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An overlapping domain partitioning based on adapting nodes is presented for the meshless-type
methods. The decomposition of the domain is carried out based on the distribution of the nodes
produced rather than the geometry of the problem. A set of adaptive nodes is first generated
using the dimension reduction and equidistributing along the coordinate directions with respect
to arc-length monitor. The domain is then partitioned in such a way that the same number of
nodes are allocated to the subdomains. A radial basis function collocation method is applied to
each subdomain followed by assembling the global solution from the subproblem’s solutions.
A generalized thin plate spline with sufficient smoothness is used as a basis function in the
collocation method. Some numerical results will be presented to show the performance of the
proposed method.

1. Introduction

During the last two decades, numerical solutions of partial differential equations (PDEs)
based on radial basis functions (RBFs) have received a considerable attention. This method
was first introduced by Kansa [1] as an unsymmetric collocation method followed by several
approaches such as the method of fundamental solutions [2] and the Galerkin’s method
[3]. These methods are known as mesh-free methods due to their advantage of avoiding
mesh construction. The meshless methods are often divided into two major categories: the
boundary-type method (see e.g., [2, 4]) and the domain-type method (see e.g., [5, 6]). The
current paper aims to improve the Kansa’s method which belongs to the latter category,
though the idea can be applied to the former category as well.

The RBFs are a set of powerful basis functions for multivariate approximation with
many advantages including high accuracy, ease of implementation, and lowmemory storage.
However, they suffer from ill-conditioning, specially, when the size of the interpolation
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matrix increases. Moreover, the method involves dense matrices, which reduces the
computational efficiency of the underlying method. To avoid the above difficulties, some
techniques such as domain decompositionmethods (DDM) [5, 7], compactly supported RBFs
(CS-RBFs) [8], and preconditioning [9] have been recommended. In addition, a mesh-free
numerical procedure based on the local radial basis function collocation method with an
adaptive nodes technique was presented in [10].

To improve the conditioning of the interpolation matrix, we suggest an overlapping
DDM based on an adaptive nodes strategy rather than only the geometry of the problem.
More precisely, a set of adaptive nodes is first produced in the domain and then the domain
is partitioned into some overlapping subregions such that the same number of nodes are
located in the subdomains. The classical DDM Schwarz method is applied to the partitioned
problem, that is, applying the collocationmeshless method to each subproblem and obtaining
the local solutions followed by updating the interface boundary solutions. This process is
performed iteratively until a desired accuracy for the global solution is achieved. Using this
method, we take advantages of both DDM and adaptive nodes method. On one hand, the
method takes benefit of the adaptive mesh method which aims to use a minimum number of
nodes. On the other hand, it enjoys the advantages of the DDM, which reduce the size of the
matrices involved and, consequently, improve the conditioning of the problem.

As noted, an adaptive nodes technique is required for the proposed method. It is well
known that the main idea in adapting meshes is to use a minimum number of nodes while
keeping a desired accuracy. This is achieved by allocating more mesh points to the areas
where the solution has rapid variation. There have beenmany adaptive mesh strategies in the
literature [11, 12]. We employ an equidistribution strategy based on the dimension reduction
which permits mesh points generation in the higher dimensions [13]. In particular, we use
a method presented in [14] for rectangular domains based on dimension reduction and
equidistributing along the grid lines in the coordinate directions. In the dimension reduction
method, the equidistribution process is reduced to a 1D case. Also a generalization of the
above-mentioned method to the case of three dimensions has been presented in [15]. In
addition, an extension of the 2D adaptive mesh to the case of irregular domains has been
presented in [16].

As is well known, in the equidistribution strategy, the mesh distribution is carried out
in such a way that some measure of error, called a monitor function, is equalized over each
subinterval. In the current work, an adaptive nodes technique is used to find a domain par-
titioning in such a way that the solution error is roughly equalized over each local problem.
This paper is organized as follows. In Section 2, an adaptive mesh technique used in this
study is introduced. The overlapping Schwarz method will be briefly described in Section 3.
The new adaptive partitioning method is presented in Section 4. In Section 5, the collocation
meshless method is reviewed. Some numerical results will be presented in Section 6.

2. Adaptive Nodes in a Rectangle

For a 2D domainΩ, a partition {Ωi}ni=1 is called equidistributing with respect to a nonnegative
piecewise continuous function M(x, y) (see [17]) if

∫∫
Ωi

M
(
x, y

)
dx dy = constant, (2.1)
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Figure 1: The three stages of the adaptive mesh method are shown in Figures (a), (b), and (c), respectively,
and in each direction two grid curves are displayed with the quadrilateral formed.

where the monitor function M depends on the solution of the underlying PDE and its
derivatives. To construct suitable monitor functions for different applications is a line of
research [18]; however, the current work focuses on the mesh generation strategy using a
well-known monitor, arc-length, which is given by (see [19])

M =
√
1 + u2

x. (2.2)

We now briefly review a 2D adaptive mesh method presented in [14] based on
dimension reduction and equi-distributing along the coordinate axes. The method starts with
a uniform mesh in a rectangle in the form

{(
x, y

) | a ≤ x ≤ b, c ≤ y ≤ d
}
. (2.3)

The equidistribution process is performed in three stages. In the first stage, equidistribution is
performed in the direction of the x-axis (Figure 3(a)). In the second stage, the equidistribution
is performed in the vertical direction along the grid lines produced in the first stage. Since
the grid lines are curved, the distribution is performed along the arc rather than the vertical
coordinate direction (Figure 3(b)). A similar procedure is performed in the third stage along
the horizontal grid curves, using themonitor in the x coordinate direction again (Figure 1(c)).

The mesh resulting from the above procedure forms quadrilaterals whose sides equi-
distribute the grid lines in the two coordinate directions (see Figure 1(c)). The producedmesh
may not be precisely equi-distributing in 2D; however, the mesh points are suitable for any
meshless method in which the mesh points, rather than mesh lines, are important. It should
be noted that the connectivity of the mesh, which is used in the mesh generation process, is
not utilized in our proposed adaptive ddm, which is applied to a meshless method.

This mesh generation technique has two important properties, which will be used in
the current work.
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Figure 2: The domain Ω has been split into two overlapping subdomains Ω1 and Ω2 with interior
boundaries Γ1 and Γ2.

(1) It keeps the number of initial uniform mesh points by which the adapting process
is performed. More precisely, if

A =
{(

xi, yi

)
: i = 1, . . . ,N

}
(2.4)

is the initial set of equally spaced nodes and

B =
{(

x′
i, y

′
i

)
: i = 1, . . . ,N ′} (2.5)

is the set of points produced by the adapting strategy, thenN = N ′ and there will be
a one-to-one correspondence between the members ofA and B. In fact, the adaptive
method moves a point (xi, yi) to a new position denoted by (x′

i, y
′
i).

(2) It keeps the order of points, that is, for every two points (xi, yi) and (xj , yj), if xi <
xj , then x′

i < x′
j , and if yi < yj , then y′

i < y′
j . The 2D adaptive method inherits these

properties from the equi-distributing algorithm in the case of 1D presented in [17]
taking into account that the dimension reduction is used to reduce the problem to
the 1D case.

This technique will be used in Section 4 to combine the DDM and the adaptive method.

3. An Overlapping Schwarz Method

We describe the method in a simple case of two subdomains for a Poisson equation with a
Dirichlet boundary condition as follows:

∇2(u) = f, in Ω,

u = u, on Γ.
(3.1)

Suppose Ω is split into two overlapping subregions Ω1 and Ω2 enclosed by ∂Ω1 and ∂Ω2,
respectively, where ∂Ωi = ∂Ωi \ Γi ∪ Γi, i = 1, 2, ∂Ωi \ Γi is the contribution of the real
boundary to subdomain i and Γi is the interior boundary associated with Ωi artificially
defined (Figure 2). To explain the method, let un

i denote the approximate solution on Ωi



Journal of Applied Mathematics 5

Uniform single domain

(a)

Uniform 2 subdomains

(b)

Adaptive single domain

(c)

Adaptive 2 subdomains

(d)

Figure 3: The adaptive partitioning algorithm is illustrated in 4 stages.

after n iterations, un
1 |Γ2 the restriction of un

1 to Γ2, and un
2 |Γ1 the restriction of un

2 to Γ1. To
start the iteration, an initial approximation u0

2, for the solution inΩ2, is required. The Schwarz
method is then proceeded with the following iterations until a solution with desired accuracy
is achieved.

(1) Solve (3.1) for the subdomain Ω1 as follows:

∇2u = f in Ω1,

un
1 = u on ∂Ω1 \ Γ1,

un
1 = un−1

2

∣∣∣
Γ1

on Γ1.

(3.2)

(2) Solve (3.1) for the subdomain Ω2 as follows:

∇2u = f in Ω2,

un
2 = u on ∂Ω2 \ Γ2,
un
2 = un

1

∣∣
Γ2

on Γ2.

(3.3)
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It should be noted that the values un
2 |Γ1 and un

1 |Γ2 are approximated by interpolating inΩ2 and
Ω1, respectively. It is easy to show that performing the above iterations is equivalent to the
block Gauss-Seidle method (see [20]).

4. Adapting Domain Partitioning

For the ease of description, we present the method for the case of two subdomains using a
solution function u(x, y) = e4x + e4y in the square Ω = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} which is
like the boundary layer problems. We start with a uniform mesh in

Ω =
{(

x, y
) | a ≤ x ≤ b, c ≤ y ≤ d

}
(4.1)

(see Figure 3(a)).
Suppose Ω is split into two overlapping subdomains Ω1 and Ω2 with the same area.

The artificial boundaries are selected such that their nodes coincide with the initial uniform
mesh points used. The mesh points are equally allocated to each subregion (see Figure 3(b)).
The above uniform mesh points are first distributed adaptively through the whole domain
using an appropriate adaptive method with a suitable monitor function. We use the method
described in Section 2 with the arc-length monitor which is appropriate for rectangular
regions (see [20]).

Having applied the adaptive mesh technique, the initial equally spaced nodes will
move through the domain (see Figure 3(c)). In particular, the artificial boundary nodes,
which are interior to the domain, move around and take new positions which determine a
new partitioning for Ω (see Figure 3(d)). More precisely, since, according to property 1, the
adaptive method keeps the number of the initial mesh points, the new position of the artificial
boundary nodes determines subregionsΩ′

1 andΩ′
2 with the same number of nodes. We show

this for the left subdomain. Let (x1, y1), (x2, y2), . . . , (xn, yn) be the interior boundary points
and (xij , yij), j = 1, . . . , m, i = 1, . . . , n be the nodes interior to Ω1 for which a < xij < xi

and yij = yi, c < yi < d. In addition, let (x′
i, y

′
j) and (x′

ij , y
′
ij) be the adaptive points

corresponding to (xi, yi) and (xij , yij), respectively, then according to property 2, we have
a < x′

ij < x′
i, j = 1, . . . , m, i = 1, . . . , n.

It should be noted that this partitioning, itself, roughly equidistributes the monitor
function, taking into account that, on the one hand, the adaptive mesh produced in
Figure 3(c) satisfies the equidistribution condition and, on the other hand, the whole mesh
points are equally divided between the subdomains.

A similar algorithm is suggested for the case of more subdomains. More precisely,
having produced the adaptive nodes in the single domain Ω, they are partitioned based on
a partitioning of the single domain into an arbitrary number of subregions with the same
area and the same number of nodes. For example, in Figure 4, an adaptive partitioning into
4 subdomains for a solution function u = ecx + ecy, is displayed for different values of c
demonstrating different amount of variations.

It is worth noting that the adaptive mesh points could be applied to each subproblem
separately. But this would result in a node distribution which could be only locally adapted.
Since the nodes could only move through their own subdomains, the number of nodes
allocating to some subregions may not be sufficient.
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Figure 4: The adaptive partitioning in the case of 4 subdomains produced for the function u = ecx + ecy are
displayed for various values of c.

5. Collocation Meshless Method

In this section, we first introduce the RBFs and then describe their application to the
numerical solution of PDEs based on the collocation method.

5.1. Radial Basis Functions

RBFs are known as the natural extensions of splines to multivariate interpolation. Suppose
the set of points

{xi ∈ Ω | i = 1, 2, . . . ,N} (5.1)

is given, where Ω is a bounded domain in Rn. The radial function ϕ : Ω → R is used to
construct the approximate function

s(x) =
N∑
k=1

αkϕ(‖x − xk‖), (5.2)
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which interpolates an unknown function f whose values at {xi}Ni=1 are known. ‖ · ‖ represents
the Euclidean norm. The unknown coefficients αk are determined such that the following N
interpolation conditions are satisfied:

f(xi) = s(xi) =
N∑
k=1

αkϕ(‖xi − xk‖), i = 1, . . . ,N. (5.3)

There is a large class of interpolating RBFs [21] that can be used in meshless methods. These
include the linear 1+r, the polynomial Pk(r), the thin plate spline (TPS) r2 log r, the Gaussian

exp(−r2/β2), and the multiquadrics
√
β2 + r2 (with β a constant parameter). In this paper,

we employ a generalized TPS, that is, r4 log r which is a particular case of r2k log r (k = 2).
These RBFs, augmented by some polynomials, are known as the natural extension of the
cubic splines to the case of 2D. In fact, they are obtained by minimizing an Hm seminorm
over all interpolants for which the seminorm exists. The theoretical discussion of these RBFs
has been presented in [22].

5.2. Collocation Meshless Method

We describe the collocation method for a general case of PDEs in the form

Lu = F, (5.4)

where L = [L1, . . . , LN]T represents a vector of linear operations and F = [f1, . . . , fN]T denotes
a vector containing the right-hand sides of the equations. For instance, Poisson’s equation
with a Dirichlet boundary condition

Δu = f, in Ω,

u = g, on ∂Ω,
(5.5)

is a very simple case of equation (5.4), where L = [Δ, I]T , F = [f, g]T and the operators Δ and
I act on the domain Ω and the boundary ∂Ω, respectively.

The collocation method is used simply to express the unknown function u in terms of
the RBFs as

u(x) =
N∑
k=1

αkϕ(‖x − xk‖) (5.6)

and determine the unknowns αk in such a way that (5.6) satisfies equation (5.4) for all
interpolation points. Substituting (5.6) in equation (5.4) and imposing the N essential
conditions of the collocation method lead to a linear system of equations whose coefficient
matrix consists of N row blocks, the entries of which are of the form

A
μ

ij = Lμϕ
(∥∥x − xj

∥∥)∣∣
x=xi

, i = 1, . . . ,Nμ, j = 1, . . . ,N, (5.7)

where Nμ indicates the number of nodes associated with the operator Lμ.
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The above collocation method is referred to as a nonsymmetric collocation method
due to the nonsymmetric coefficient matrices. The invertibility of the coefficient matrix can
not be guaranteed [23], although in most cases a nonsingular matrix is expected. To tackle
this difficulty, the symmetric collocation method, motivated by Hermitian interpolation, has
been suggested. This method leads to symmetric matrices and proves the nonsingularity of
interpolation matrices at the expense of double acting the operators on the RBFs [23]. Since
this work is not concerned with the singularity of the matrices, the non-symmetric case will
be implemented. Of course, the main technique discussed in this paper can be applied to the
other case as well.

6. Numerical Results

In this section, we solve some PDEs by applying the above collocation method using a single
domain and the adaptive multidomain decomposition. The results are compared with each
other to show the effectiveness of the new proposed method. In each case, the method is
used with some equally spaced nodes and adaptive nodes generated with various number
of subdomains. The results are compared in four cases: (i) single domain with uniform
mesh points, (ii) single domain with adaptive mesh points, (iii) uniform multidomain,
and (iv) adaptive multidomain in the cases of 2 and 4 subdomains. A generalized TPS,
φ(r) = r4 log r, is employed as a basis function. In each example, a root mean square (RMS)
error at m collocation points is evaluated by

RMS error =

√√√√ 1
m

m∑
i=1

(
uapr,i − uex,i

)2
, (6.1)

where uapr,i and uex,i denote the approximate and exact values of u, respectively, at a point i.
Also the arc-length is used, as a monitor function, for the mesh generation technique.

In order to show the good performance of the proposed method, we consider some PDEs
whose solutions are similar to those of the boundary layer problems.

Example 6.1. We apply the new method to the following PDE:

Δu = c2
(
e−cx + e−cy

)
, in Ω,

u
(
x, y

)
= e−cx + e−cy, on ∂Ω,

(6.2)

in the square Ω = {(x, y) | 0 ≤ x, y ≤ 1} in the cases: c = 20 and c = 40. The exact solution for
(6.2) is given by u(x, y) = e−cx + e−cy.

The plot of the solution function with the illustration of adaptive nodes in a single
domain and multidomain in the case of 2 and 4 subdomains are displayed in Figure 5.
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Figure 5: A single domain with adaptive nodes and adaptive partitioning in the cases of 2 and 4
subdomains for the solution of Example 6.1.

The numerical errors produced by the RBF collocation method are given in Table 1 for
different cases. The following notations are used in Tables 1 and 2.

U. S. D: Uniform single domain
A. S. D: Adaptive single domain
U. 2 Sub.: Uniform 2 subdomains
A. 2 Sub.: Adaptive 2 subdomains
U. 4 Sub.: Uniform 4 subdomains
A. 4 Sub.: Adaptive 4 subdomains

In the next example, we apply the new method to a nonlinear problem.

Example 6.2. One has

Δu = f
(
x, y, u

)
, in Ω,

u
(
x, y

)
= g

(
x, y

)
, on ∂Ω,

(6.3)

with Ω = {(x, y) | 0.01 ≤ x, y ≤ 1}, in two cases.
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Table 1: Error values for Example 6.1.

Problem N + L S. U. D. S. A. D. U. 2 Sub A 2 Sub U. 4 Sub A 4 Sub

c = 20 80+380 2.5E − 2 4.7E − 3 1.9E − 2 2.8E − 3 2.0E − 2 9.1E − 4
120+800 9.2E − 3 9.8E − 4 6.5E − 3 8.0E − 4 4.3E − 3 7.6E − 4

c = 40 80+380 1.2E − 1 5.2E − 2 8.6E − 2 3.6E − 2 6.7E − 2 2.9E − 2
120+800 5.2E − 2 5.4E − 3 3.8E − 2 3.6E − 3 3.0E − 2 2.4E − 3

Table 2: Error values for Example 6.2.

Problem N + L S. U. D. S. A. D. U. 2 Sub A 2 Sub U. 4 Sub A 4 Sub

u = 1/(x + y) 80+380 1.1E − 2 2.6E − 1 1.8E − 3 9.8E − 3 5.0E − 3 2.2E − 3
120+800 4.4E − 3 2.3E − 1 2.2E − 2 8.5E − 3 2.1E − 3 1.2E − 3

u = 1/(x + y)2
80+380 2.6E − 1 1.6E + 1 1.5E − 0 9.0E − 2 2.1E − 1 5.0E − 2
120+800 1.1E − 1 5.0E − 1 8.5E − 1 9.8E − 2 1.1E − 1 4.0E − 2

Case 1. f(x, y, u) = 4u3 and g(x, y) = 1/(x + y) with the exact solution u = 1/(x + y).

Case 2. f(x, y, u) = 12u2 and g(x, y) = 1/(x + y)2 with the exact solution u = 1/(x + y)2.

The plot of the solution function with the illustration of adaptive nodes in a single
domain and multidomain in the cases of 2 and 4 subdomains are displayed in Figure 6. The
numerical errors produced by the RBF collocation method are given in Table 2 for different
cases.

We remark that a primary solution was first obtained by a uniform single domain.
Secondly, this solution was used in approximating the derivative of the solution which was
required to evaluate the monitor function in (2.2) at each collocation node. Thirdly, the
primary solution was used as the initial approximate values of the interior boundary points
required in the iterative Schwarz method for solving uniform DDM and adaptive DDM.
Using these relatively accurate initial solutions considerably reduces the number of iterations
in the Schwarz method (2-3 iterations).

As is observed, in both examples, the distribution of the mesh points is densely close
to the origin due to the large variation of the solutions, in this area. This results in a small
subdomain around the origin and larger ones farther from the origin. In all cases, except
the latter case of Example 6.2, the numerical errors demonstrate improvements in the case of
uniform DDM, a single domain with adaptive nodes and adaptive DDM. However, the best
results are achieved in the case of using the new method, adaptive domain decomposition
method. This is due to the fact that, although using a single domain with adaptive nodes
improve the accuracy of the solution, the interpolation matrix, in this case, may be a large
matrix with a large condition number. Consequently, applying the adaptive DDM improves
the conditioningwhile taking advantage of the equidistribution property which leads tomore
accurate solution.

In the latter case of Example 6.2, the variation of the solution is much larger than that
of the former case. As a consequence, the distribution of the nodes is extensively dense
around the origin. This, itself, causes the conditioning of the problem and leads to less
accurate solution. But, the numerical results are improved in the case of applying the adaptive
DDM. This improvement is justified by the fact that, in the case of the adaptive DDM,
the interpolation matrix is split into some smaller matrices which improve the condition
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Figure 6: A single domain with adaptive nodes and adaptive partitioning in the cases of 2 and 4
subdomains for the solution of Example 6.2.

numbers of the local matrices.The results show that application of the uniform DDM may
not be adequate for these sort of solution functions.

In addition to improvement of the accuracy, the computational efficiency is consider-
ably improved due to the use of the small size matrices in the subproblems.

7. Conclusion

A new domain partitioning technique based on adaptive nodes was presented to improve
meshless type methods. The method was based on first, generating some adaptive nodes in
a rectangle and then partitioning the domain based on the distribution of the points.

The method was applied to the collocation meshless method; however, it is applicable
to any sort of mesh-free method in which the connectivity of the nodes is not important.
The method was applied to the case of rectangular domains using an adaptive technique
based on equi-distributing principle. Onemay be interested in adapting the proposedmethod
with the other mesh generation technique. Applying the new method to the irregular
regions is more complicated and is currently being considered. The new method was
examined by considering some PDEs solved by a collocationmeshless method and the results
demonstrated considerable reduction in the error values.
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