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It is well known that the gradient-projection algorithm (GPA) is very useful in solving constrained
convex minimization problems. In this paper, we combine a general iterative method with the
gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that
the sequence generated by the hybrid gradient-projection algorithm converges in norm to a
minimizer of constrained convex minimization problems which solves a variational inequality.

1. Introduction

LetH be a real Hilbert space and C a nonempty closed and convex subset ofH. Consider the
following constrained convex minimization problem:

minimizex∈Cf(x), (1.1)

where f : C → R is a real-valued convex and continuously Fréchet differentiable function.
The gradient ∇f satisfies the following Lipschitz condition:

∥
∥∇f(x) − ∇f

(

y
)∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C, (1.2)

where L > 0. Assume that the minimization problem (1.1) is consistent, and let S denote its
solution set.

It is well known that the gradient-projection algorithm is very useful in dealing with
constrained convex minimization problems and has extensively been studied ([1–5] and the
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references therein). It has recently been applied to solve split feasibility problems [6–10].
Levitin and Polyak [1] consider the following gradient-projection algorithm:

xn+1 := ProjC
(

xn − λn∇f(xn)
)

, n ≥ 0. (1.3)

Let {λn}∞n=0 satisfy

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2
L
. (1.4)

It is proved that the sequence {xn} generated by (1.3) converges weakly to a minimizer of
(1.1).

Xu proved that under certain appropriate conditions on {αn} and {λn} the sequence
{xn} defined by the following relaxed gradient-projection algorithm:

xn+1 = (1 − αn)xn + αnProjC
(

xn − λn∇f(xn)
)

, n ≥ 0, (1.5)

converges weakly to a minimizer of (1.1) [11].
Since the Lipschitz continuity of the gradient of f implies that it is indeed inverse

strongly monotone (ism) [12, 13], its complement can be an averaged mapping. Recall that
a mapping T is nonexpansive if and only if it is Lipschitz with Lipschitz constant not more
than one, that a mapping is an averaged mapping if and only if it can be expressed as a
proper convex combination of the identity mapping and a nonexpansive mapping, and that
a mapping T is said to be ν-inverse strongly monotone if and only if 〈x−y, Tx−Ty〉 ≥ ν‖Tx−
Ty‖2 for all x, y ∈ H, where the number ν > 0. Recall also that the composite of finitelymany
averagedmappings is averaged. That is, if each of the mappings {Ti}Ni=1 is averaged, then so is
the composite T1 · · · TN [14]. In particular, an averaged mapping is a nonexpansive mapping
[15]. As a result, the GPA can be rewritten as the composite of a projection and an averaged
mapping which is again an averaged mapping.

Generally speaking, in infinite-dimensional Hilbert spaces, GPA has only weak
convergence. Xu [11] provided a modification of GPA so that strong convergence is
guaranteed. He considered the following hybrid gradient-projection algorithm:

xn+1 = θnh(xn) + (1 − θn)ProjC
(

xn − λn∇f(xn)
)

. (1.6)

It is proved that if the sequences {θn} and {λn} satisfy appropriate conditions, the
sequence {xn} generated by (1.6) converges in norm to a minimizer of (1.1)which solves the
variational inequality

x∗ ∈ S, 〈(I − h)x∗, x − x∗〉 ≥ 0, x ∈ S. (1.7)

On the other hand, Ming Tian [16] introduced the following general iterative
algorithm for solving the variational inequality

xn+1 = αnγf(xn) +
(

I − μαnF
)

Txn, n ≥ 0, (1.8)
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where F is a κ-Lipschitzian and η-strongly monotone operator with κ > 0, η > 0 and
f is a contraction with coefficient 0 < α < 1. Then, he proved that if {αn} satisfying
appropriate conditions, the {xn} generated by (1.8) converges strongly to the unique solution
of variational inequality

〈(

μF − γf
)

x̃, x̃ − z
〉 ≤ 0, z ∈ Fix(T). (1.9)

In this paper, motivated and inspired by the research work in this direction, we will
combine the iterative method (1.8)with the gradient-projection algorithm (1.3) and consider
the following hybrid gradient-projection algorithm:

xn+1 = θnγh(xn) +
(

I − μθnF
)

ProjC
(

xn − λn∇f(xn)
)

, n ≥ 0. (1.10)

We will prove that if the sequence {θn} of parameters and the sequence {λn} of
parameters satisfy appropriate conditions, then the sequence {xn} generated by (1.10)
converges in norm to a minimizer of (1.1) which solves the variational inequality (V I)

x∗ ∈ S,
〈(

μF − γh
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ S, (1.11)

where S is the solution set of the minimization problem (1.1).

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the
next section. Some of them are known; others are not hard to derive.

Throughout this paper, we write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x, xn → x implies that {xn} converges strongly to x. ωw(xn) := {x : ∃xnj ⇀ x} is
the weak ω-limit set of the sequence {xn}∞n=1.

Lemma 2.1 (see [17]). Assume that {an}∞n=0 is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + γnδn + βn, n ≥ 0, (2.1)

where {γn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] and {δn}∞n=0 is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;

(ii) either lim supn→∞δn ≤ 0 or
∑∞

n=0 γn|δn| < ∞;

(iii)
∑∞

n=0 βn < ∞.

Then limn→∞an = 0.

Lemma 2.2 (see [18]). Let C be a closed and convex subset of a Hilbert spaceH, and let T : C → C
be a nonexpansive mapping with Fix T /= ∅. If {xn}∞n=1 is a sequence in C weakly converging to x and
if {(I − T)xn}∞n=1 converges strongly to y, then (I − T)x = y.
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Lemma 2.3. Let H be a Hilbert space, and let C be a nonempty closed and convex subset of H.
h : C → C a contraction with coefficient 0 < ρ < 1, and F : C → C a κ-Lipschitzian continuous
operator and η-strongly monotone operator with κ, η > 0. Then, for 0 < γ < μη/ρ,

〈

x − y,
(

μF − γh
)

x − (

μF − γh
)

y
〉 ≥ (

μη − γρ
)∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (2.2)

That is, μF − γh is strongly monotone with coefficient μη − γρ.

Lemma 2.4. Let C be a closed subset of a real Hilbert space H, given x ∈ H and y ∈ C. Then,
y = PCx if and only if there holds the inequality

〈

x − y, y − z
〉 ≥ 0, ∀z ∈ C. (2.3)

3. Main Results

Let H be a real Hilbert space, and let C be a nonempty closed and convex subset of H such
that C±C ⊂ C. Assume that the minimization problem (1.1) is consistent, and let S denote its
solution set. Assume that the gradient ∇f satisfies the Lipschitz condition (1.2). Since S is a
closed convex subset, the nearest point projection from H onto S is well defined. Recall also
that a contraction on C is a self-mapping of C such that ‖h(x)−h(y)‖ ≤ ρ‖x−y‖, for all x, y ∈
C, where ρ ∈ [0, 1) is a constant. Let F be a κ-Lipschitzian and η-strongly monotone operator
on C with κ, η > 0. Denote by Π the collection of all contractions on C, namely,

Π = {h : h is a contraction on C}. (3.1)

Now given h ∈ Π with 0 < ρ < 1, s ∈ (0, 1). Let 0 < μ < 2η/κ2, 0 < γ < μ(η − (μκ2)/2)/ρ =
τ/ρ. Assume that λs with respect to s is continuous and, in addition, λs ∈ [a, b] ⊂ (0, 2/L).
Consider a mapping Xs on C defined by

Xs(x) = sγh(x) +
(

I − sμF
)

ProjC
(

I − λs∇f
)

(x), x ∈ C. (3.2)

It is easy to see that Xs is a contraction. Setting Vs := ProjC(I − λs∇f). It is obvious that Vs is a
nonexpansive mapping. We can rewrite Xs(x) as

Xs(x) = sγh(x) +
(

I − sμF
)

Vs(x). (3.3)



Journal of Applied Mathematics 5

First observe that for s ∈ (0, 1), we can get

∥
∥
(

I − sμF
)

Vs(x) −
(

I − sμF
)

Vs

(

y
)∥
∥
2

=
∥
∥Vs(x) − Vs

(

y
) − sμ

(

FVs(x) − FVs

(

y
))∥
∥
2

=
∥
∥Vs(x) − Vs

(

y
)∥
∥
2 − 2sμ

〈

Vs(x) − Vs

(

y
)

, FVs(x) − FVs

(

y
)〉

+ s2μ2∥∥FVs(x) − FVs

(

y
)∥
∥
2

≤ ∥
∥x − y

∥
∥
2 − 2sμη

∥
∥Vs(x) − Vs

(

y
)∥
∥
2 + s2μ2κ2∥∥Vs(x) − Vs

(

y
)∥
∥
2

≤
(

1 − sμ
(

2η − sμκ2
))∥

∥x − y
∥
∥
2

≤
(

1 − sμ
(

2η − sμκ2)

2

)2
∥
∥x − y

∥
∥
2

≤
(

1 − sμ

(

η − μκ2

2

))2
∥
∥x − y

∥
∥
2

= (1 − sτ)2
∥
∥x − y

∥
∥
2
.

(3.4)

Indeed, we have

∥
∥Xs(x) −Xs

(

y
)∥
∥ =

∥
∥sγh(x) +

(

I − sμF
)

Vs(x) − sγh
(

y
) − (

I − sμF
)

Vs

(

y
)∥
∥

≤ sγ
∥
∥h(x) − h

(

y
)∥
∥ +

∥
∥
(

I − sμF
)

Vs(x) −
(

I − sμF
)

Vs

(

y
)∥
∥

≤ sγρ
∥
∥x − y

∥
∥ + (1 − sτ)

∥
∥x − y

∥
∥

=
(

1 − s
(

τ − γρ
))∥
∥x − y

∥
∥.

(3.5)

Hence, Xs has a unique fixed point, denoted xs, which uniquely solves the fixed-point
equation

xs = sγh(xs) +
(

I − sμF
)

Vs(xs). (3.6)

The next proposition summarizes the properties of {xs}.

Proposition 3.1. Let xs be defined by (3.6).

(i) {xs} is bounded for s ∈ (0, (1/τ)).

(ii) lims→ 0‖xs − ProjC(I − λs∇f)(xs)‖ = 0.

(iii) xs defines a continuous curve from (0, 1/τ) into H.
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Proof. (i) Take a x ∈ S, then we have

‖xs − x‖ =
∥
∥sγh(xs) +

(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) − x
∥
∥

=
∥
∥
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) −
(

I − sμF
)

ProjC
(

I − λs∇f
)

(x)

+ s
(

γh(xs) − μF ProjC
(

I − λs∇f
)

(x)
)∥
∥

≤ (1 − sτ)‖xs − x‖ + s
∥
∥γh(xs) − μF(x)

∥
∥

≤ (1 − sτ)‖xs − x‖ + sγρ‖xs − x‖ + s
∥
∥γh(x) − μF(x)

∥
∥.

(3.7)

It follows that

‖xs − x‖ ≤
∥
∥γh(x) − μF(x)

∥
∥

τ − γρ
. (3.8)

Hence, {xs} is bounded.
(ii) By the definition of {xs}, we have

∥
∥xs − ProjC

(

I − λs∇f
)

(xs)
∥
∥ =

∥
∥sγh(xs) +

(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs)

−ProjC
(

I − λs∇f
)

(xs)
∥
∥

= s
∥
∥γh(xs) − μF ProjC

(

I − λs∇f
)

(xs)
∥
∥ −→ 0,

(3.9)

{xs} is bounded, so are {h(xs)} and {F ProjC(I − λs∇f)(xs)}.
(iii) Take s, s0 ∈ (0, 1/τ), and we have

‖xs − xs0‖
=
∥
∥sγh(xs) +

(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) − s0γh(xs0)

−(I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs0)
∥
∥

≤ ∥
∥(s − s0)γh(xs) + s0γ(h(xs) − h(xs0))

∥
∥

+
∥
∥
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs) −
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs0)
∥
∥

+
∥
∥
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) −
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs)
∥
∥

≤ ∥
∥(s − s0)γh(xs) + s0γ(h(xs) − h(xs0))

∥
∥

+
∥
∥
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs) −
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs0)
∥
∥

+
∥
∥
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) −
(

I − sμF
)

ProjC
(

I − λs0∇f
)

(xs)
∥
∥

+
∥
∥
(

I − sμF
)

ProjC
(

I − λs0∇f
)

(xs) −
(

I − s0μF
)

ProjC
(

I − λs0∇f
)

(xs)
∥
∥

≤ |s − s0|γ‖h(xs)‖ + s0γρ‖xs − xs0‖ + (1 − s0τ)‖xs − xs0‖
+ |λs − λs0 |

∥
∥∇f(xs)

∥
∥

+
∥
∥sμF ProjC

(

I − λs0∇f
)

(xs) − s0μF ProjC
(

I − λs0∇f
)

(xs)
∥
∥
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= |s − s0|γ‖h(xs)‖ + s0γρ‖xs − xs0‖ + (1 − s0τ)‖xs − xs0‖
+ |λs − λs0 |

∥
∥∇f(xs)

∥
∥ + |s − s0|

∥
∥μF ProjC

(

I − λs0∇f
)

(xs)
∥
∥

=
(

γ‖h(xs)‖ + μ
∥
∥F ProjC

(

I − λs0∇f
)

(xs)
∥
∥
)|s − s0|

+ s0γρ‖xs − xs0‖ + (1 − s0τ)‖xs − xs0‖ + |λs − λs0 |
∥
∥∇f(xs)

∥
∥.

(3.10)

Therefore,

‖xs − xs0‖ ≤ γ‖h(xs)‖ + μ
∥
∥F ProjC

(

I − λs0∇f
)

(xs)
∥
∥

s0
(

τ − γρ
) |s − s0|

+

∥
∥∇f(xs)

∥
∥

s0
(

τ − γρ
) |λs − λs0 |.

(3.11)

Therefore, xs → xs0 as s → s0. This means xs is continuous.

Our main result in the following shows that {xs} converges in norm to a minimizer of
(1.1) which solves some variational inequality.

Theorem 3.2. Assume that {xs} is defined by (3.6), then xs converges in norm as s → 0 to a
minimizer of (1.1) which solves the variational inequality

〈(

μF − γh
)

x∗, x̃ − x∗〉 ≥ 0, ∀x̃ ∈ S. (3.12)

Equivalently, we have Projs(I − (μF − γh))x∗ = x∗.

Proof. It is easy to see that the uniqueness of a solution of the variational inequality (3.12).
By Lemma 2.3, μF −γh is strongly monotone, so the variational inequality (3.12) has only one
solution. Let x∗ ∈ S denote the unique solution of (3.12).

To prove that xs → x∗ (s → 0), we write, for a given x̃ ∈ S,

xs − x̃ = sγh(xs) +
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) − x̃

= s
(

γh(xs) − μFx̃
)

+
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs)

− (

I − sμF
)

ProjC
(

I − λs∇f
)

(x̃).

(3.13)

It follows that

‖xs − x̃‖2 = s
〈

γh(xs) − μFx̃, xs − x̃
〉

+
〈(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs) −
(

I − sμF
)

ProjC
(

I − λs∇f
)

(x̃), xs − x̃
〉

≤ (1 − sτ)‖xs − x̃‖2 + s
〈

γh(xs) − μFx̃, xs − x̃
〉

.

(3.14)
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Hence,

‖xs − x̃‖2 ≤ 1
τ

〈

γh(xs) − μFx̃, xs − x̃
〉

≤ 1
τ

{

γρ‖xs − x̃‖2 + 〈

γh(x̃) − μFx̃, xs − x̃
〉}

.

(3.15)

To derive that

‖xs − x̃‖2 ≤ 1
τ − γρ

〈

γh(x̃) − μFx̃, xs − x̃
〉

. (3.16)

Since {xs} is bounded as s → 0, we see that if {sn} is a sequence in (0,1) such that sn → 0
and xsn ⇀ x, then by (3.16), xsn → x. We may further assume that λsn → λ ∈ [0, 2/L] due to
condition (1.4). Notice that ProjC(I − λ∇f) is nonexpansive. It turns out that

∥
∥xsn − ProjC

(

I − λ∇f
)

xsn

∥
∥

≤ ∥
∥xsn − ProjC

(

I − λsn∇f
)

xsn

∥
∥ +

∥
∥ProjC

(

I − λsn∇f
)

xsn − ProjC
(

I − λ∇f
)

xsn

∥
∥

≤ ∥
∥xsn − ProjC

(

I − λsn∇f
)

xsn

∥
∥ +

∥
∥(λ − λsn)∇f(xsn)

∥
∥

=
∥
∥xsn − ProjC

(

I − λsn∇f
)

xsn

∥
∥ + |λ − λsn |

∥
∥∇f(xsn)

∥
∥.

(3.17)

From the boundedness of {xs} and lims→ 0‖ProjC(I − λs∇f)xs − xs‖ = 0, we conclude that

lim
n→∞

∥
∥xsn − ProjC

(

I − λ∇f
)

xsn

∥
∥ = 0. (3.18)

Since xsn ⇀ x, by Lemma 2.2, we obtain

x = ProjC
(

I − λ∇f
)

x. (3.19)

This shows that x ∈ S.
We next prove that x is a solution of the variational inequality (3.12). Since

xs = sγh(xs) +
(

I − sμF
)

ProjC
(

I − λs∇f
)

(xs), (3.20)

we can derive that

(

μF − γh
)

(xs)

= −1
s

(

I − ProjC
(

I − λs∇f
)

(xs) + μ
(

F(xs) − F ProjC
(

I − λs∇f
)

(xs)
)

.
(3.21)
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Therefore, for x̃ ∈ S,

〈(

μF − γh
)

(xs), xs − x̃
〉

= − 1
s

〈(

I − ProjC
(

I − λs∇f
))

(xs) −
(

I − ProjC
(

I − λs∇f
))

(x̃), xs − x̃
〉

+ μ
〈

F(xs) − F ProjC
(

I − λs∇f
)

(xs), xs − x̃
〉

≤ μ
〈

F(xs) − F ProjC
(

I − λs∇f
)

(xs), xs − x̃
〉

.

(3.22)

Since ProjC(I − λs∇f) is nonexpansive, we obtain that I − ProjC(I − λs∇f) is monotone, that
is,

〈(

I − ProjC
(

I − λs∇f
))

(xs) −
(

I − ProjC
(

I − λs∇f
))

(x̃), xs − x̃
〉 ≥ 0. (3.23)

Taking the limit through s = sn → 0 ensures that x is a solution to (3.12). That is to say

〈(

μF − γh
)

(x), x − x̃
〉 ≤ 0. (3.24)

Hence x = x∗ by uniqueness. Therefore, xs → x∗ as s → 0. The variational inequality (3.12)
can be written as

〈(

I − μF + γh
)

x∗ − x∗, x̃ − x∗〉 ≤ 0, ∀x̃ ∈ S. (3.25)

So, by Lemma 2.4, it is equivalent to the fixed-point equation

PS

(

I − μF + γh
)

x∗ = x∗. (3.26)

Taking F = A, μ = 1 in Theorem 3.2, we get the following

Corollary 3.3. We have that {xs} converges in norm as s → 0 to a minimizer of (1.1) which solves
the variational inequality

〈(

A − γh
)

x∗, x̃ − x∗〉 ≥ 0, ∀x̃ ∈ S. (3.27)

Equivalently, we have Projs(I − (A − γh))x∗ = x∗.

Taking F = I, μ = 1, γ = 1 in Theorem 3.2, we get the following.

Corollary 3.4. Let zs ∈ H be the unique fixed point of the contraction z �→ sh(z) + (1 − s)ProjC(I −
λs∇f)(z). Then, {zs} converges in norm as s → 0 to the unique solution of the variational inequality

〈(I − h)x∗, x̃ − x∗〉 ≥ 0, ∀x̃ ∈ S. (3.28)
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Finally, we consider the following hybrid gradient-projection algorithm,

{

x0 ∈ Carbitrarily,
xn+1 = θnγh(xn) +

(

I − μθnF
)

ProjC
(

xn − λn∇f(xn)
)

, ∀n ≥ 0.
(3.29)

Assume that the sequence {λn}∞n=0 satisfies the condition (1.4) and, in addition, that the
following conditions are satisfied for {λn}∞n=0 and {θn}∞n=0 ⊂ [0, 1]:

(i) θn → 0;

(ii)
∑∞

n=0 θn = ∞;

(iii)
∑∞

n=0 |θn+1 − θn| < ∞;

(iv)
∑∞

n=0 |λn+1 − λn| < ∞.

Theorem 3.5. Assume that the minimization problem (1.1) is consistent and the gradient∇f satisfies
the Lipschitz condition (1.2). Let {xn} be generated by algorithm (3.29) with the sequences {θn} and
{λn} satisfying the above conditions. Then, the sequence {xn} converges in norm to x∗ that is obtained
in Theorem 3.2.

Proof. (1) The sequence {xn}∞n=0 is bounded. Setting

Vn := ProjC
(

I − λn∇f
)

. (3.30)

Indeed, we have, for x ∈ S,

‖xn+1 − x‖ =
∥
∥θnγh(xn) +

(

I − μθnF
)

Vnxn − x
∥
∥

=
∥
∥θn

(

γh(xn) − μF(x)
)

+
(

I − μθnF
)

Vnxn −
(

I − μθnF
)

Vnx
∥
∥

≤ (1 − θnτ)‖xn − x‖ + θnργ‖xn − x‖ + θn
∥
∥γh(x) − μF(x)

∥
∥

=
(

1 − θn
(

τ − γρ
))‖xn − x‖ + θn

∥
∥γh(x) − μF(x)

∥
∥

≤ max
{

‖xn − x‖, 1
τ − γρ

∥
∥γh(x) − μF(x)

∥
∥

}

, ∀n ≥ 0.

(3.31)

By induction,

‖xn − x‖ ≤ max

{

‖x0 − x‖,
∥
∥γh(x) − μF(x)

∥
∥

τ − γρ

}

. (3.32)

In particular, {xn}∞n=0 is bounded.
(2)We prove that ‖xn+1 − xn‖ → 0 as n → ∞. Let M be a constant such that

M > max

{

sup
n≥0

γ‖h(xn)‖, sup
κ,n≥0

μ‖FVκxn‖, sup
n≥0

∥
∥∇f(xn)

∥
∥

}

. (3.33)
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We compute

‖xn+1 − xn‖
=
∥
∥θnγh(xn) +

(

I − μθnF
)

Vnxn − θn−1γh(xn−1) −
(

I − μθn−1F
)

Vn−1xn−1
∥
∥

=
∥
∥θnγ(h(xn) − h(xn−1)) + γ(θn − θn−1)h(xn−1) +

(

I − μθnF
)

Vnxn

− (

I − μθnF
)

Vnxn−1 +
(

I − μθnF
)

Vnxn−1 −
(

I − μθn−1F
)

Vn−1xn−1
∥
∥

=
∥
∥θnγ(h(xn) − h(xn−1)) + γ(θn − θn−1)h(xn−1) +

(

I − μθnF
)

Vnxn

− (

I − μθnF
)

Vnxn−1 +
(

I − μθnF
)

Vnxn−1 −
(

I − μθnF
)

Vn−1xn−1

+
(

I − μθnF
)

Vn−1xn−1 −
(

I − μθn−1F
)

Vn−1xn−1
∥
∥

≤ θnγρ‖xn − xn−1‖ + γ |θn − θn−1|‖h(xn−1)‖ + (1 − θnτ)‖xn − xn−1‖
+ ‖Vnxn−1 − Vn−1xn−1‖ + μ|θn − θn−1|‖FVn−1xn−1‖

≤ θnγρ‖xn − xn−1‖ +M|θn − θn−1| + (1 − θnτ)‖xn − xn−1‖
+ ‖Vnxn−1 − Vn−1xn−1‖ +M|θn − θn−1|

=
(

1 − θn
(

τ − γρ
))‖xn − xn−1‖ + 2M|θn − θn−1| + ‖Vnxn−1 − Vn−1xn−1‖,

(3.34)

‖Vnxn−1 − Vn−1xn−1‖ =
∥
∥ProjC

(

I − λn∇f
)

xn−1 − ProjC
(

I − λn−1∇f
)

xn−1
∥
∥

≤ ∥
∥
(

I − λn∇f
)

xn−1 −
(

I − λn−1∇f
)

xn−1
∥
∥

= |λn − λn−1|
∥
∥∇f(xn−1)

∥
∥

≤ M|λn − λn−1|.

(3.35)

Combining (3.34) and (3.35), we can obtain

‖xn+1 − xn‖ ≤ (

1 − (

τ − γρ
)

θn
)‖xn − xn−1‖ + 2M(|θn − θn−1| + |λn − λn−1|). (3.36)

Apply Lemma 2.1 to (3.36) to conclude that ‖xn+1 − xn‖ → 0 as n → ∞.
(3) We prove that ωw(xn) ⊂ S. Let x̂ ∈ ωw(xn), and assume that xnj ⇀ x̂ for some

subsequence {xnj}∞j=1 of {xn}∞n=0. We may further assume that λnj → λ ∈ [0, 2/L] due to
condition (1.4). Set V := ProjC(I − λ∇f). Notice that V is nonexpansive and Fix V = S. It
turns out that

∥
∥
∥xnj − Vxnj

∥
∥
∥ ≤

∥
∥
∥xnj − Vnjxnj

∥
∥
∥ +

∥
∥
∥Vnjxnj − Vxnj

∥
∥
∥

≤
∥
∥
∥xnj − xnj+1

∥
∥
∥ +

∥
∥
∥xnj+1 − Vnjxnj

∥
∥
∥ +

∥
∥
∥Vnjxnj − Vxnj

∥
∥
∥

≤
∥
∥
∥xnj − xnj+1

∥
∥
∥ + θnj

∥
∥
∥γh

(

xnj

)

− μFVnjxnj

∥
∥
∥

+
∥
∥
∥ProjC

(

I − λnj∇f
)

xnj − ProjC
(

I − λ∇f
)

xnj

∥
∥
∥
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≤
∥
∥
∥xnj − xnj+1

∥
∥
∥ + θnj

∥
∥
∥γh

(

xnj

)

− μFVnjxnj

∥
∥
∥ +

∣
∣
∣λ − λnj

∣
∣
∣

∥
∥
∥∇f

(

xnj

)∥
∥
∥

≤
∥
∥
∥xnj − xnj+1

∥
∥
∥ + 2M

(

θnj +
∣
∣
∣λ − λnj

∣
∣
∣

)

−→ 0 as j −→ ∞.

(3.37)

So Lemma 2.2 guarantees that ωw(xn) ⊂ Fix V = S.
(4)We prove that xn → x∗ as n → ∞, where x∗ is the unique solution of the V I (3.12).

First observe that there is some x̂ ∈ ωw(xn) ⊂ S Such that

lim sup
n→∞

〈(

μF − γh
)

x∗, xn − x∗〉 =
〈(

μF − γh
)

x∗, x̂ − x∗〉 ≥ 0. (3.38)

We now compute

‖xn+1 − x∗‖2 = ∥
∥θnγh(xn) +

(

I − μθnF
)

ProjC
(

I − λn∇f
)

(xn) − x∗∥∥2

=
∥
∥θn

(

γh(xn) − μFx∗) +
(

I − μθnF
)

Vn(xn) −
(

I − μθnF
)

Vnx
∗∥∥2

=
∥
∥θnγ(h(xn) − h(x∗)) +

(

I − μθnF
)

Vn(xn) − (I − μθnF)Vnx
∗ + θn

(

γh(x∗) − μFx∗)∥∥2

≤ ∥
∥θnγ(h(xn) − h(x∗)) +

(

I − μθnF
)

Vn(xn) −
(

I − μθnF
)

Vnx
∗∥∥2

+ 2θn
〈(

γh − μF
)

x∗, xn+1 − x∗〉

=
∥
∥θnγ(h(xn) − h(x∗))

∥
∥
2 +

∥
∥
(

I − μθnF
)

Vn(xn) −
(

I − μθnF
)

Vnx
∗∥∥2

+ 2θnγ〈h(xn) − h(x∗),
(

I − μθnF
)

Vn(xn) −
(

I − μθnF
)

Vnx
∗〉

+ 2θn〈
(

γh − μF
)

x∗, xn+1 − x∗〉

≤ θ2
nγ

2ρ2‖xn − x∗‖2 + (1 − θnτ)
2‖xn − x∗‖2 + 2θnγρ(1 − θnτ)‖xn − x∗‖2

+ 2θn
〈(

γh − μF
)

x∗, xn+1 − x∗〉

=
(

θ2
nγ

2ρ2 + (1 − θnτ)
2 + 2θnγρ(1 − θnτ)

)

‖xn − x∗‖2

+ 2θn
〈(

γh − μF
)

x∗, xn+1 − x∗〉

≤
(

θnγ
2ρ2 + 1 − 2θnτ + θnτ

2 + 2θnγρ
)

‖xn − x∗‖2

+ 2θn
〈(

γh − μF
)

x∗, xn+1 − x∗〉

=
(

1 − θn
(

2τ − γ2ρ2 − τ2 − 2γρ
))

‖xn − x∗‖2 + 2θn
〈(

γh − μF
)

x∗, xn+1 − x∗〉.

(3.39)

Applying Lemma 2.1 to the inequality (3.39), together with (3.38), we get ‖xn − x∗‖ → 0 as
n → ∞.
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Corollary 3.6 (see [11]). Let {xn} be generated by the following algorithm:

xn+1 = θnh(xn) + (1 − θn)ProjC
(

xn − λn∇f(xn)
)

, ∀n ≥ 0. (3.40)

Assume that the sequence {λn}∞n=0 satisfies the conditions (1.4) and (iv) and that {θn} ⊂ [0, 1] satisfies
the conditions (i)–(iii). Then {xn} converges in norm to x∗ obtained in Corollary 3.4.

Corollary 3.7. Let {xn} be generated by the following algorithm:

xn+1 = θnγh(xn) + (I − θnA)ProjC
(

xn − λn∇f(xn)
)

, ∀n ≥ 0. (3.41)

Assume that the sequences {θn} and {λn} satisfy the conditions contained in Theorem 3.5, then {xn}
converges in norm to x∗ obtained in Corollary 3.3.
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