , gm), each fi : R
n → (−∞,+∞] belongs to Γ, and λi’s are

positive real numbers with λ1 + · · · + λm = 1.
From now on, we consider the simple case where m = 2, λ1 = λ2 = 1/2, and f, g ∈

Γ with dom f ∩ dom g /= ∅. Define two sequences of convex functions αn(f, g) and α•
n(f, g)

recursively as follows:

α0
(
f, g
)
=

1
2
(
f + g

)
, α•

0
(
f, g
)
= pμ

(
f, g;

1
2
,
1
2

)
,

αn+1
(
f, g
)
=

1
2
(
αn

(
f, g
)
+ α•

n

(
f, g
))
, α•

n+1

(
f, g
)
= pμ

(
αn

(
f, g
)
, α•

n

(
f, g
)
;
1
2
,
1
2

)
.

(2.16)

Theorem 2.3. For μ > 0, one has

(i) αn(f, g) ∈ Γ and α•
n(f, g) ∈ Γ, for all n ≥ 0;

(ii) α•
n(f, g) ≤ αn(f, g), αn+1(f, g) ≤ αn(f, g) and α•

n(f, g) ≤ α•
n+1(f, g), for all n ≥ 0;

(iii) αn+1(f, g) − α•
n+1(f, g) ≤ (1/2)(αn(f, g) − α•

n(f, g)), for all n ≥ 0;

(iv) there exists a limit τμ(f, g) = limn→∞αn(f, g) which is a proper convex function with
dom τμ(f, g) = dom f ∩ dom g = domα0(f, g). Furthermore, if either domα0(f, g) =
domα•

0(f, g) or domα0(f, g) is closed, τμ(f, g) is the common limit of αn(f, g) and
γn(f, g) for some increasing sequence γn(f, g) ∈ Γ. In this case, τμ(f, g) ∈ Γ.
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Proof. (i) Since α•
0(f, g) = pμ(f, g; 1/2, 1/2), by Bauschke et al. [13, Theorem 4.6],

domα•
0
(
f, g
)
=

1
2

dom f +
1
2

dom g

⊇ 1
2
(
dom f ∩ dom g

)
+
1
2
(
dom f ∩ dom g

)
= dom f ∩ dom g = domα0

(
f, g
)

(2.17)

because dom f ∩ dom g is a convex set. By induction, assume that domα•
n(f, g) ⊇

domαn(f, g). Then

domαn+1
(
f, g
)
= domαn

(
f, g
) ∩ domα•

n

(
f, g
)
= domαn

(
f, g
)
,

domα•
n+1

(
f, g
)
=

1
2
domαn

(
f, g
)
+
1
2

domα•
n

(
f, g
)

⊇ domαn

(
f, g
)
= domαn+1

(
f, g
)
.

(2.18)

Thus we obtain that

∀n, domαn

(
f, g
)
= dom f ∩ dom g = domα0

(
f, g
)
,

∀n, domα•
n

(
f, g
) ⊇ domαn

(
f, g
)
= domα0

(
f, g
)
.

(2.19)

This implies that, for all n ≥ 0, αn(f, g) ∈ Γ and α•
n(f, g) ∈ Γ with the help of [13, Corollary

5.2].
(ii) The first assertion α•

n(f, g) ≤ αn(f, g) is a direct consequence of [13, Theorem 5.4].
For the second, by definition and the first assertion, we see

αn+1
(
f, g
)
=

1
2
(
αn

(
f, g
)
+ α•

n

(
f, g
)) ≤ 1

2
(
αn

(
f, g
)
+ αn

(
f, g
))

= αn

(
f, g
)
. (2.20)

For the last, observe that

α•
n

(
f, g
) ≤ α•

n+1

(
f, g
)⇐⇒ α•

n

(
f, g
)
+ μq ≤ α•

n+1

(
f, g
)
+ μq

⇐⇒ (α•
n+1

(
f, g
)
+ μq

)∗ ≤ (α•
n

(
f, g
)
+ μq

)∗
⇐⇒ 1

2
(
α•
n

(
f, g
)
+ μq

)∗ + 1
2
(
αn

(
f, g
)
+ μq

)∗ ≤ (α•
n

(
f, g
)
+ μq

)∗
⇐⇒ (αn

(
f, g
)
+ μq

)∗ ≤ (α•
n

(
f, g
)
+ μq

)∗
⇐⇒ α•

n

(
f, g
)
+ μq ≤ αn

(
f, g
)
+ μq

⇐⇒ α•
n

(
f, g
) ≤ αn

(
f, g
)
,

(2.21)

which is nothing but the first assertion. Note that all the arithmetics are safe because both
(αn(f, g) + μq)∗ and (α•

n(f, g) + μq)∗ are finite-valued.
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(iii) By (ii) and the extended arithmetic ∞ + (−∞) = (−∞) +∞ = ∞ (see [16]), we get

αn+1
(
f, g
) − α•

n+1

(
f, g
) ≤ 1

2
(
αn

(
f, g
)
+ α•

n

(
f, g
)) − α•

n

(
f, g
)

=
1
2
(
αn

(
f, g
) − α•

n

(
f, g
))
.

(2.22)

(iv) From (ii), we have

α•
0
(
f, g
) ≤ · ≤ α•

n

(
f, g
) ≤ α•

n+1

(
f, g
) ≤ · ≤ αn+1

(
f, g
) ≤ αn

(
f, g
) ≤ · ≤ α0

(
f, g
)
. (2.23)

Hence if x ∈ domα0(f, g) = dom f ∩ dom g = domαn(f, g) by (2.19), αn(f, g)(x) converges
to a real number r. If x /∈ domα0(f, g), αn(f, g)(x) = ∞. Let the limit function be τμ(f, g).
Clearly, τμ(f, g) is proper convex because αn(f, g) is convex. Moreover, if domα0(f, g) =
domα•

0(f, g), by (iii) and (2.23), it is the common limit of αn(f, g) and α•
n(f, g), so τμ(f, g) ∈ Γ

since it is a supremum of α•
n(f, g) ∈ Γ. If domα0(f, g) is closed, we define an increasing

sequence γn(f, g) ∈ Γ by

γn
(
f, g
)
= α•

n

(
f, g
)
+ δC, (2.24)

where δC denotes the indicator function of the closed convex setC = domα0(f, g). Obviously,
τμ(f, g) is the common limit of αn(f, g) and γn(f, g), hence belongs to Γ.

Remark 2.4. If both f and g are finite-valued, the condition domα0(f, g) = domα•
0(f, g) is

automatically satisfied.

Corollary 2.5. For μ > 0 and f, g ∈ Γ with dom f ∩ dom g /= ∅,
(i) τμ(f, g) = τμ(g, f),

(ii) ((1/2)(f∗ + g∗))∗ ≤ α•
0(f, g) ≤ τμ(f, g) ≤ α0(f, g) = (1/2)(f + g).

Proof. (i) Trivially, α0(f, g) = α0(g, f) and α•
0(f, g) = α•

0(g, f). Again using the induction
argument yields that

αn

(
f, g
)
= αn

(
g, f
)
, α•

n

(
f, g
)
= α•

n

(
g, f
)
, ∀n ≥ 0. (2.25)

Hence τμ(f, g) = τμ(g, f).
(ii) This is immediate from (2.23) and [13, Theorem 5.4].

Now we express τμ(f, g) in terms of a geometric mean.

Theorem 2.6. Let μ > 0. For f, g ∈ Γ with dom f ∩ dom g /= ∅, one has

τμ
(
f, g
)
=
(
1
2
(
f + μq

)
+
1
2
(
g + μq

))
#
(
1
2
(
f + μq

)∗ + 1
2
(
g + μq

)∗)∗
− μq

=
(
f + μq

)
#
(
g + μq

) − μq.

(2.26)
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Proof. Claim 1. We have

τμ
(
f, g
)
=
(
1
2
(
f + μq

)
+
1
2
(
g + μq

))
#
(
1
2
(
f + μq

)∗ + 1
2
(
g + μq

)∗)∗
− μq. (2.27)

Indeed, put f0 = (1/2)(f + μq) + (1/2)(g + μq) and g0 = ((1/2)(f + μq)∗ + (1/2)(g + μq)∗)∗.
Then f0, g0 ∈ Γ because (f + μq)∗ and (g + μq)∗ are finite-valued, and f0 is cofinite by [15,
Theorem 9.3]. By Proposition 2.1, we obtain

lim
n→∞

βn
(
f0, g0

)
= f0 # g0, (2.28)

where βn(f0, g0) and β∗n(f0, g0) are defined as in (2.1). Set, for each n ≥ 0,

β′n
(
f0, g0

)
= βn

(
f0, g0

) − μq,
(
β∗n
)′(

f0, g0
)
= β∗n

(
f0, g0

) − μq. (2.29)

Then by (2.5)

β′n+1
(
f0, g0

)
= βn+1

(
f0, g0

) − μq =
βn
(
f0, g0

)
+ β∗n

(
f0, g0

)
2

− μq

=
βn
(
f0, g0

) − μq + β∗n
(
f0, g0

) − μq

2
=

β′n
(
f0, g0

)
+ (β∗n)

′(f0, g0)
2

(
β∗n+1
)′(

f0, g0
)
= β∗n+1

(
f0, g0

) − μq =
(
1
2
(
βn
(
f0, g0

))∗ + 1
2
(
β∗n
(
f0, g0

))∗)∗
− μq

=
(
1
2
(
β′n
(
f0, g0

)
+ μq

)∗ + 1
2

((
β∗n
)′(

f0, g0
)
+ μq

)∗)∗
− μq

= pμ

(
β′n
(
f0, g0

)
,
(
β∗n
)′(

f0, g0
)
;
1
2
,
1
2

)
.

(2.30)

Put α0(f, g) = (1/2)(f + g) and α•
0(f, g) = pμ(f, g, ; 1/2, 1/2). Also define

αn+1
(
f, g
)
= β′n

(
f0, g0

)
, α•

n+1

(
f, g
)
= (β∗n)

′(f0, g0), ∀n ≥ 0. (2.31)
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Then we have

α1
(
f, g
)
= β′0

(
f0, g0

)
= β0

(
f0, g0

) − μq =
1
2
(
f0 − μq + g0 − μq

)

=
1
2

(
1
2
(
f + g

)
+ pμ

(
f, g, ;

1
2
,
1
2

))
=

1
2
(
α0
(
f, g
)
+ α•

0
(
f, g
))
,

α•
1

(
f, g
)
= (β∗0)

′(f0, g0) = β∗0
(
f0, g0

) − μq =
(
1
2
(
f∗
0 + g∗

0
))∗

− μq

=
(
1
2

(
1
2
(
f + g

)
+ μq

)∗
+
1
2

(
1
2
(
f + μq

)∗ + 1
2
(
g + μq

)∗))∗
− μq

=
(
1
2
(
α0
(
f, g
)
+ μq

)∗ + 1
2
(
α•
0
(
f, g
)
+ μq

)∗)∗
− μq

= pμ

(
α0
(
f, g
)
, α•

0
(
f, g
)
;
1
2
,
1
2

)
.

(2.32)

Moreover, it follows from (2.30) that αn(f, g) and α•
n(f, g) satisfy the recursion formula in

(2.1). From Theorem 2.3 and (2.28), we get

τμ
(
f, g
)
= lim

n→∞
αn

(
f, g
)
= lim

n→∞
β′n
(
f0, g0

)
= lim

n→∞
βn
(
f0, g0

) − μq = f0 # g0 − μq. (2.33)

Claim 2. τμ(f, g) = (f + μq) # (g + μq) − μq.
Set two cofinite functions f1 = f + μq and g1 = g + μq. It sufficies to check that

(
1
2
(
f1 + g1

))
#
(
1
2
(
f∗
1 + g∗

1

))∗
= f1 # g1. (2.34)

In fact, let F = β0(f1, g1) and G = β∗0(f1, g1). Then F and G belong to Γ, and F is cofinite by
Proposition 2.1. Clearly, we have

βn(F,G) = βn+1
(
f1, g1

)
, β∗n(F,G) = β∗n+1

(
f1, g1

)
, ∀n ≥ 0. (2.35)

Again appealing to (2.6) yields that

f1 # g1 = lim
n→∞

βn
(
f1, g1

)
= lim

n→∞
βn(F,G) = F #G =

(
1
2
(
f1 + g1

))
#
(
1
2
(
f∗
1 + g∗

1

))∗
. (2.36)

This completes the proof.

Now we give the following name to τμ(f, g) by Theorem 2.6 above.
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Definition 2.7. For f, g ∈ Γ, one defines

τμ
(
f, g
)
=
(
τ−μ
(
f∗, g∗))∗, for μ < 0,

τ0
(
f, g
)
= f # g, for μ = 0.

(2.37)

This τμ(f, g) is called the geometric mean of parameterized arithmetic and harmonic means of f and
g and abbreviated by “A#H-mean of parameter μ”.

3. Properties of A #H-Mean of Parameter μ

To deal with τμ(f, g) (for all μ ∈ R), in what follows, we assume the following for the
simplicity of arguments.

3.1. Constraint Qualifications

Consider

(CQ1) f, g ∈ Γwith dom f ∩ dom g /= ∅,
(CQ2) domα0(f, g) = domα•

0(f, g),

(CQ3) either f is cofinite and dom g∗ is closed or g is cofinite and dom f∗ is closed.

With these hypotheses, for all μ ∈ R, τμ(f, g) is well-defined and is in Γ.

Theorem 3.1. One has the limiting property:

lim
μ→∞

τμ
(
f, g
)
=

1
2
(
f + g

)
, lim

μ→−∞
τμ
(
f, g
)
=
(
1
2
(
f∗ + g∗))∗

. (3.1)

Proof. For μ > 0, by Corollary 2.5, we get

lim
μ→∞

α•
0
(
f, g
) ≤ lim

μ→∞
τμ
(
f, g
) ≤ lim

μ→∞
α0
(
f, g
)
=

1
2
(
f + g

)
. (3.2)

By Bauschke et al. [13, Theorem 8.5],

lim
μ→∞

α•
0
(
f, g
)
= lim

μ→∞
pμ

(
f, g;

1
2
,
1
2

)
=

1
2
(
f + g

)
. (3.3)

Thus

lim
μ→∞

τμ
(
f, g
)
=

1
2
(
f + g

)
. (3.4)
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Again appealing to Corollary 2.5 yields that

α•
0
(
f∗, g∗) ≤ τμ

(
f∗, g∗) ≤ α0

(
f∗, g∗) = 1

2
(
f∗ + g∗); that is,

(
1
2
(
f∗ + g∗))∗

≤ (τμ(f∗, g∗))∗ ≤ (α•
0
(
f∗, g∗))∗.

(3.5)

By the self-duality of the proximal average [13, Theorem 5.1], we have

(
α•
0
(
f∗, g∗))∗ = (pμ

(
f∗, g∗;

1
2
,
1
2

))∗
= pμ−1

(
f, g;

1
2
,
1
2

)
. (3.6)

Taking the limit in (3.5), we see from (3.6) that

(
1
2
(
f∗ + g∗))∗

≤ lim
μ→∞

(
τμ
(
f∗, g∗))∗ ≤ lim

μ→∞
pμ−1

(
f, g;

1
2
,
1
2

)
=

1
2
�
(
f � g

)
, (3.7)

where the equality comes from [13, Theorem 8.5]. By (CQ3), f � g ∈ Γ; hence we have

1
2
�
(
f � g

)
=
(
1
2
(
f∗ + g∗))∗

. (3.8)

Therefore it follows from (3.7) and (3.8) that

lim
μ→−∞

τμ
(
f, g
)
= lim

μ→∞
(
τμ
(
f∗, g∗))∗ = (1

2
(
f∗ + g∗))∗

. (3.9)

This completes the proof.

Theorem 3.2. One has
(i) pμ(f, g; 1/2, 1/2) ≤ τμ(f, g), for μ ≥ 0,
(ii) (self-duality) (τμ(f, g))

∗ = τ−μ(f, g), for all μ ∈ R.

Proof. (i) According to Corollary 2.5 (ii), pμ(f, g; 1/2, 1/2) = α•
0(f, g) ≤ τμ(f, g) for μ > 0. For

μ = 0, pμ(f, g; 1/2, 1/2) = ((1/2)(f∗ + g∗))∗ = β∗0(f, g) ≤ f # g = τ0(f, g) by Definition 2.7.
(ii) If −∞ < μ < 0, by definition, τμ(f, g) = (τ−μ(f∗, g∗))∗, so (τμ(f, g))

∗ = τ−μ(f∗, g∗)
because τ−μ(f∗, g∗) ∈ Γ. If μ = 0, then (τ0(f, g))

∗ = (f # g)∗ = f∗ # g∗ = τ0(f∗, g∗) by virtue
of Proposition 2.1 and Remark 2.2. Let μ > 0. Then by definition, (τμ(f, g))

∗ = τ−μ(f∗, g∗), as
desired.

Proposition 3.3. Let fi, gi ∈ Γ and fi ≤ gi for each i = 1, . . . , m. Then, for μ ≥ 0,

pμ(f, λ) ≤ pμ(g, λ), (3.10)

where f = (f1, . . . , fm), g = (g1, . . . , gm) and λi’s are positive real numbers with λ1 + · · · + λm = 1.
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Proof. For each i, clearly

fi + μq ≤ gi + μq =⇒ λi
(
fi + μq

)∗ ≥ λi
(
gi + μq

)∗
=⇒

m∑
i=1

λi
(
fi + μq

)∗ ≥ m∑
i=1

λi
(
gi + μq

)∗

=⇒
(

m∑
i=1

λi
(
fi + μq

)∗)∗
≤
(

m∑
i=1

λi
(
gi + μq

)∗)∗

=⇒ pμ(f, λ) ≤ pμ(g, λ).

(3.11)

Theorem 3.4 (monotonicity). One has, for −∞ ≤ μ ≤ ν ≤ ∞,

(
1
2
(
f∗ + g∗))∗

= τ−∞
(
f, g
) ≤ τμ

(
f, g
) ≤ τν

(
f, g
) ≤ τ∞

(
f, g
)
=

1
2
(
f + g

)
. (3.12)

Proof. Let 0 < μ ≤ ν < ∞. Clearly

1
2
(
f + g

)
=
(
α
μ

0

)(
f, g
) ≤ αν

0

(
f, g
)
=

1
2
(
f + g

)
,

pμ

(
f, g;

1
2
,
1
2

)
=
(
α•
0
)μ(

f, g
) ≤ (α•

0
)ν(

f, g
)
= pν

(
f, g;

1
2
,
1
2

) (3.13)

by [13, Theorem 8.5]. To use induction, assume that

α
μ
n

(
f, g
) ≤ αν

n

(
f, g
)
, (α•

n)
μ(f, g) ≤ (α•

n)
ν(f, g). (3.14)

Then

α
μ

n+1

(
f, g
)
=

1
2

(
α
μ
n

(
f, g
)
+ (α•

n)
μ(f, g)) ≤ 1

2
(
αν
n

(
f, g
)
+ (α•

n)
ν(f, g)) = αν

n+1

(
f, g
)
,

(
α•
n+1

)μ(
f, g
)
= pμ

(
α
μ
n

(
f, g
)
, (α•

n)
μ(f, g); 1

2
,
1
2

)
≤ pμ

(
αν
n

(
f, g
)
, (α•

n)
ν(f, g); 1

2
,
1
2

)

≤ pν

(
αν
n

(
f, g
)
, (α•

n)
ν(f, g); 1

2
,
1
2

)
=
(
α•
n+1

)ν(
f, g
)

(3.15)

by (3.14), Proposition 3.3, and [13, Theorem 8.5]. Thus (3.14) holds for all n. Hence, we get

τμ
(
f, g
)
= lim

n→∞
α
μ
n

(
f, g
) ≤ lim

n→∞
αν
n

(
f, g
)
= τν
(
f, g
)
. (3.16)
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On the other hand, for −∞ < −μ ≤ −ν < 0,

τ−μ
(
f, g
)
=
(
τμ
(
f∗, g∗))∗ ≤ (τν(f∗, g∗))∗ = τ−ν

(
f, g
)

(3.17)

by means of (3.16). Now let μ > 0. Recall that α0(f, g) = β0(f, g) and α•
0(f, g) ≥ β∗0(f, g) (see

(2.16), (2.1), and Corollary 2.5 (ii)). Assume that

αn

(
f, g
) ≥ βn

(
f, g
)
, α•

n

(
f, g
) ≥ β∗n

(
f, g
)
. (3.18)

Then

αn+1
(
f, g
)
=

1
2
(
αn

(
f, g
)
+ α•

n

(
f, g
)) ≥ 1

2
(
βn
(
f, g
)
+ β∗n

(
f, g
))

= βn+1
(
f, g
)
,

α•
n+1

(
f, g
)
= pμ

(
αn

(
f, g
)
, α•

n

(
f, g
)
;
1
2
,
1
2

)
≥ pμ

(
βn
(
f, g
)
, β∗n
(
f, g
)
;
1
2
,
1
2

)

≥
(
1
2
(
βn
(
f, g
))∗ + 1

2
(
β∗n
(
f, g
))∗)∗

= β∗n+1
(
f, g
)

(3.19)

by virtue of (3.18), Proposition 3.3, [13, Theorem 5.4], and (2.5). Hence (3.18) holds for all n.
This implies that

f # g = τ0
(
f, g
)
= lim

n→∞
βn
(
f, g
) ≤ lim

n→∞
αn

(
f, g
)
= τμ

(
f, g
)
. (3.20)

So, we get

τ−μ
(
f, g
)
=
(
τμ
(
f∗, g∗))∗ ≤ (τ0(f∗, g∗))∗ = τ0

(
f, g
)

(3.21)

by (3.20) and Proposition 2.1. Therefore, the result follows from (3.16), (3.17), (3.20), (3.21),
and Theorem 3.1.

Corollary 3.5. Let A and B be two (symmetric) positive definite matrices. Then, for 0 ≤ μ ≤ ν < ∞,
one has

Lμ(A,B) ≤ Lν(A,B), (3.22)

where

Lμ(A,B) =
[
1
2
(
A + μI

)
+
1
2
(
B + μI

)]
#
[
1
2
(
A + μI

)−1 + 1
2
(
B + μI

)−1]−1 − μI. (3.23)

Here # denotes the matrix geometric mean of two positive definite matrices.
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Proof. For a positive definite matrix A, define the convex quadratic function

qA(x) =
1
2
〈Ax, x〉. (3.24)

Put f(x) = qA(x) and g(x) = qB(x), then qA and qB clearly satisfy the constraint qualifications
(CQ1)–(CQ3). Applying Theorem 2.6 to these functions yields that

τμ
(
f, g
)
= q(1/2)(A+μI)+(1/2)(B+μI) # q

[(1/2)(A+μI)−1+(1/2)(B+μI)−1]
−1 − μqI

= q
[(1/2)(A+μI)+(1/2)(B+μI)] # [(1/2)(A+μI)−1+(1/2)(B+μI)−1]

−1 − μqI

= q
[(1/2)(A+μI)+(1/2)(B+μI)] # [(1/2)(A+μI)−1+(1/2)(B+μI)−1]

−1−μI

= qLμ(A,B),

(3.25)

where the second equality comes fromAtteia and Raı̈ssouli [11, Proposition 3.5 (v) and (vii)].
Since τμ(f, g) ≤ τν(f, g) by Theorem 3.4, we have

qLμ(A,B) ≤ qLν(A,B), which is equivalent to Lμ(A,B) ≤ Lν(A,B). (3.26)

Remark 3.6. Corollary 3.5 is a particular case of Kim et al. [14, Theorem 3.6] and is based on a
different proof using a convex analytic technique in the case of two variables with noweights.
To prove themonotonicity ofLμ w.r.t. the parameter μ, Kim et al. [14] exploited a well-known
variational characterization of the geometric mean of two positive definite matrices.

We close this section with one more observation.

Definition 3.7 (See Bauschke et al. [13, Definition 9.1]). Let g and (gk)k ∈ N be functions from
R

n to (∞,+∞]. Then (gk)k ∈ N epiconverges to g, in symbols, gk
e−→ g, if the following hold for

every x ∈ X:
(i) (for all (xk)k∈N

) xk → x ⇒ g(x) ≤ lim inf gk(xk),
(ii) (∃(yk)k∈N

) yk → x and lim sup gk(yk) ≤ g(x),

The epitopology is the topology induced by epiconvergence.

Proposition 3.8. One has

τμ
(
f, g
) e−→ 1

2
(
f + g

)
as μ −→ +∞,

τμ
(
f, g
) e−→

(
1
2
(
f∗ + g∗))∗

as μ −→ −∞.

(3.27)

Proof. By Theorems 3.1 and 3.4 with [16, 7.4 Proposition] or the proof of [13, Corollary 9.6],
we can easily get the result.
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