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This paper is concerned with the system of Zakharov equations which involves the interactions
between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of
the system of Zakharov equations are derived uniformly by using the first integral method. These
exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary
wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions,
periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions,
and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm
that the first integral method is an efficient technique for analytic treatment of a wide variety of
nonlinear systems of partial differential equations.

1. Introduction

Zakharov equations

ntt − c2snxx = β
(
|E|2
)
xx
,

iEt + αExx = δnE
(1.1)

have been presented by Zakharov and others in 1972 [1, 2] to model the interactions of laser-
plasma. In (1.1), n is the perturbed number density of the ion (in the low frequency response);
E is the slow variation amplitude of the electric field intensity; cs is the thermal transportation
velocity of the electron-ion; α/= 0, β /= 0, δ /= 0, cs are constants. Equations (1.1) are one of the
fundamental models governing dynamics of nonlinear waves and describing the interactions
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between high- and low-frequency waves. In the interaction of laser-plasma the system of
Zakharov equations plays an important role (see [3] and references therein).

More recently, some authors considered the exact and explicit solutions of the system
of Zakharov equations by different methods in [4–8]. In [3], the author established the
traveling wave solutions for (1.1) by analytical method. The extended hyperbolic function
method was employed to find some solitary wave solutions for (1.1) in [4, 5]. In [6, 7], the
authors obtained elliptic function solutions for (1.1) by the Jacobi elliptic function method
and the generalized Jacobi elliptic function expansion method. In [8], some new traveling
wave solutions for (1.1) are obtained by using bifunction method and Wu-elimination
method. In the above references the authors can obtain only one type of exact solution by one
method.

The aim of this paper is to supply a unified method for constructing a series of
explicit exact solutions to the system of Zakharov equations (1.1). The first integral method
is employed to investigate the system of Zakharov equations (1.1). Through an exhaustive
analysis and discussion for different parameters, we uniformly construct a series of explicit
exact solutions to (1.1). Compared with most methods used in [4–8] such as the extended
hyperbolic function method, Jacobi elliptic function method, and its extension, the first
integral method not only gives abundant explicit exact solitary wave solutions, periodic
wave solutions of triangle function, but also provides Jacobi elliptic function and Weierstrass
elliptic function doubly periodic wave solutions.

The rest of this paper is organized as follows. In Section 2, the outline of the first
integral methodwill be given. Section 3 is themain part of this paper; themethod is employed
to seek the explicit and exact solutions of the system of Zakharov equations (1.1). In the last
section, some conclusion is given.

2. The First Integral Method

The first-integral method, which is based on the ring theory of commutative algebra, was first
proposed by Prof. Feng Zhaosheng [9] in 2002. The method has been applied by Feng to solve
Burgers-KdV equation, the compound Burgers-KdV equation, an approximate Sine-Gordon
equation in (n + 1)-dimensional space, and two-dimensional Burgers-KdV equation [10–14].

Recent years, many authors employed this method to solve different types of nonlinear
partial differential equations in physical mathematics. More information about these appli-
cations can be found in [15] and references therein. The most advantage is that the first
integral method does not have many sophisticated computation in solving nonlinear algebra
equations compared to other direct algebra methods. For the sake of completeness, we briefly
outline the main steps of this method.

The main steps of this method are summarized as follows.
Given a system of nonlinear partial differential equations, for example, in two inde-

pendent variables

P(ut, ux, uxx, uxt, . . .) = 0,

Q(vt, vx, vxx, vxt, . . .) = 0,
(2.1)

and using traveling wave transformation u(x, t) = f(ξ), v(x, t) = g(ξ), ξ = kx + ωt + ξ0 and
some other mathematical operations, the systems (2.1) can be reduced to a second order non-
linear ordinary differential equation

D
(
f, f ′, f ′′) = 0. (2.2)
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By introducing new variables X = f(ξ), Y = f ′(ξ), or making some other transformations we
reduce ordinary differential equation (2.2) to a system of the first order ordinary differential
equation

X′ = Y,

Y ′ = H(X,Y ).
(2.3)

Suppose that the first integral of (2.3) has a form as follows:

P(X,Y ) =
m∑
i=o

ai(X)Y i = 0 (2.4)

(in generalm = 1 orm = 2), where ai (i = 0, 1, . . . , m) are real polynomials of X.
According to the Division theorem there exists polynomials α(X), β(X) of variable X

in �[X] such that

dP

dξ
=
[
α(X) + β(X)Y

]
P(X,Y ). (2.5)

We determine polynomials α(X), β(X), ai(X) (i = 0, 1, 2, . . .) from (2.5) and, further-
more, obtain P(X,Y ).

Then substituting X = f(ξ), Y = f ′(ξ) or other transformations into (2.4), exact solu-
tions to (2.1) is established, through solving the resulting first order integrable differential
equation.

3. Explicit and Exact Solutions of the System of Zakharov Equations

In this section we will employ the first integral method to construct abundant explicit exact
traveling wave solutions to (1.1).

In order to transfer (1.1) into the form of (2.2), we firstly do some transformations for
(1.1). Since E(x, t) in (1.1) is a complex function and we are seeking for the traveling wave
solutions, we introduce a gauge transformation

E(x, t) = ei(kx+ωt+ξ0)ϕ(x, t), (3.1)

where ϕ(x, t) is real-valued function, k, ω are two real constants to be determined later, and
ξ0 is an arbitrary constant. Substituting (3.1) into (1.1), we have

ntt − c2snxx = β
(
ϕ2
)
xx
, (3.2)

ϕt + 2αkϕx = 0, (3.3)

αϕxx −
(
αk2 +ω

)
ϕ = δnϕ. (3.4)

In the view of (3.3), we suppose

ϕ(x, t) = ϕ(ξ) = ϕ(x − 2αkt + ξ1), (3.5)
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where ξ1 is an arbitrary constant. Substituting (3.5) into (3.4), we infer that

n(x, t) =
αϕxx −

(
ω + αk2

)
ϕ

δϕ
=
αϕ′′(ξ)
δϕ(ξ)

−
(
ω + αk2

)
. (3.6)

Therefore, we can also assume

n(x, t) = ψ(ξ) = ψ(x − 2αkt + ξ1). (3.7)

Substituting (3.7) into (3.2), and integrating the resultant equation twice with respect to ξ, we
obtain

(
4α2k2 − c2s

)
ψ(ξ) = βϕ2(ξ) + C′ξ + C, (3.8)

where C′, C are two arbitrary integration constants. For k = ±cs/2α, (1.1) have one set of
solution

E0(x, t) = ±
[
C′(x ± cst + ξ0) + C

−β
]1/2

e[i(±(cs/2α)x+ωt+ξ0)],

n0(x, t) = − α(C′)2

4δ[C′(x ± cst + ξ0) + C]2
−
(
ω +

c2s
4α

)
.

(3.9)

For k /= ± cs/2α, we put C′ = 0 in (3.8) for the cause of technical. Thus (3.8) becomes

ψ(ξ) =
β

4α2k2 − c2s
ϕ2(ξ) + C. (3.10)

Substituting (3.5), (3.7), and (3.10) into (3.4), we obtain

ϕ′′(ξ) −
(
ω + αk2 + Cδ

)

α
ϕ(ξ) − δβ

α
(
4α2k2 − c2s

)ϕ3(ξ) = 0. (3.11)

Let l = (ω + αk2 + Cδ)/α, m = δβ/α(4α2k2 − c2s); thus (3.11) becomes the Liénard equation

ϕ′′(ξ) − lϕ(ξ) −mϕ3(ξ) = 0. (3.12)

Let X = ϕ(ξ), Y = X′, (3.12) can be converted to a system of nonlinear ODEs as follows:

X′ = Y,

Y ′ = lX +mX3.
(3.13)
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Now the Division theorem is applied to seek the first integral to (3.13). Suppose that X =
X(ξ), Y = Y (ξ) are the nontrivial solution to the system (3.13), and its first integral is an
irreducible polynomial in �[X,Y ]

P(X(ξ), Y (ξ)) =
m∑
i=0

ai(X)Y i = 0, (3.14)

where ai, i = 0, 1, 2, . . . , m are polynomials of X. According to the Division theorem, there
exists a polynomial T(X,Y ) = α(X) + β(X)Y , such that

dP

dξ
=
∂P

∂X

∂X

∂ξ
+
∂P

∂Y

∂Y

∂ξ
=
[
α(X) + β(X)Y

]( m∑
i=0

ai(X)Y i

)
. (3.15)

Here we only consider the case ofm = 2.
Substituting (3.13) and (3.14) into (3.15), one gets

dP

dξ
= a′0(X)Y + a′1(X)Y 2 + [a1(X) + 2a2(X)Y ]Y ′ + a′2(x)Y

3

=
(
α(X) + β(X)Y

)(
a0(X) + a1(X)Y + a2(X)Y 2

)
.

(3.16)

Collecting all the terms with the same power of Y together and equating each coefficient to
zero yields a set of nonlinear algebraic equations as follows:

a′2(X) = β(X)a2(X), (3.17)

a′1(X) = β(X)a1(X) + α(X)a2(X), (3.18)

a′0(X) = β(X)a0(X) + α(X)a1(X) − 2a2(X)
(
lX +mX3

)
, (3.19)

a1(X)
(
lX +mX3

)
= α(X)a0(X). (3.20)

Because ai(X) (i = 0, 1, 2) are polynomials, from (3.17) we can deduce deg[a2(X)] = 0,
β(X) = 0; that is, a2(X) is a constant. For simplicity, we take β(X) = 0, a2(X) = 1. Then we
determine a0(X), a1(X), and α(X). From (3.18), we have deg[a1(X)] − 1 = deg[α(X)] or
a1(X) = 0, α(X) = 0. In what follows we will discuss these two situations.

(a) In the case of a1(X) = 0, α(X) = 0.
In this case, (3.18) and (3.20) are satisfied. From (3.19), we can derive a0(X) = −(m/

2)X4 − lX2 − d, where d is an integral constant. Substituting a2(X), a1(X), and a0(X) into
(3.14), one obtain that

Y 2 =
m

2
X4 + lX2 + d, (3.21)

that is,

X′ = ±
√
m

2
X4 + lX2 + d. (3.22)
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Based on the discussion for different parameters, we can obtain the solutions of the nonlinear
ordinary differential equation (3.22).

(1) For d = 0, (3.22) admits the following five general solutions:

X1 = ±
√
− 2l
m
sec
√
−lξ, l < 0, m > 0,

X2 = ±
√
− 2l
m
csc
√
−lξ, l < 0, m > 0,

X3 = ±
√

2l
m
csch

√
lξ, lm > 0,

X4 = ±
√
− 2l
m
sech

√
lξ, l > 0, m < 0,

X5 = ± 1√
m/2

, l = 0.

(3.23)

Combining (3.1), (3.7), (3.10), (3.23), and X = ϕ(ξ), one can get the following five sets of
explicit exact solution to (1.1):

E1(x, t) = ±
√

2
(
ω + αk2 + Cδ

)(
4α2k2 − c2s

)

δβ
sec

⎡
⎣
√

−(ω + αk2 + Cδ
)

α
ξ

⎤
⎦eiη,

n1(x, t) = −2
(
ω + αk2 + Cδ

)

δ
sec2
⎡
⎣
√
−ω + αk2 + Cδ

α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
< 0, αβδ

(
4α2k2 − c2s

)
> 0,

(3.24)

E2(x, t) = ±
√

2
(
ω + αk2 + Cδ

)(
4α2k2 − c2s

)

δβ
csc

⎡
⎣
√

−(ω + αk2 + Cδ
)

α
ξ

⎤
⎦eiη,

n2(x, t) = −2
(
ω + αk2 + Cδ

)

δ
csc2
⎡
⎣
√
−ω + αk2 + Cδ

α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
< 0, αβδ

(
4α2k2 − c2s

)
> 0,

(3.25)

E3(x, t) = ±
√

2
(
ω + αk2 + Cδ

)(
4α2k2 − c2s

)

δβ
csch

⎡
⎣
√
ω + αk2 + Cδ

α
ξ

⎤
⎦eiη,

n3(x, t) =
2
(
ω + αk2 + Cδ

)

δ
csch2

⎡
⎣
√
ω + αk2 + Cδ

α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
> 0, αβδ

(
4α2k2 − c2s

)
> 0,

(3.26)
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E4(x, t) = ±
√

2
(
ω + αk2 + Cδ

)(
4α2k2 − c2s

)

δβ
sech

⎡
⎣
√
ω + αk2 + Cδ

α
ξ

⎤
⎦eiη,

n4(x, t) = −2
(
ω + αk2 + Cδ

)

δ
sech2

⎡
⎣
√
ω + αk2 + Cδ

α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
> 0, αβδ

(
4α2k2 − c2s

)
< 0,

(3.27)

where ξ = x − 2αkt+ ξ1, η = kx +ωt+ η0, k /= ± cs/2α, ω, C are arbitrary parameters, and ξ1,η0
are two arbitrary constants. One has

E5(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ

1
(x − 2αkt + ξ1)

eiη,

n5(x, t) =
2α
δ

[
1

x − 2αkt + ξ1

]2
− ω + αk2

δ
,

αδβ
(
4α2k2 − c2s

)
> 0,

(3.28)

where η = kx+ωt+η0, k /= ± cs/2α, k, ω are arbitrary parameters, and ξ1, η0 are two arbitrary
constants.

Remark 3.1. In the above solutions, solutions E1, n1 (3.24) and E2, n2 (3.25) are explicit exact
periodic traveling wave solutions. The solution E3 is an envelope solitary wave solution of
bell shape and n3 is a explicit exact solitary wave solutions of bell shape. The n3 be called
Langmuir whistler soliton or Langmuir pit soliton according to n3 is positive or negative. The
solutions E4, n4 (3.27) are explicit exact singular travelingwave solutions. The singularity will
appear as ξ = 0 and it represents that the distortions arise from the perturbed number density
of the ion n and the electric field intensity E due to instability. While solution E5 (and n5,
resp.) (3.28) is an envelope solitary wave solution of bell shape and (a explicit exact solitary
wave solutions of bell shape, resp.) in rational function type.

(2) For d = l2/2m, we can obtain following four sets of explicit exact solutions to (3.22)

X6 = ±
√

l

m
tan

√
l

2
(ξ + ξ2), l > 0, m > 0,

X7 = ±
√

l

m
cot

√
l

2
(ξ + ξ2), l > 0, m > 0,

X8 = ±
√
− l

m
tanh

√
− l
2
(ξ + ξ2), l < 0, m > 0,

X9 = ±
√
− l

m
coth

√
− l
2
(ξ + ξ2), l < 0, m > 0,

(3.29)

where l = (ω + αk2 + Cδ)/α, m = δβ/α(4α2k2 − c2s), and ξ2 is integral constant.



8 Journal of Applied Mathematics

Combining (3.1), (3.7), (3.10), (3.29), and X = ϕ(ξ), we can get the following four
explicit exact solution of (1.1):

E6(x, t) = ±
√(

ω + αk2 + Cδ
)(
4α2k2 − c2s

)

δβ
tan

⎡
⎣
√
ω + αk2 + Cδ

2α
ξ

⎤
⎦eiη,

n6(x, t) =
ω + αk2 + Cδ

δ
tan2

⎡
⎣
√
ω + αk2 + Cδ

2α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
> 0, αδβ

(
4α2k2 − c2s

)
> 0,

(3.30)

E7(x, t) = ±
√(

ω + αk2 + Cδ
)(
4α2k2 − c2s

)

δβ
cot

⎡
⎣
√
ω + αk2 + Cδ

2α
ξ

⎤
⎦eiη,

n7(x, t) =
ω + αk2 + Cδ

δ
cot2
⎡
⎣
√
ω + αk2 + Cδ

2α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
> 0, αδβ

(
4α2k2 − c2s

)
> 0,

(3.31)

E8(x, t) = ±
√

−(ω + αk2 + Cδ
)(
4α2k2 − c2s

)

δβ
tanh

⎡
⎣
√

−(ω + αk2 + Cδ
)

2α
ξ

⎤
⎦eiη,

n8(x, t) = −
(
ω + αk2 + Cδ

)

δ
tanh2

⎡
⎣
√

−(ω + αk2 + Cδ
)

2α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
< 0, αδβ

(
4α2k2 − c2s

)
> 0,

(3.32)

E9(x, t) = ±
√

−(ω + αk2 + Cδ
)(
4α2k2 − c2s

)

δβ
coth

⎡
⎣
√

−(ω + αk2 + Cδ
)

2α
ξ

⎤
⎦eiη,

n9(x, t) = −2
(
ω + αk2 + Cδ

)

δ
coth2

⎡
⎣
√

−(ω + αk2 + Cδ
)

2α
ξ

⎤
⎦ + C,

α
(
ω + αk2 + Cδ

)
< 0, αδβ

(
4α2k2 − c2s

)
> 0,

(3.33)

where ξ = x − 2αkt + ξ1, η = kx +ωt + η0, k /= ± cs/2α, ω, C are arbitrary parameters, and ξ1,
η0 are two arbitrary constants.

Remark 3.2. The solutions E6, n6 (3.30) and E7, n7 (3.31) are all unbounded periodic traveling
wave solutions of triangle function type. The solutionE8 is an envelope solitarywave solution
of kink type while exact solitary wave solution n8 is dark soliton; that means the density
increases as a whole but decreases in part. The exact solutions E9, n9 (3.32) are explicit exact
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singular traveling wave solutions. The singularity will be appear as ξ = 0 and it indicates
that the distortions arise from the perturbed number density of the ion n and the electric field
intensity E due to instability.

(3) For d /= 0, we obtain elliptic function solutions for (3.22) as follows:

X10 = ±
√
−2(l + 1)

m
sn

√
md

2
ξ,

d = − 2(l + 1)
m

,

(3.34)

X11 = ±
[
2d(1 + l)
m(l − 1)

]1/4
cn

√
l + 1
2

ξ,

d =
l2 − 1
2m

,

(3.35)

X12 = ±
√

2
m
dn

√
l + 1
2

ξ,

d =
2(l − 1)
m

,

(3.36)

X13 = ±
√

2
m
ns
√
−l − 1ξ,

d = − 2(l + 1)
m

,

(3.37)

X14 = ±
[
− l − 1
m

]1/4
nc

√
l + 1
2

ξ,

d =
l2 − 1
2m

,

(3.38)

X15 = ±
√
−2(l − 1)

m
nd
√
2 − lξ,

d =
2(l − 1)
m

,

(3.39)

X16 = ±
√

2(l − 1)
m

sc
√
2 − lξ,

d =
2(l − 1)
m

,

(3.40)

X17 = ±
√
l2 − 1
2m

sd

√
2 + l
2

ξ,

d =
l2 − 1
2m

,

(3.41)
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X18 = ±
√

2
m
cs
√
2 − lξ,

d =
2(l − 1)
m

,

(3.42)

X19 = ±
√
−2(l + 1)

m
cd
√
−l − 1ξ,

d = − 2(l + 1)
m

,

(3.43)

X20 = ±
√

2
m
ds

√
2 + l
2

ξ,

d =
l2 − 1
2m

,

(3.44)

X21 = ±
√

2
m
dc
√
−l − 1ξ,

d = − 2(l + 1)
m

.

(3.45)

Combining (3.1), (3.7), (3.10), the above results (3.33)–(3.44), and X = ϕ(ξ), we can get the
following twelve Jacobi elliptic doubly periodic wave solutions of (1.1)

E10(x, t) = ±
√
−2
(
ω + αk2 + Cδ + α

)(
4α2k2 − c2s

)

δβ
sn

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠eiη,

n10(x, t) = − 2
(
ω + αk2 + Cδ + α

)

δ
sn2

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠ + C,

d = − 2
(
ω + αk2 + Cδ + α

)(
4α2k2 − c2s

)

δβ
,

(3.46)

E11(x, t) = ±
√(

ω + αk2 + Cδ + α
)(
4α2k2 − c2s

)

δβ
cn

⎛
⎝
√
ω + αk2 + Cδ + α

2α
ξ

⎞
⎠eiη,

n11(x, t) =
ω + αk2 + Cδ + α

δ
cn2

⎛
⎝
√
ω + αk2 + Cδ + α

2α
ξ

⎞
⎠ + C,

d =

[(
ω + αk2 + Cδ

)2 − α2
](
4α2k2 − c2s

)

2αδβ
,

(3.47)
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E12(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ
dn

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

α
ξ

⎞
⎠eiη,

n12(x, t) =
2α
δ
dn2

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

α
ξ

⎞
⎠ + C,

d =
2
(
ω + αk2 + Cδ − α)(4α2k2 − c2s

)

δβ
,

(3.48)

E13(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ
ns

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠eiη,

n13(x, t) =
2α
δ
ns2
⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠ + C,

d = − 2
(
ω + αk2 + Cδ + α

)(
4α2k2 − c2s

)

δβ
,

(3.49)

E14(x, t) = ±
√

−(ω + αk2 + Cδ − α)(4α2k2 − c2s
)

δβ
nc

⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠eiη,

n14(x, t) = − ω + αk2 + Cδ − α
δ

nc2
⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠ + C,

d =

[(
ω + αk2 + Cδ

)2 − α2
](
4α2k2 − c2s

)

2αδβ
,

(3.50)

E15(x, t) = ±
√

−2(ω + αk2 + Cδ − α)(4α2k2 − c2s
)

δβ
nd

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠eiη,

n15(x, t) = − 2
(
ω + αk2 + Cδ − α)

δ
nd2

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠ + C,

d =
2
(
ω + αk2 + Cδ − α)(4α2k2 − c2s

)

δβ
,

(3.51)

E16(x, t) = ±
√

2
(
ω + αk2 + Cδ − α)(4α2k2 − c2s

)

δβ
sc

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠eiη,

n16(x, t) =
2
(
ω + αk2 + Cδ − α)

δ
sc2
⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠ + C,

d =
2
(
ω + αk2 + Cδ − α)(4α2k2 − c2s

)

δβ
,

(3.52)
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E17(x, t) = ±

√√√√
[(
ω + αk2 + Cδ

)2 − α2
](
4α2k2 − c2s

)

2αδβ
sd

⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠eiη,

n17(x, t) =

(
ω + αk2 + Cδ

)2 − α2
2αδ

sd2

⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠ + C,

d =

[(
ω + αk2 + Cδ

)2 − α2
](
4α2k2 − c2s

)

2αδβ
,

(3.53)

E18(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ
cs

⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠eiη,

n18(x, t) =
2α
δ
cs2
⎛
⎝
√

2α − (ω + αk2 + Cδ
)

2α
ξ

⎞
⎠ + C,

d =
2
(
ω + αk2 + Cδ − α)(4α2k2 − c2s

)

δβ
,

(3.54)

E19(x, t) = ±
√

−2(ω + αk2 + Cδ + α
)(
4α2k2 − c2s

)

δβ
cd

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠eiη,

n19(x, t) = − 2
(
ω + αk2 + Cδ + α

)

δ
cd2

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠ + C,

d = − 2
(
ω + αk2 + Cδ + α

)(
4α2k2 − c2s

)

δβ
,

(3.55)

E20(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ
ds

⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠eiη,

n20(x, t) =
2α
δ
ds2
⎛
⎝
√
ω + αk2 + Cδ + 2α

2α
ξ

⎞
⎠ + C,

d =

[(
ω + αk2 + Cδ

)2 − α2
](
4α2k2 − c2s

)

2αδβ
,

(3.56)

E21(x, t) = ±
√

2α
(
4α2k2 − c2s

)

δβ
dc

⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠eiη,

n21(x, t) =
2α
δ
dc2
⎛
⎝
√

−(ω + αk2 + Cδ + α
)

α
ξ

⎞
⎠ + C,

d = − 2
(
ω + αk2 + Cδ + α

)(
4α2k2 − c2s

)

δβ
,

(3.57)
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where ξ = x−2αkt+ξ1, η = kx+ωt+η0, k /= ±cs/2α, ω, C are arbitrary parameters, and ξ1, η0
are two arbitrary constants.

(4) For l = 0,m/= 0, from (3.22) we have

X′ = ±
√
m

2
X4 + d. (3.58)

Let X2 = Z; (3.58) becomes

Z′(ξ) = ±
√
2mZ3 + 4dZ. (3.59)

While m > 0, the above equation possesses a Weierstrass elliptic function doubly periodic
wave type solution

Z = ℘

(√
m

2
ξ,
−8d
m

, 0

)
. (3.60)

So (3.58) admits a Weierstrass elliptic function doubly periodic wave type solution

X22 = ±
√√√√℘

(√
m

2
ξ,
−8d
m

, 0

)
. (3.61)

Combining (3.1), (3.7), (3.10), the above result (3.61), and X = ϕ(ξ), we derive that (1.1)
admits a Weierstrass elliptic function doubly periodic wave type solution

E22(x, t) = ±
√√√√℘

(√
δβ

2α
(
4α2k2 − c2s

)ξ, −8dδβ
α
(
4α2k2 − c2s

) , 0
)
ei(kx+ωt+ξ0),

n22(x, t) =
β

4α2k2 − c2s
℘

(√
δβ

2α
(
4α2k2 − c2s

)ξ, −8dδβ
α
(
4α2k2 − c2s

) , 0
)

+ C,

(3.62)

where ξ = x − 2αkt + ξ1.

Remark 3.3. The above twelve explicit exact Jacobi elliptic doubly periodic wave solutions
E10, n10 (3.46); E21, n21 (3.57); and explicit exact Weierstrass elliptic doubly periodic wave
solution E22, n22 (3.62) have not been obtained in the author’s previous work [4] or other
literature [5–8]. It should be emphasized that explicit exact Weierstrass elliptic doubly
periodic wave solution E22, n22 (3.62) is obtained in this paper firstly.

(b) In the case of deg[a1(X)] − 1 = deg[α(X)].
In this case, we assume that deg[α(X)] = k1, deg[a0(X)] = k2, then we have

deg[a1(X)] = k1+1. Now, by balancing the degrees of both sides of (3.20), we can deduce that
k2 = 4. By balancing the degrees of both sides of (3.19), we can also conclude that k1 = 1 or
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k1 = 0. If k1 = 0 assuming that α(X) = A0, a1(X) = A1X + A2, a0(X) = C4X
4 + C3X

3 +
C2X

2 + C1X + C0 and substituting them into (3.18)–(3.20); by equating the coefficients of the
different powers of X on both sides of (3.18) to (3.20), we can get that α(X) = a1(X) = 0.
This contradicts with our assumption. It indicates that k1 /= 0. While k1 = 1, assuming that
a0(X) = C4X

4 + C3X
3 + C2X

2 + C1X + C0, a1 = A2X
2 + A1X + A0, α(X) = B1X + B0 then

substituting these representations into (3.18)–(3.20), and by equating the coefficients of the
different powers of X on both sides of (3.18) to (3.20), we can obtain an overdetermined
system of nonlinear algebraic equations

2A2 = B1,

A1 = B0,

4C4 + 2m = A2B1,

3C3 = A1B1 +A2B0,

2C2 + 2l = A1B0 +A0B1,

C1 = A2B0,

mA2 = B1C4,

mA1 = B1C3 + C4B0,

mA0 + lA2 = B1C2 + B0C3,

lA1 = B1C1 + B0C2,

lA2 = B1C0 + B0C1,

B0C0 = 0.

(3.63)

By analyzing all kinds of possibilities, we have the following.

(1) While B0 = C0 = 0, it leads to a contradiction.

(2) While B0 /= 0, C0 = 0, it also leads to a contradiction.

(3) While B0 = 0, C0 /= 0, we can derive that

A0 = ± l
√
2m
m

, A1 = 0, A2 = ±
√
2m, C0 =

l2

2m
, C1 = C3 = 0, C2 = l,

C4 =
m

2
.

(3.64)

Setting (3.64) in (3.14) yields

(
X′)2 ±

(√
2mX2 +

l

m

√
2m
)
X′ +

m

2
X4 + lX2 +

l2

2m
= 0, (3.65)
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that is,

dX

X2 + l/m
= ±
√
m

2
(ξ + ξ0). (3.66)

Solving (3.66) we can obtain solutions X6, X7, X8, andX9 again. Consequently, we obtain
explicit exact solutions E6, n6; E7, n7; E8, n8; E9, n9 to (1.1). Here we will not list them one by
one.

4. Summary and Conclusions

In summary, we employ the first integral method to uniformly construct a series of explicit
exact solutions for a system of Zakharov equations. Abundant explicit exact solutions to
Zakharov equations are obtained through an exhaustive analysis and discussion of different
parameters. The exact solutions obtained in this paper include that of the solitary wave
solutions of bell type for n and E, the solitary wave solutions of kink-type for E and
bell type for n, the two kinds of singular traveling wave solutions, four kinds of periodic
wave solutions of triangle functions, twelve kinds of Jacobi elliptic function doubly periodic
solutions, and one kind of Weierstrass elliptic function doubly periodic wave solutions.
Among these are entirely new solutions that first reported in this paper. Some known results
of previous references are enriched greatly. The results indicate that the first integral method
is a very effective method to solve nonlinear differential equation. The method also is readily
applicable to a large variety of other nonlinear evolution equations in physical mathematics.
Of course, the first integral method also has its limitations. These solutions are not general
and by no means exhaust all possibilities. Such solitary wave solutions of a compound of the
bell shape and the kink-shape for n and E established in [4] cannot be obtained by using the
first integral method. Some Jacobi elliptic function solutions obtained in [16] also cannot be
established in here.
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