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This paper considers a multiitem inventory model with unknown demand rate coefficients.
An adaptive control approach with a nonlinear feedback is applied to track the output of the
system toward the inventory goal level. The Lyapunov technique is used to prove the asymptotic
stability of the adaptive controlled system. Also, the updating rules of the unknown demand rate
coefficients are derived from the conditions of the asymptotic stability of the perturbed system.
The linear stability analysis of the model is discussed. The adaptive controlled system is modeled
by a system of nonlinear differential equations, and its solution is discussed numerically.

1. Introduction

The area of adaptive control has grown rapidly to be one of the richest fields in the control
theory. Many books and research monographs already exist on the topics of parameter
estimation and adaptive control. Adaptive control theory is found to be very useful in
solving many problems in different fields, such as management science, dynamic systems,
and inventory systems [1–3].

(i) El-Gohary and Yassen [4] used an adaptive control approach and synchronization
procedures to the coupled dynamo system with unknown parameters. Based on
the Lyapunov stability technique, an adaptive control laws were derived such that
the coupled dynamo system is asymptotically stable and the two identical dynamo
systems are asymptotically synchronized. Also the updating rules of the unknown
parameters were derived;
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(ii) El-Gohary and Al-Ruzaiza [5] studied the adaptive control of a continuous-time
three-species prey-predator populations. They have derived the nonlinear feedback
control inputs which asymptotically stabilized the system about its steady states;

(iii) Tadj et al. [6] discussed the optimal control of an inventory system with
ameliorating and deteriorating items. They considered different cases for the
difference between the ameliorating and deteriorating items;

(iv) Foul et al. [7] studied the problem of adaptive control of a production and inventory
system in which a manufacturing firm produces a single product, then it sells
some of its production and stocks the remaining. They applied a model reference
adaptive control system with a feedback to track the output of the system toward
the inventory goal level;

(v) Alshamrani and El-Gohary [8] studied the problem of optimal control of the
two-item inventory system with different types of deterioration. They derived
the optimal inventory levels and continuous rates of supply from the optimality
conditions;

(vi) Many other studies which are concerned with the production and inventory
systems, multiitem inventory control, and inventory analysis can be found in
references [9–14]. Such studies have discussed the optimal control of a multi-item
inventory model, the stability conditions of a multi-item inventory model with
different demand rates, and the optimal control of multi-item inventory systems
with budgetary constraints.

This paper is concerned with a two-item inventory system with different types
of deteriorating items subjected to unknown demand rate coefficients. We derive the
controlled inventory levels and continuous rates of supply. Further, the updating rules
of the unknown demand rate coefficients are derived from the conditions of asymptotic
stability of the reference model. The resulting controlled system is modeled by a system of
nonlinear differential equations, and its solution is discussed numerically for different sets of
parameters and initial states.

Themotivation of this study is to extend and generalize the two-item inventory system
with different types of deterioration and applying an adaptive control approach to this
system in order to get an asymptotic controlled system. This paper generalizes some of the
models available in the literature, see for example, [6, 9].

The rest of this paper is organized as follows. In Section 2, we present themathematical
model of the two-item system. Also, stability analysis of the model is discussed in Section 2.
Section 3 discusses the adaptive control problem of the system. Numerical solution and
examples are presented in Section 4. Finally, Section 5 concludes the paper.

2. The Two-Item Inventory System

This section uses the mathematical methods to formulate the two-item inventory systemwith
two different type of deteriorations. In this model, we consider a factory producing two items
and having a finished goods warehouse.
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2.1. The Model Assumptions and Formulation

This subsection is devoted to introduce the model assumptions and its formulation. It is
assumed that the inventory supply rates are equal to the production rates, while the demand
rates may adopt two different types. Throughout this paper we use i, j = 1, 2 for the two
different types of items. Moreover, the following variables and parameters are used:

xi(t): the ith item inventory level at time t;

ui(t): rate of continuous supply to xi at time t;

xio: the ith item initial state inventory level;

dixi: linear demand rate at instantaneous level of inventory xi, where di is a
constant;

θii: the deterioration coefficient due to self-contact of the ith item inventory level xi;

aij : the demand coefficient of xi due to presence of units of xj , where (i /= j);

θi: the natural deterioration rate of the ith item inventory level xi;

xi: the value of the ith item inventory level at the steady state;

ui: the value of the ith item continuous rate of supply at the steady state;

âij(t): the dynamic estimator of demand coefficient of xi due to presence of units of
xj , where (i /= j).

The main problem of this paper is to present the adaptive control problem for the two-
item inventory system as a control problemwith two state variables and two control variables
which are the inventory levels xi(t), i = 1, 2 and the two continuous supply rates ui(t), i = 1, 2,
respectively.

Also, since an analytical solution of the resulting control system is nonlinear and
its analytical solution is not available, we solve it numerically and display the solution
graphically. We show that the solution of the adaptive controlled system covers different
modes of demand rates.

2.2. The Mathematical Model and Stability Analysis

In this subsection, we present a suitable mathematical form for a two-item inventory system
with two types of deteriorations. This mathematical form must be simple to deal with
any response of the two-item inventory model with deterioration to any given input. The
differential equations system that governs the time evolution of the two-item inventory
system is found to be as follows [8]:

ẋ1(t) = u1(t) − x1(t)(d1 + θ1 + a12x2(t) + θ11x1(t)),

ẋ2(t) = u2(t) − x2(t)(d2 + θ2 + a21x1(t) + θ22x2(t)),
(2.1)

with the following nonnegatively conditions:

xi(t) ≥ 0, ui(t) ≥ 0, di(t) > 0, θi(t) > 0, θii > 0, i = 1, 2, (2.2)
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and with the following boundary conditions:

xi(0) = xi0, i = 1, 2. (2.3)

In this paper, we consider the inventory goal levels xi and the goal rates of the
continuous rate of supply ui to be their values at the steady state of the system. The advantage
of this study is to prove the asymptotic stability of the two-item inventory system using the
Liapunov technique about the steady state of the system.

Next, we will derive the steady state solution of (2.1). The steady state of the system
(2.1) can be derived by putting both of ẋ1(t) and ẋ2(t) equal zero, that is,

x1(d1 + θ1 + a12x2 + θ11x1) − u1 = 0,

x2(d2 + θ2 + a21x1 + θ22x2) − u2 = 0.
(2.4)

Solving (2.4), we get x1 as a function of x2 as follows:

x1 =
[

−(d1 + θ1 + a12x2) ±
√

(d1 + θ1 + a12x2)
2 + 4θ11u1

]

(2θ11)
−1, (2.5)

where the values of x2 are the roots of the equation:

(

θ22 − a12a21

2θ11

)

x2
2 +

a21

2θ11

[√

(d1 + θ1 + a12x2)
2 + 4θ11u1 − d1 − θ1

]

x2 + d2 + θ2 − u2 = 0. (2.6)

In what follows, we discuss the numerical solution for the (2.4) for fixed values of the
parameters di, θi, θii, (i = 1, 2) and a12, a21:

(1) in this example, we discuss the numerical solution of (2.4) for constant rates of
supply u1 = 2.25 and u2 = 3.25, the steady states are given in Table 1;

(2) in this example, we discuss the numerical solution of (2.4) for the supply rates u1 =
5x1 + 6x2 and u2 = 45x1 + 25x2 of the inventory levels, the steady states are given in
Table 2;

(3) in this example, we discuss the numerical solution of (2.4) for supply rates u1 =
2x2

1 + 3x2
2 + 5x1x2 and u2 = 5x2

1 + 15x2
2 + 45x1x2 of the inventory levels, the steady

states are given in Table 3.

Figure 1 displays the numerical solution for the two-item inventory system with the
quadratic continuous rates of supply u1 = αx1x2 and u2 = βx1x2, with the initial inventory
levels x1(0) = 3 and x2(0) = 15, and with the following set of parameters in Table 4.

Figure 2 displays the numerical solution for the two-item inventory with constant
continuous rates of supply u1 = α and u2 = β, with the initial inventory levels x1(0) = 3
and x2(0) = 5, and the following set of parameters in Table 5.

2.3. Linear Stability Analysis

The concept of stability is concerned with the investigation and characterization of the
behavior of dynamic systems. Stability analysis plays a crucial role in system theory and
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Table 1

Model parameters Steady states (x1, x2)

d1 = 10, d2 = 20, a12 = 2.5, a21 = 3.5,
θ1 = 0.1, θ2 = 0.15, θ11 =
0.01, and θ22 = 0.01

(−1010,−0.00996), negative
(−6.4,−4.624), negative
(0.225, 0.156), positive

Table 2

Model parameters Steady states (x1, x2)

d1 = 10, d2 = 20, a12 = 25, a21 =
45, θ1 = 0.05, θ2 = 0.25, θ11 =
0.2, and θ22 = 0.2

(0, 0), null state
(−149.81, 0.995), negative

(0.22, 1.93), positive

control engineering and has been investigated extensively in the past century. Some of the
most fundamental concepts of stability were introduced by the Russian mathematician and
engineer Alexandr Lyapunov in [15].

In this section, we discuss the linear stability analysis of the system (2.1) about its
steady states (2.4). We classify the roots of the characteristic equation of the Jacobian matrix
of the system (2.1) about its steady states (2.4).

The characteristic equation is given by:

λ2 − bλ + c = 0, (2.7)

where the coefficients b and c are:

b =

{

2
∑

i=1

(

∂ui

∂xi
− ui

xi
− θiixi

)

}

(x1,x2)=(x1,x2)

c =
{(

∂u1

∂x1
− u1

x1
− θ11x1

)(

∂u2

∂x2
− u2

x2
− θ22x2

)

−
(

∂u1

∂x2
− a12x1

)(

∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)
.

(2.8)

The roots of the characteristic equation are:

λ = b ±
√

b2 − 4c. (2.9)

The roots of the characteristic equation will be complex numbers with negative real
parts if the following conditions can be satisfied:

2
∑

i=1

[

∂ui

∂xi
− ui

xi
− θiixi

]

(x1,x2)=(x1,x2)
< 0,

{

(

∂u1

∂x1
− ∂u2

∂x2
− u1

x1
+
u2

x2
− θ11x1 + θ2x2

)2

− 4
(

∂u1

∂x2
− a12x1

)(

∂u2

∂x1
− a21x2

)

}

(x1,x2)=(x1,x2)

< 0.

(2.10)
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Table 3

Model parameters Steady states (x1, x2)

d1 = 50, d2 = 40, a12 = 75, a21 = 55, θ1 =
0.15, θ2 = 0.25, θ11 = 0.2, and θ22 = 0.2

(0, 0), null state
(−2.4 + 1.72I,−0.786 + 0.04I), imaginary

(0.099, 2.9), positive

Table 4

Parameter θ11 θ22 a12 a21 d1 d2 θ1 θ2 u1 u2 α β

Value 0.12 0.15 6 5 6 8 0.02 0.04 100 50 8 5

Therefore the system (2.1) is stable in the linear sense if the conditions (2.10) are
satisfied, otherwise this system is absolutely unstable. The absolutely stability of system (2.1)
needs further complicated mathematical analysis.

The roots of the characteristic equation will be negative real numbers if the following
conditions can be satisfied:

2
∑

i=1

[

∂ui

∂xi
− ui

xi
− θiixi

]

(x1,x2)=(x1,x2)
< 0,

{

(

∂u1

∂x1
− ∂u2

∂x2
− u1

x1
+
u2

x2
− θ11x1 + θ2x2

)2

+ 4
(

∂u1

∂x2
− a12x1

)(

∂u2

∂x1
− a21x2

)

}

(x1,x2)=(x1,x2)

> 0

{(

∂u1

∂x1
− u1

x1
− θ11x1

)(

∂u2

∂x2
− u2

x2
− θ22x2

)

−
(

∂u1

∂x2
− a12x1

)(

∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)
> 0.

(2.11)

If the conditions (2.11) are satisfied, then the system (2.1) is stable in the linear sense,
otherwise this system is absolutely unstable. The absolutely stability of system (2.1) needs
further complicated mathematical analysis.

Next, we discuss some special cases in which the rates of supply take different
functions of the inventory levels:

(1) when the supply rates do not depend on the inventory levels, the linear stability
conditions are reduced to

x1

x2
<

u1 + θ11x
2
1

u2 + θ22x
2
2

(2.12)

or

u1 + θ11x
2
1

a12x
2
1

<
u2 + θ22x

2
2

a21x
2
2

; (2.13)
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Table 5

Parameter θ11 θ22 a12 a21 d1 d2 θ1 θ2 α β

Value 0.2 0.5 0.6 0.5 0.6 0.8 0.02 0.04 8 5
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(c) The two items inventory limit cycle

Figure 1: (a) and (b) are the first and the second inventory levels, respectively, of the uncontrolled system,
with quadratic rates of supply. (c) is the trajectory of the inventory system in x1x2-plane.

(2) when the supply rates are linear function of the inventory levels, ui = αixi, i = 1, 2,
the linear stability conditions are reduced to

(θ22x2 − θ1x1)
2 < 4a12a21x1x2 (2.14)

or

(α1 + θ11x1)(α2 + θ22x2) > a12a21x1x2; (2.15)

(3) when the supply rates are quadratic functions of the inventory levels, ui =
αix1x2, i = 1, 2, the linear stability conditions are reduced to

(θ22x2 − θ11x1)
2 < 4(α1 − a12)(α2 − a21)x1x2 (2.16)
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(c) The two items inventory limit cycle

Figure 2: (a) and (b) are the first and the second inventory levels of the uncontrolled system, with constant
rates of supply. (c) is the trajectory of the inventory system in x1x2-plane.

or

(θ22x2 − θ11x1)
2 + 4(α1 − a12)(α2 − a21)x1x2 > 0,

θ11θ22 > (α1 − a12)(α2 − a21).
(2.17)

In what follows, we study the problem of adaptive control. In order to study this
problem, we start by obtaining the perturbed system of the two-item inventory model about
its steady states (x1, x2). To obtain this perturbed system, we introduce the following new
variables:

ξi(t) = xi(t) − xi, vi(t) = ui(t) − ui, (i = 1, 2), (2.18)

Substituting from (2.18) into (2.1) and using (2.4), we get

ξ̇1(t) = −ξ1[d1 + θ1 + a12ξ2 + a12x2 + θ11(ξ1 + 2x1)] − a12x1ξ2 + v1,

ξ̇2(t) = −ξ2[d2 + θ2 + a21ξ1 + a21x1 + θ22(ξ2 + 2x2)] − a21x2ξ1 + v2.
(2.19)
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The system (2.19)will be used to study the problem of adaptive control of the two-item
inventory model with deteriorating item and unknown demand coefficients.

In adaptive control systems, we are concerned with changing the properties of
dynamic systems so that they can exhibit acceptable behavior when perturbed from their
operating point using a feedback approach.

3. The Adaptive Control Problem

The problem that we address in this section is the adaptive control of the two-item inventory
system with different types of deterioration which are subjected to unknown demand rate
coefficients. In such study, we assume that the demand coefficients a12 and a21 are unknown
parameters. So we assume that the functions â12(t) and â21(t) represent their dynamic
estimators. Using this assumption, we can rewrite the system (2.19) in the following form:

ξ̇1(t) = −ξ1[d1 + θ1 + â12ξ2 + â12x2 + θ11(ξ1 + 2x1)] − â12x1ξ2 + v1,

ξ̇2(t) = −ξ2[d2 + θ2 + â21ξ1 + â21x1 + θ22(ξ2 + 2x2)] − â21x2ξ1 + v2.
(3.1)

The adaptive law is usually a differential equation whose state is designed using stability
considerations or simple optimization techniques to minimize the difference between the
state and its estimator with respect to the state at each time t.

In what follows, we discuss the asymptotic stability of the special solution of the
system (3.1)which is given by

ξi(t) = 0, vi = 0, (i = 1, 2), â12(t) = a12, â21(t) = a21. (3.2)

This solution corresponds to the steady states solution of the system (2.1). So the
asymptotic stability of this solution leads to the asymptotic stability of the (2.1) about its
steady state.

The following theorem determines both of the perturbations of the continuous rates
of supply vi and the updating rules of â12(t) and â21(t) of demand rate coefficients from the
conditions of the asymptotic stability of the solution (3.2).

Theorem 3.1. If the perturbations of the continuous supply rates and the updating rules of the
unknown parameters â12(t) and â21(t) are given by

v1(t) = a12x1ξ2 + a12ξ1ξ2 + θ11ξ
3
1 − k1ξ1,

v2(t) = a21x2ξ1 + a21ξ1ξ2 + θ22ξ
3
2 − k2ξ2,

(3.3)

˙̂a12(t) = x2ξ1ξ2 + x2ξ
2
1 + ξ21ξ2 −m1(â12 − a12),

˙̂a21(t) = x1ξ1ξ2 + x1ξ
2
2 + ξ1ξ

2
2 −m2(â21 − a21),

(3.4)

where ki,mi, and (i = 1, 2) are positive real constant, then the solution (3.2) is asymptotically stable
in the Liapunov sense.
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Proof. The proof of this theorem can be reached by using the Liapunov technique. Assume
that the Liapunov function of the system of equations (3.2) and (3.4) is

2V (ξi, â12, â21) =
2
∑

i=1

ξ2i + (â12 − a12)
2 + (â21 − a21)

2. (3.5)

Differentiating the function V in (3.5):

V̇ = ξ1 ξ̇1 + ξ2 ξ̇2 + (â12 − a12)ȧ12 + (â21 − a21)ȧ21. (3.6)

Substituting from (3.1) into (3.6), we get

V̇ = ξ1
[

−(d1 + θ1)ξ1 − x1â12ξ2 − x2â12ξ1 − â12ξ1ξ2 − θ11ξ
2
1 − 2x1ξ1 + v1

]

+ ξ2
[

−(d2 + θ2)ξ2 − x2â21ξ1 − x1â21ξ2 − â21ξ1ξ2 − θ22ξ
2
2 − 2x2ξ2 + v2

]

+ (â12 − a12)ȧ12 + (â21 − a21)ȧ21.

(3.7)

Substituting from (3.1), (3.3), and (3.4) into (3.7), and after some simple calculations,
we get

V̇ = −
[

m1(â12 − a12)
2 +m2(â21 − a21)

2 + (d1 + θ1 + a12x2 + 2θ11x1)ξ21 ,

+(d2 + θ2 + a21x1 + 2θ22x2)ξ22
]

,

(3.8)

since the coefficients d1 + θ1 +a12x2 + 2θ11x1 and d2 + θ2 +a21x1 + 2θ22x2 are positive, then V̇ is
a negative definite function of ξi, â12, and â21, so the solution (3.3) is asymptotically stable
in the Liapunov sense, which completes the proof.

In Section 4, we will discuss the numerical solution of the controlled two-item
inventory system with unknown demand rate coefficients for different values of the
parameters and different initial states.

4. Numerical Solution and Examples

The objective of this section is to study the numerical solution of the problem of determining
an adaptive control strategy for the two-item inventory system subjected to different types of
deterioration and unknown demand rate coefficients. To illustrate the solution procedure,
let us consider simple examples in which the system parameters and initial states take
different values. In these examples, the numerical solutions of the controlled two-item
inventory system with unknown demand rate coefficients are presented. The numerical
solution algorithm is based on the numerical integration of the system using the Runge-Kutta
method.
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Table 6

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.18 0.26 6.0 8.0 0.4 0.2 0.25 0.5 1.0 0.5 0.1 0.25 5.0 6.0

Table 7

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.15 0.3 15.0 10.0 5.0 0.6 5 3 9.0 7.0 0.3 0.2 10.0 15.0

Substituting from (3.3) into (3.1) and adding the system (3.4), we can get the adaptive
control system as follows:

ξ̇1(t) = − (d1 + θ1)ξ1(t) − â12ξ1(t)ξ2(t) − a12x2ξ1(t) − 2θ11x1ξ1(t)

− â12x1ξ2(t) + a12ξ1(t)ξ2(t) + a12x1ξ2(t) + θ11ξ1(t)2 − k1ξ1(t),

ξ̇2(t) = − (d2 + θ2)ξ2(t) − â21ξ1(t)ξ2(t) − a21x1ξ2(t) − 2θ22x2ξ2(t)

− â21x2ξ1(t) + a21ξ1(t)ξ2(t) + a21x2ξ1(t) + θ22ξ2(t)2 − k2ξ2(t),

˙̂a12(t) = ξ1(t)2ξ2(t) + x2ξ1(t)2 + x1ξ1(t)ξ2(t) −m1(â12(t) − a12),

˙̂a21(t) = ξ2(t)2ξ1(t) + x1ξ2(t)2 + x2ξ1(t)ξ2(t) −m2(â21(t) − a21).

(4.1)

Clearly, this system is non-linear and its general solution is not available, so we will discuss
its solution numerically. Next, we solve this system numerically for some particular values of
the parameters and initial states.

4.1. Example 1

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically assuming constant demand rates. The following set of parameter values is used
in Table 6 with the following initial values of perturbations of inventory levels and estimators
of demand rate coefficients: ξ1(0) = 2; ξ2(0) = 10; â12(0) = 10; â21(0) = 13.

The numerical results are illustrated in Figure 3. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.

4.2. Example 2

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is a linear function of the inventory level. The following
set of parameter values is used in Table 7 with the following initial values of perturbations
of inventory levels and estimators of demand rate coefficients: ξ1(0) = 5; ξ2(0) = 15; â12(0) =
5; â21(0) = 8.
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Figure 3: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is a constant. (c) and (d) are the difference between dynamic estimators of
the first and second demand rates and their real values.

The numerical results are illustrated in Figure 4. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state. Also, we can easily
notice that the estimators of the unknown demand rate coefficients are exponentially tend to
the exact values.

4.3. Example 3

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is an exponential function of time. The following set
of parameter values is used in Table 8 with the following initial values of perturbations of
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Figure 4: (a) and (b) are the perturbation of the first and second inventory levels about their inventory goal
levels as the demand rate is a linear function of the inventory level. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

Table 8

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.08 0.06 20.0 15.0 0.2 1.0 0.02 0.015 0.1 0.2 0.15 0.1 20.0 30.0

inventory levels and estimators of demand rate coefficients: ξ1(0) = 25; ξ2(0) = 0.2; â12(0) =
0.2; â21(0) = 10.

The numerical results are illustrated in Figure 5. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.
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Figure 5: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is an exponential function of the time. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

Table 9

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.08 0.06 20 15 2 1 20 15 25 30 0.15 0.1 20 30

4.4. Example 4

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is an exponential function of time. The following set
of parameter values is used in Table 9 with the following initial values of perturbations of
inventory levels and estimators of demand rate coefficients: ξ1(0) = 1; ξ2(0) = 2; â12(0) =
0.2; â21(0) = 10.

The numerical results are illustrated in Figure 6. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
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Figure 6: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is an exponential function of the time. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.

5. Conclusion

We have shown in this paper how to use an adaptive control approach to study the
asymptotic stabilization of a two-item inventory model with unknown demand rate
coefficients. A non-linear feedback approach is used to derive the continuous rate of supply.
The Liapunov technique is used to prove the asymptotic stability of the adaptive controlled
system. Also, the updating rules of the unknown demand rate coefficients have been derived



16 Journal of Applied Mathematics

by using the conditions of the asymptotic stability of the perturbed system. Some numerical
examples are presented to:

(1) investigate the asymptotic behavior of both inventory levels and demand rate
coefficient at the steady state;

(2) estimate the unknown demand rate coefficients.
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