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Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a
system of high-order integro-differential equations on the interval [0,∞). This method is based on
replacement of the unknown functions by their truncated series of rational Chebyshev expansion.
Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.

1. Introduction

In recent years, there has been a growing interest in the system of integrodifferential
equations (IDE), which arise frequently in many applied areas which include engineering,
mechanics, physics, chemistry, astronomy, biology, economics, potential theory, electrostatics,
and so forth [1–8]. The systems of integrodifferential equations are generally difficult to solve
analytically, thus finding efficient computational algorithms for obtaining numerical solution
is required.

There are various techniques for solving systems of IDE, for example, operational Tau
method [9, 10], Adomian decomposition method [11], Galerkin method [12], rationalized
Haar functions method [13], He’s homotopy perturbation method (HPM) [14, 15], and
Ghebyshev polynomial [16].

A number of problems arising in science and engineering are set in semi-infinite
domains. One can apply different spectral methods that are used to solve problems in
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semi-infinite domains. The first approach is using Laguerre polynomials [17–20]. The second
approach is replacing semi-infinite domain with [0, L] interval by choosing L, sufficiently
large. This method is named domain truncation [21]. The third approach is reformulating
original problem in semi-infinite domain to singular problem in bounded domain by variable
transformation and then using the Jacobi polynomials to approximate the resulting singular
problem [22]. The fourth approach of spectral method is based on rational orthogonal
functions.

Boyd [23] defined a new spectral basis, named rational Chebyshev functions on the
semi-infinite interval, by mapping to the Chebyshev polynomials. Guo et al. [24] introduced
a new set of rational Legendre functions which are mutually orthogonal in L2(0,+∞). They
applied a spectral scheme using the rational Legendre functions for solving the Korteweg-de
Vries equation on the half line. Boyd et al. [25] applied pseudospectral methods on a semi-
infinite interval and compared rational Chebyshev, Laguerre, and mapped Fourier sine.

The authors of [26–29] applied spectral method to solve nonlinear ordinary differential
equations on semi-infinite intervals. Their approach was based on a rational Tau method.
They obtained the operational matrices of derivative and product of rational Chebyshev and
Legendre functions and then they applied these matrices together with the Tau method to
reduce the solution of these problems to the solution of system of algebraic equations.

Zarebnia and Ali Abadi [30] used Sinc-Collocation method for solving system of
nonlinear second-order integrodifferential equations of the Fredholm type. Rational second
(third) kind Chebyshev (RSC) functions, for the first time, were proposed by Tavassoli Kajani
and Ghasemi Tabatabaei [31] to find the numerical solution of Lane-Emden equation.

This paper outlines the application of rational second kind Chebyshev functions and
Galerkin method to the following system of linear high-order integrodifferential equations on
the interval [0,∞). Two problems of such equations are solved to make clear the application
of the proposed method. One has

l∑

i=1

⎛

⎝
m∑

j=0

νpij(x)y
(j)
i (x) + λip

∫b

a

(
kip(x, t)yi(t)

)
dt

⎞

⎠ = fp(x), p = 1, 2, . . . , l,

y
(j)
i (0) = yij , i = 1, 2, . . . , l, j = 0, 1, . . . , m − 1,

x ∈ [0,∞),

(1.1)

where 0 ≤ a < b < ∞.

2. Properties of RSC Functions

In this section, we present some properties of RSC functions.

2.1. RSC Functions

The second kind Chebyshev polynomials Un(x), n ≥ 0, are orthogonal in the interval [−1, 1]
with respect to the weight function

√
1 − x2 and we find that Un(x) satisfies the recurrence

relation [32]

U0(x) = 1, U1(x) = 2x,

Un(x) = 2xUn−1(x) −Un−2(x), n ≥ 2.
(2.1)
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The RSC functions are defined by [31, 33]

Rn(x) = Un

(
x − 1
x + 1

)
, (2.2)

thus RSC functions satisfy

R0(x) = 1, R1(x) = 2
(
x − 1
x + 1

)
,

Rn(x) = 2
(
x − 1
x + 1

)
Rn−1(x) − Rn−2(x), n ≥ 2.

(2.3)

2.2. Function Approximation

Let w(x) = 4
√
x/(x + 1)3 denotes a nonnegative, integrable, real-valued function over the

interval I = [0,+∞). We define

L2
w(I) =

{
y : I → R | y is measurable and

∥∥y
∥∥
w < ∞}, (2.4)

where

∥∥y
∥∥
w =
(∫∞

0

∣∣y(x)
∣∣2w(x)dx

)1/2
(2.5)

is the norm induced by the scalar product

〈
y, z
〉
w =
∫∞

0
y(x)z(x)w(x)dx. (2.6)

Thus {Rn(x)}n≥0 denote a system which is mutually orthogonal under (2.6), that is,

∫∞

0
Rn(x)Rm(x)w(x)dx =

π

2
δnm, (2.7)

where δnm is the Kronecker delta function. This system is complete in L2
w(I); as a result, any

function y ∈ L2
w(I) can be expanded as follows:

y(x) =
∞∑

k=0

ykRk(x), (2.8)

with

yk =
2
π

〈
y,Rk

〉
w. (2.9)
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The yk’s are the expansion coefficients associated with the family {Rk(x)}. If the infinite series
in (2.8) is truncated, then it can be written as

y(x) � yN(x) =
N∑

k=0

ykRk(x) = YTR(x), (2.10)

where Y = [y0, y1, . . . , yN]T and R(x) = [R0(x), R1(x), . . . , RN(x)]T .
We can also approximate the function k(x, t) in L2

w(I × I) as follows:

k(x, t) � kN(x, t) = RT (x)KR(t), (2.11)

where K is an (N + 1) × (N + 1) matrix that

Kij =
2
π2

〈
Ri(x),

〈
k(x, t), Rj(t)

〉〉
, i, j = 0, 1, . . . ,N. (2.12)

Moreover, from recurrence relation in (2.3) we have

R(0) =
[
1,−2, 3,−4, . . . , (−1)N(N + 1)

]T
= e1. (2.13)

2.3. Product Integration of the RSC Functions

We also use the matrix Pab as follows:

Pab =
∫b

a

R(t)RT (t)dt. (2.14)

To illustrate the calculation Pab we choose a = 0 and b = 1, then we obtain

P01 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 − 4 ln 2 11 − 16 ln 2 28 − 40 ln 2
167
3

− 80 ln 2 · · ·

2 − 4 ln 2 12 − 16 ln 2 30 − 44 ln 2
200
3

− 96 ln 2
374
3

− 180 ln 2 · · ·

11 − 16 ln 2 30 − 44 ln 2
203
3

− 96 ln 2
380
3

− 184 ln 2
3329
15

− 320 ln 2 · · ·

28 − 40 ln 2
200
3

− 96 ln 2
380
3

− 184 ln 2
3344
15

− 320 ln 2
5396
15

− 520 ln 2 · · ·

167
3

− 80 ln 2
374
3

− 180 ln 2
3329
15

− 320 ln 2
5396
15

− 520 ln 2
19451
35

− 800 ln 2 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.15)
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2.4. Operational Matrix of Derivative

The derivative of the vector R(x) defined in (2.10) can be approximated by

R′(x) � DR(x), (2.16)

where D is named the n × n operational matrix of derivative. Differentiating (2.3) we get

R′
0(x) = 0, R′

1(x) =
5
4
R0(x) − R1(x) +

1
4
R2(x),

R′
n(x) = (R1(x)Rn−1(x))′ − R′

n−2(x), n ≥ 2.
(2.17)

By using (2.17) the matrix D can be calculated. The matrix D is a lower Hessenberg matrix
and can be expressed asD = D1+D2, whereD1 is a tridiagonal matrix which is obtained from

D1 = diag
(−2 + 7i

4
,−i, i

4

)
, i = 0, . . . , n − 1, (2.18)

and the dij elements of matrix D2 are obtained from

dij =

{
0, i ≤ j + 1,
(−1)i+j+1(2j), i > j + 1.

(2.19)

2.5. The Product Operational Matrix

The following property of the product of two rational Chebyshev vectors will also be used:

R(x)RT (x)Y = ỸR(x), (2.20)

where Ỹ is called (N + 1) × (N + 1) product operational matrix for the vector Y . Using (2.20)
and the orthogonal property, the elements Ỹij , i = 0, . . . ,N, j = 0, . . . ,N of the matrix Ỹ can
be calculated from

Ỹij =
2
π

N∑

k=0

ckgijk, (2.21)

where gijk is given by

gijk =
∫∞

0
Ri(x)Rj(x)Rk(x)w(x)dx. (2.22)
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Figure 1: Graph of the exact and numerical solutions of y1(x) for N = 13; symbols correspond to the
numerical solution.

3. Solving System of Integrodifferential Equations over
Semi-Infinite Interval

Consider the following system of integrodifferential equations:

l∑

i=1

⎛

⎝
m∑

j=0

νpij(x)y
(j)
i (x) + λip

∫b

a

(
kip(x, t)yi(t)

)
dt

⎞

⎠ = fp(x), p = 1, 2, . . . , l,

y
(j)
i (0) = yij , i = 1, 2, . . . , l, j = 0, 1, . . . , m − 1,

x ∈ [0,∞).

(3.1)

Using (2.10) and (2.11) to approximate yi, fp, kip, and νpij when i, p = 1, 2, . . . , l and j =
0, . . . , m, we have

yi(x) � YT
i R(x), fp(x) � FT

p R(x), kip(x, t) � RT (t)KipR(x), νpij(x) � V T
pijR(x).

(3.2)

According to the operational matrix of derivative we can approximate y(j)
i as

y
(j)
i (x) � YT

i R
(j)(x) � YT

i D
jR(x),

y
(j)
i (0) � YT

i D
jR(0) = YT

i D
je1.

(3.3)



Journal of Applied Mathematics 7

With substituting these approximations in (3.1)we have

l∑

i=1

⎛

⎝
m∑

j=0

YT
i D

jR(x)RT (x)Vpij + λip

∫b

a

YT
i R(t)R

T (t)KipR(x)dt

⎞

⎠ = FT
p R(x),

Y T
i D

je1 = yij , i = 1, 2, . . . , l, j = 0, 1, . . . , m − 1, p = 1, 2, . . . , l.

(3.4)

Then using (2.20) we obtain

l∑

i=1

⎛

⎝
m∑

j=0

YT
i D

jṼpijR(x) + λipY
T
i

(∫b

a

R(t)RT (t)dt

)
KipR(x)

⎞

⎠ = FT
p R(x),

Y T
i D

je1 = yij , i = 1, 2, . . . , l, j = 0, 1, . . . , m − 1, p = 1, 2, . . . , l,

(3.5)

which can be simplified using (2.14)

l∑

i=1

⎛

⎝
m∑

j=0

YT
i D

jṼpij + λipY
T
i PabKip

⎞

⎠ = FT
p , p = 1, 2, . . . , l,

Y T
i D

je1 = yij , i = 1, 2, . . . , l, j = 0, 1, . . . , n − 1.

(3.6)

By solving this linear system of algebraic equations we can find vectors Yi, i = 1, 2, . . . , n, and
then approximate the solutions yi(x) as

yi(x) � YT
i R(x). (3.7)

4. Numerical Examples

Example 4.1. Consider the following system of linear integrodifferential equations:

1
x + 1

y′′
1(x) + y′

1(x) + y′′
2(x) +

∫1

0

y1(t) + y2(t)

(x + 1)2(t + 1)2
dt =

x − 15

4(x + 1)3
,

y′
1(x) − 2y′

2(x) + y′′
2(x) + 24

∫1

0

(
y1(t)

(x + 1)2(t + 1)2
+

y2(t)

(x + 1)3(t + 1)3

)
dt =

8x − 1

(x + 1)3
,

y1(0) = 1, y′
1(0) = 0, y2(0) = −1, y′

2(0) = 2.

(4.1)

The exact solution of this example is y1(x) = 1 and y2(x) = (x − 1)/(x + 1).
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Table 1: Numerical results of Example 4.2.

x
y1(x) y2(x)

N = 11 N = 13 Exact N = 11 N = 13 Exact

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.2 0.82435 0.81643 0.81873 0.67203 0.66964 0.67032
0.4 0.67955 0.66654 0.67032 0.45203 0.44825 0.44933
0.6 0.56024 0.54411 0.54881 0.30436 0.29994 0.30119
0.8 0.46199 0.44410 0.44933 0.20516 0.20062 0.20190
1.0 0.38119 0.36238 0.36788 0.13844 0.13413 0.13534
1.2 0.31473 0.29559 0.30119 0.09351 0.08965 0.09072
1.4 0.26007 0.24100 0.24660 0.06321 0.05991 0.06081
1.6 0.21512 0.19637 0.20190 0.04274 0.04006 0.04076
1.8 0.17819 0.15987 0.16530 0.02886 0.02681 0.02732
2.0 0.14787 0.13003 0.13534 0.01942 0.01798 0.01832
2.2 0.12300 0.10562 0.11080 0.01297 0.01211 0.01228
2.4 0.10261 0.08565 0.09072 0.00855 0.00822 0.00823
2.6 0.08589 0.06932 0.07427 0.00550 0.00565 0.00552
2.8 0.07218 0.05596 0.06081 0.00339 0.00395 0.00370
3.0 0.06094 0.04503 0.04970 0.00193 0.00285 0.00248

We solved Example 4.1 using the present method with N = 3, and we obtained YT
1 =

[1, 0, 0, 0] and YT
2 = [0, 0.5, 0, 0], which imply

y1(x) = YT
1 R(x) = 1, y2(x) = YT

2 R(x) =
x − 1
x + 1

(4.2)

that are the exact solutions.

Example 4.2. Next, consider the following system of integrodifferential equations with the
exact solution y1(x) = e−x and y2(x) = e−2x:

y′′
1(x) + y′

1(x) + y′′
2(x) + 2y′

2(x) +
∫1

0
6e−t−x

(
y1(t) + y2(t)

)
dt =

(
5 − 3e−2 − 2e−3

)
e−x,

4e−xy′′
1(x) − y′′

2(x) +
∫1

0
12e−2(t+x)

(
y1(t) + y2(t)

)
dt =

(
5 − 4e−3 − 3e−4

)
e−2x,

y1(0) = 1, y′
1(0) = −1, y2(0) = 1, y′

2(0) = −2.

(4.3)

We solved this example by using the method described in Section 3 for N = 11 and N = 13.
Results are shown in Table 1 and Figures 1 and 2. The errors for large values of x are shown
in Table 2. It is seen that the proposed method provides accurate results even for large values
of x.
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Figure 2: Graph of the exact and numerical solutions of y2(x) for N = 13; symbols correspond to the
numerical solution.

Table 2: Absolute error for large values of x.

N = 11
x = 50 x = 100 x = 200 x = 400

e
(
y1(x) − YT

1 R(x)
)

3.1 × 10−4 7.9 × 10−5 1.1 × 10−6 5.3 × 10−7

e
(
y2(x) − YT

2 R(x)
)

4.5 × 10−3 2.4 × 10−3 1.2 × 10−4 6.3 × 10−5

5. Conclusion

The fundamental goal of this paper has been to construct an approximation to the solution of
the integrodifferential equations system in a semi-infinite interval. In the above discussion,
the Galerkin method with RSC functions, which have the property of orthogonality, is
employed to achieve this goal. Advantages of this method is that we do not reform the
problem to a finite domain, and with a small value of N accurate results are obtained. There
is a good agreement between obtained results and exact values that demonstrates the validity
of the present method for this type of problems and gives the method a wider applicability.
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