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We prove coupled coincidence point and coupled fixed point results of F : X×X → X and g : X →
X involving Meir-Keeler type contractions on the class of partially ordered metric spaces. Our
results generalize some recent results in the literature. Also, we give some illustrative examples
and application.

1. Introduction and Preliminaries

Fixed point theory has wide applications in many areas. In economics it has applications
in the study of market stability, in dynamic systems it is used to deterministic timed
systems on feedback semantics, and in the theory of differential and integral equations to
demonstrate the existence and uniqueness of solutions; see, for example, [1–5]. On the other
hand, fixed point theory, in particular fixed point iteration, has also numerous applications
in engineering. For example, use of the fixed point iteration in image retrieval provides
much better accuracy [6]. Fixed point algorithms proved to be very successful in practical
optimization of the contrast functions in independent component analysis in neural-network
research, as well as in statistics and signal processing [7]. These algorithms optimize the
contrast functions very fast and reliably. Relaxation in linear systems and relaxation and
stability in neural networks are also analyzed by means of fixed point iteration [8].

The problem of existence and uniqueness of fixed points in partially ordered sets has
been studied thoroughly because of its interesting nature. The first result in this direction was
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given by Turinici [9], where he extended the Banach contraction principle in partially ordered
sets. Ran and Reurings [10] presented some applications of Turinici’s theorem to matrix
equations. The result of Turinici was further extended and refined in [11–25]. In particular,
Gnana Bhaskar and Lakshmikantham in [12] introduced the concept of coupled fixed point
of a mapping F : X×X → X and investigated some coupled fixed point theorems in partially
ordered sets. They also discussed an application of their result by investigating the existence
and uniqueness of solution of the periodic boundary value problem:

u′(t) = f(t, u(t)), t ∈ [0, T],

u(0) = u(T),
(1.1)

where the function f satisfies certain conditions. Following this trend, Harjani et al. [4]
studied the existence and uniqueness of solutions of a nonlinear integral equation as an
application of coupled fixed points. Very recently, motivated by [5], Jleli and Samet [13]
discussed the existence and uniqueness of a positive solution for the singular nonlinear
fractional differential equation boundary value problem:

Dα
0+u(t) = f(t, u(t), u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.2)

where 3 < α ≤ 4 is a real number, Dα
0+ is the Riemann-Liouville fractional derivative and

f : (0, 1]× [0,∞)× [0,∞) → [0,∞) is continuous, limt→ 0+f(t, ·, ·) = +∞ (f is singular at t = 0)
for all t ∈ (0, 1], f(t, ·, ·) is nondecreasing with respect to first component and decreasing with
respect to its second and third components.

On the other hand, Lakshmikantham and Ćirić [19] proved coupled coincidence
and common coupled fixed point theorems for nonlinear contractive mappings in partially
ordered complete metric spaces which extend the coupled fixed point theorem given in [12].
Recently, Samet [23] proved some coupled fixed point theorems under a generalized Meir-
Keeler contractive condition.

In this paper, we introduce the definition of weak generalized g-Meir-Keeler type
contractions and prove some coupled coincidence point theorems for such contractions. The
theorems presented here generalize, enrich, and improve the previous results. Moreover, they
have application potential in the theory of existence and uniqueness of solutions of boundary
value problems.

Hereafter, we assume that X /= ∅ and we use the notation

Xk = X ×X × · · · ×X
︸ ︷︷ ︸

k-many

.
(1.3)

Let R be the set of real numbers.
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Definition 1.1 (see [12]). Let (X,≤) be a partially ordered set and F : X2 → X. The mapping F
is said to have the mixed monotone property if F(x, y) is monotone nondecreasing in x and
monotone nonincreasing in y; that is, for any x, y ∈ X,

x1 ≤ x2 =⇒ F
(

x1, y
) ≤ F(x2, y

)

, for x1, x2 ∈ X,
y1 ≤ y2 =⇒ F

(

x, y2
) ≤ F(x, y1

)

, for y1, y2 ∈ X.
(1.4)

Definition 1.2 (see [12]). An element (x, y) ∈ X2 is said to be a coupled fixed point of the
mapping F : X2 → X if

F
(

x, y
)

= x, F
(

y, x
)

= y. (1.5)

The following result of Gnana Bhaskar and Lakshmikantham [12] was also proved in
the context of cone metric spaces in [16].

Theorem 1.3 (see [12]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X × X → X be a given mapping having the
mixed monotone property on X. Assume that there exists k ∈ [0, 1) with

d
(

F
(

x, y
)

, F(u, v)
) ≤ k

2
[

d(x, u) + d
(

y, v
)]

, ∀u ≤ x, y ≤ v. (1.6)

Assume either F is continuous, or X satisfies the following property:

(i) if a nondecreasing sequence {xn} ∈ X converges to x, then xn ≤ x, for all n;
(ii) if a nonincreasing sequence {yn} ∈ X converges to y, then y ≤ yn, for all n.

If there exist x0, y0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then, there exist x, y ∈ X such
that x = F(x, y) and y = F(y, x).

Inspired by Definition 1.1, Lakshmikantham and Ćirić [19] introduced the concept of
the mixed g-monotone property.

Definition 1.4 (see [19]). Let (X,≤) be a partially ordered set. Let F : X2 → X and let g : X →
X. The mapping F is said to have the mixed g-monotone property if F(x, y) is monotone
g-nondecreasing in x and is monotone g-nonincreasing in y; that is, for any x, y ∈ X,

g(x1) ≤ g(x2) =⇒ F
(

x1, y
) ≤ F(x2, y

)

, for x1, x2 ∈ X,

g
(

y1
) ≤ g(y2

)

=⇒ F
(

x, y2
) ≤ F(x, y1

)

, for y1, y2 ∈ X.
(1.7)

It is clear that Definition 1.4 reduces to Definition 1.1 when g is the identity map.

Definition 1.5 (see [19]). An element (x, y) ∈ X2 is called a coupled coincidence point of the
mappings F : X2 → X and g : X → X if

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

. (1.8)
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Moreover, (x, y) ∈ X2 is called a common coupled fixed point of F and g if

F
(

x, y
)

= g(x) = x, F
(

y, x
)

= g
(

y
)

= y. (1.9)

Definition 1.6 (see [19]). Let F : X2 → X and let g : X → X. The mappings F and g are said
to commute if

g
(

F
(

x, y
))

= F
(

g(x), g
(

y
))

, ∀x, y ∈ X. (1.10)

In 2009, Lakshmikantham and Ćirić [19] also proved a common coupled fixed point
on partially ordered complete metric spaces.

Theorem 1.7 (see [19]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X2 → X and let g : X → X such that F has
the mixed g-monotone property. Suppose that there exists k ∈ [0, 1) such that

d
(

F
(

x, y
)

, F(u, v)
) ≤ k

2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

, (1.11)

for all x, y, u, v ∈ X for which g(x) ≤ g(u) and g(v) ≤ g(y). Suppose F(X2) ⊆ g(X), g is
continuous and commutes with F. Also suppose that either F is continuous or X has the following
property:

if a nondecreasing sequence {xn} −→ x, then xn ≤ x, ∀n,
if a nonincreasing sequence

{

yn
} −→ y, then y ≤ yn, ∀n.

(1.12)

If there exist x0, y0 ∈ X such that g(x0) ≤ F(x0, y0) and g(y0) ≥ F(y0, x0), then there exist x, y ∈ X
such that g(x) = F(x, y) and g(y) = F(y, x); that is, F and g have a coupled coincidence point.

In 2010, Samet [23] introduced the mixed strict monotone property.

Definition 1.8 (see [23]). Let (X,≤) be a partially ordered set and let F : X2 → X. F is said to
have mixed strict monotone property if F(x, y) is monotone increasing in x and is monotone
decreasing in y; that is, for any x, y ∈ X,

x1 < x2 =⇒ F
(

x1, y
)

< F
(

x2, y
)

, for x1, x2 ∈ X,
y1 < y2 =⇒ F

(

x, y2
)

< F
(

x, y1
)

, for y1, y2 ∈ X.
(1.13)

Also, Samet [23] defined generalized Meir-Keeler contractions as follows.

Definition 1.9 (see [23]). Let (X,≤) be a partially ordered set, and suppose that there is a
metric d on X. Let F : X × X → X. The mapping F is said to be a generalized Meir-Keeler
type contraction if for any ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[

d(x, u) + d
(

y, v
)]

< ε + δ(ε) =⇒ d
(

F
(

x, y
)

, F(u, v)
)

< ε, (1.14)

for all x, y, u, v ∈ X with x ≤ u, y ≥ v.
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The existence and uniqueness of common coupled coincidence points via generalized
Meir-Keeler type contractions was investigated by Samet [23].

Theorem 1.10 (see [23]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d
on X such that (X, d) is a complete metric space. Let F : X2 → X be a map satisfying the following
conditions:

(i) F has the mixed strict monotone property,

(ii) F is a generalized Meir-Keeler type contraction,

(iii) there exist x0, y0 ∈ X such that

x0 < F
(

x0, y0
)

, y0 ≥ F
(

y0, x0
)

. (1.15)

Assume either F is continuous or X satisfies the following property:

(i) if a nondecreasing sequence {xn} ∈ X converges to x, then xn ≤ x, for all n,
(ii) if a nonincreasing sequence {yn} ∈ X converges to y, then y ≤ yn, for all n.

Then F has a coupled fixed point in X2; that is, there exist x, y ∈ X such that

F
(

x, y
)

= x, F
(

y, x
)

= y. (1.16)

Very recently, Gordji et al. [26] replaced the mixed g-monotone property by the mixed
strict g-monotone property.

Definition 1.11 (see [26]). Let (X,≤) be a partially ordered set. Let F : X2 → X and let g : X →
X. F is said to have the mixed strict g-monotone property if F(x, y) is monotone g-increasing
in x and is monotone g-decreasing in y; that is, for any x, y ∈ X,

g(x1) < g(x2) =⇒ F
(

x1, y
)

< F
(

x2, y
)

, for x1, x2 ∈ X,
g
(

y1
)

< g
(

y2
)

=⇒ F
(

x, y2
)

< F
(

x, y1
)

, for y1, y2 ∈ X.
(1.17)

If we replace g with identity map in (1.17), we get Definition 1.8 of the mixed strict
monotone property of F.

Gordji et al. [26] gave also the following definition.

Definition 1.12 (see [26]). Let (X, d,≤) be a partially ordered metric space and F : X×X → X,
g : X → X. The operator F is said to be a generalized g-Meir-Keeler type contraction if for
any ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

< ε + δ(ε) =⇒ d
(

F
(

x, y
)

, F(u, v)
)

< ε, (1.18)

for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v).

Note that if we replace g with the identity in (1.18), we get Definition 1.9 of generalized
Meir-Keeler type contraction.
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Gordji et al. [26] proved the following theorem.

Theorem 1.13 (see [26]). Let (X,≤) be a partially ordered set, and suppose that there is a metric d
on X such that (X, d) is a complete metric space. Let F : X2 → X and let g : X → X be mappings
such that F(X2) ⊆ g(X), g is continuous and commutes with F. Suppose also that F satisfies the
following conditions:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) F is a generalized g-Meir-Keeler type contraction,

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(

x0, y0
)

, g
(

y0
) ≥ F(y0, x0

)

. (1.19)

Then F and g have a coupled coincidence point in X2; that is, there exist x, y ∈ X such that

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

. (1.20)

In this paper, we proved coupled coincidence point results in the setting of partially
ordered metric spaces. Also, the existence and uniqueness of a common coupled fixed point
of F : X ×X → X and g : X → X is studied. Our results improve the results of Berinde [15]
and Gordji et al. [26]. We give two examples and an application that illustrate our results.

2. Existence of Coupled Fixed Point

We start this section with the following definition which is modification of Definition 1.12.

Definition 2.1. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X
such that (X, d) is a metric space. Let F : X ×X → X and g : X → X. The mapping F is said
to be a weak generalized g-Meir-Keeler type contraction if for any ε > 0 there exists δ(ε) > 0
such that

ε ≤ 1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

< ε + δ(ε)

=⇒ 1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

< ε,

(2.1)

for all x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v).

Remark 2.2. If we replace g with the identity in (2.1), we get the definition of a weak Meir-
Keeler type contraction; that is, for all ε > 0 there exists δ(ε) > 0 such that

ε ≤ 1
2
[

d(x, u) + d
(

y, v
)]

< ε + δ(ε) =⇒ 1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

< ε,

(2.2)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v.



Abstract and Applied Analysis 7

Note that (2.2) corresponds to a Meir-Keeler contraction type studied very recently by
Berinde [15].

The following fact can be derived easily from Definition 2.1.

Lemma 2.3. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X such that
(X, d) is a metric space. Let F : X×X → X and g : X → X. If F is a weak generalized g-Meir-Keeler
type contraction, then we have

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)

<
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

, (2.3)

for all x, y, u, v ∈ X with g(x) < g(u), g(y) ≥ g(v) or g(x) ≤ (u), g(y) > g(v).

Proof. Without loss of generality, suppose that g(x) < g(u), g(y) ≥ g(v) where x, y, u, v ∈ X.
It is clear that d(g(x), g(u)) +d(g(y), g(v)) > 0. Set ε = (1/2)[d(g(x), g(u)) +d(g(y), g(v))] >
0. Since F is a weak generalized g-Meir-Keeler type contraction, then for this ε, there exits
δ = δ(ε) > 0 such that

ε ≤ 1
2
[

d
(

g(x0), g(u0)
)

+ d
(

g
(

y0
)

, g(v0)
)]

< ε + δ

=⇒ 1
2
[

d
(

F
(

x0, y0
)

, F(u0, v0)
)

+ d
(

F
(

y0, x0
)

, F(v0, u0)
)]

< ε,

(2.4)

for all x0, y0, u0, v0 ∈ X with g(x0) < g(u0), g(y0) ≥ g(v0). The result follows by choosing
x = x0, y = y0, u = u0 and z = z0, that is:

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)

< d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)

. (2.5)

Next, we state an existence theorem of a coupled coincidence point for F : X2 → X
and g : X → X.

Theorem 2.4. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Let F : X2 → X and g : X → X be mappings such that
F(X2) ⊆ g(X). Moreover, assume that g is continuous and commutes with F. Suppose also that the
following conditions hold:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) F is a weak generalized g-Meir-Keeler type contraction,

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(

x0, y0
)

, g
(

y0
) ≥ F(y0, x0

)

. (2.6)

Then F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

. (2.7)
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Proof. Let (x0, y0) ∈ X2 be a point satisfying (iv); that is, g(x0) < F(x0, y0) and g(y0) ≥
F(y0, x0). We define the sequences {xn} and {yn} in the following way. Because of the
assumption F(X2) ⊆ g(X), we can choose (x1, y1) ∈ X2 such that g(x1) = F(x0, y0) and
g(y1) = F(y0, x0). By the same argument, we can take (x2, y2) ∈ X2 in such a way that
g(x2) = F(x1, y1) and g(y2) = F(y1, x1). Inductively, we define

g(xn+1) = F
(

xn, yn
)

, g
(

yn+1
)

= F
(

yn, xn
) ∀n = 0, 1, 2, . . . . (2.8)

We claim that the the sequence {g(xn)} is increasing and the sequence {g(yn)} is
decreasing, that is:

· · · > g(xn) > g(xn−1) > · · · > g(x1) > g(x0),
· · · < g(yn

)

< g
(

yn−1
)

< · · · < g(y1
) ≤ g(y0

)

.
(2.9)

We will use mathematical induction to show (2.9). By assumption (iv), we have

g(x0) < F
(

x0, y0
)

= g(x1), g
(

y0
) ≥ F(y0, x0

)

= g
(

y1
)

. (2.10)

Assume that (2.9) holds for some n ≥ 1. Regarding the mixed strict g-monotone property of
F, we have

g(xn−1) < g(xn) =⇒
{

F
(

xn−1, yn−1
)

< F
(

xn, yn−1
)

,

F
(

yn−1, xn−1
)

> F
(

yn−1, xn
)

.
(2.11)

By repeating the same arguments, we observe that

g
(

yn−1
)

> g
(

yn
)

=⇒
{

F
(

xn, yn−1
)

< F
(

xn, yn
)

,

F
(

yn−1, xn
)

> F
(

yn, xn
)

.
(2.12)

Combining the previous inequalities, together with (2.8), we get

g(xn) = F
(

xn−1, yn−1
)

< F
(

xn, yn
)

= g(xn+1),

g
(

yn
)

= F
(

yn−1, xn−1
)

> F
(

yn, xn
)

= g
(

yn+1
)

.
(2.13)

We conclude that (2.9) holds for all n ≥ 1. Set

Δn = d
(

g(xn), g(xn+1)
)

+ d
(

g
(

yn
)

,g
(

yn+1
))

. (2.14)
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Making use of Lemma 2.3 and (2.8), we obtain

d
(

g(xn), g(xn+1)
)

+ d
(

g
(

yn
)

, g
(

yn+1
))

= d
(

F
(

xn−1, yn−1
)

, F
(

xn, yn
))

+ d
(

F
(

yn−1, xn−1
)

, F
(

yn, xn
))

< d
(

g(xn−1), g(xn)
)

+ d
(

g
(

yn−1
)

, g
(

yn
))

.

(2.15)

Thus, we have Δn < Δn−1. Hence, the sequence {Δn} is monotone decreasing and clearly
bounded below by 0. Therefore, limn→∞Δn = L for some L ≥ 0.

We show that L = 0. Suppose the contrary; that is, L/= 0. Then, for some positive integer
k, we have for all n ≥ k

ε ≤ Δn

2
=

1
2
[

d
(

g(xn), g(xn+1)
)

+ d
(

g
(

yn
)

, g
(

yn+1
))]

< ε + δ(ε), (2.16)

where we choose ε = L/2. In particular, for n = k

ε ≤ Δk

2
=

1
2
[

d
(

g(xk), g(xk+1)
)

+ d
(

g
(

yk
)

, g
(

yk+1
))]

< ε + δ(ε). (2.17)

Regarding the assumption (iii) and (2.17), we have

1
2
[

d
(

F
(

xk, yk
)

, F
(

xk+1, yk+1
))

+ d
(

F
(

yk, xk
)

, F
(

yk+1, xk+1
))]

< ε, (2.18)

which by (2.8) is equivalent to

1
2
[

d
(

g(xk+1), g(xk+2)
)

+ d
(

g
(

yk+1
)

, g
(

yk+2
))]

< ε. (2.19)

Hence, we obtain

Δk+1

2
< ε, (2.20)

which contradicts (2.16) for n = k + 1. Thus, we deduce that L = 0, that is:

lim
n→∞

Δn = lim
n→∞

[

d
(

g(xn), g(xn+1)
)

+ d
(

g
(

yn
)

, g
(

yn+1
))]

= 0. (2.21)

This implies that

lim
n→∞

d
(

g(xn), g(xn+1)
)

= 0 = lim
n→∞

d
(

g
(

yn
)

, g
(

yn+1
))

. (2.22)
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We claim that the sequences {g(xn)} and {g(yn)} are Cauchy sequences. Take an arbitrary
ε > 0. It follows from (2.21) that there exists k ∈ N such that

1
2
[

d
(

g(xk), g(xk+1)
)

+ d
(

g
(

yk
)

, g
(

yk+1
))]

< δ(ε). (2.23)

Without loss of the generality, assume that δ(ε) ≤ ε and define the following set:

Π :=
{
(

x, y
) ∈ X2 : d

(

x, g(xk)
)

+ d
(

y, g
(

yk
))

< 2(ε + δ(ε)), x > g(xk), y ≤ g(yk
)
}

.

(2.24)

Take ∧ = (g(X), g(X)) ∩Π. We claim that

(

F
(

p, q
)

, F
(

q, p
)) ∈ ∧ ∀(x, y) =

(

g
(

p
)

, g
(

q
)) ∈ ∧ where p, q ∈ X. (2.25)

Take (x, y) = (g(p), g(q)) ∈ Π. Then, by (2.23) and the triangle inequality we have

1
2
[

d
(

g(xk), F
(

p, q
))

+ d
(

g
(

yk
)

, F
(

q, p
))]

≤ 1
2
[

d
(

g(xk), g(xk+1)
)

+ d
(

g(xk+1), F
(

p, q
))]

+
1
2
[

d
(

g
(

yk
)

, g
(

yk+1
))

+ d
(

g
(

yk+1
)

, F
(

q, p
))]

=
1
2
[

d
(

g(xk), g(xk+1)
)

+ d
(

g
(

yk
)

, g
(

yk+1
))]

+
1
2
d
(

F
(

p, q
)

, F
(

xk, yk
))

+
1
2
d
(

F
(

yk, xk
)

, F
(

q, p
))

< δ(ε) +
1
2
d
(

F
(

p, q
)

, F
(

xk, yk
))

+
1
2
d
(

F
(

yk, xk
)

, F
(

q, p
))

.

(2.26)

We distinguish two cases.

First Case. (1/2)[d(x, g(xk)) + d(y, g(yk))] = (1/2)[d(g(p), g(xk)) + d(g(q), g(yk))] ≤ ε.
By Lemma 2.3 and the definition of Π, (2.26) turns into

1
2
[

d
(

g(xk), F
(

p, q
))

+ d
(

g
(

yk
)

, F
(

q, p
))]

< δ(ε) +
1
2
d
(

F
(

p, q
)

, F
(

xk, yk
))

+
1
2
d
(

F
(

yk, xk
)

, F
(

q, p
))

< δ(ε) +
1
2
[

d
(

g
(

p
)

, g(xk)
)

+ d
(

g
(

q
)

, g
(

yk
))] ≤ δ(ε) + ε.

(2.27)

Second Case. ε < (1/2)[d(x, g(xk)) + d(y, g(yk))] = (1/2)[d(g(p), g(xk)) + d(g(q), g(yk))] <
ε + δ(ε).
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In this case, we have

ε <
1
2
[

d
(

g
(

p
)

, g(xk)
)

+ d
(

g
(

q
)

, g
(

yk
))]

< ε + δ(ε). (2.28)

Since x = g(p) > g(xk) and y = g(q) ≤ g(yk), by (ii), we get

1
2
[

d
(

F
(

p, q
)

, F
(

xk, yk
))

+ d
(

F
(

yk, xk
)

, F
(

q, p
))]

< ε. (2.29)

Thus, combining (2.26) and (2.29), we obtain

1
2
[

d
(

g(xk), F
(

p, q
))

+ d
(

g
(

yk
)

, F
(

q, p
))]

< ε + δ(ε). (2.30)

On the other hand, using (i), it is obvious that

F
(

p, q
)

> g(xk), F
(

q, p
) ≤ g(yk

)

. (2.31)

We conclude that (F(p, q), F(q, p)) ∈ Π. Since F(X2) ⊂ g(X), so

(

F
(

p, q
)

, F
(

q, p
)) ∈ ∧, (2.32)

that is, (2.25) holds. By (2.23), we have (g(xk+1), g(yk+1)) ∈ ∧. This implies with (2.25) that

(

g(xk+1), g
(

yk+1
)) ∈ ∧ =⇒ (

F
(

xk+1, yk+1
)

, F
(

yk+1, xk+1
))

=
(

g(xk+2), g
(

yk+2
)) ∈ ∧

=⇒ (

F
(

xk+2, yk+2
)

, F
(

yk+2, xk+2
))

=
(

g(xk+3), g
(

yk+3
)) ∈ ∧

=⇒ · · · =⇒ (

g(xn), g
(

yn
)) ∈ ∧ =⇒ · · · .

(2.33)

Then, for all n > k, we have (g(xn), g(yn)) ∈ ∧. This implies that for all n,m > k, we have

d
(

g(xn), d(xm)
)

+ d
(

g
(

yn
)

, g
(

ym
)) ≤ d(g(xn), g(xk)

)

+ d
(

g
(

yn
)

, g
(

yk
))

+ d
(

g(xk), g(xm)
)

+ d
(

g
(

yk
)

, g
(

ym
))

< 4(ε + δ(ε)) ≤ 8ε.

(2.34)

Thus, the sequences {g(xn)} and {g(yn)} are Cauchy in (X, d).
Since (X, d) is complete, so there exist x, y ∈ X such that

lim
n→∞

d
(

x, g(xn)
)

= 0,

lim
n→∞

d
(

y, g
(

yn
))

= 0.
(2.35)
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Finally, by continuity of F and g, the commutativity of F and g, and using exactly the same
argument of Lakshmikantham and Ćirić [19], we get that F(x, y) = g(x) and F(y, x) = g(y),
which completes the proof.

Remark 2.5. Theorem 2.4 holds if we replace (iv) by the following: there exist x0, y0 ∈ X such
that

g(x0) ≤ F
(

x0, y0
)

, g
(

y0
)

> F
(

y0, x0
)

. (2.36)

Theorem 2.6. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a metric space. Let F : X2 → X and let g : X → X be mappings such that F(X2) ⊆ g(X).
Assume that X satisfies the following property:

(a) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . .,

(b) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..

Suppose the following conditions hold:

(i) F has the mixed strict g-monotone property,

(ii) F is a weak generalized g-Meir-Keeler type contraction,

(iii) g(X) is a complete subspace of (X, d),

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(

x0, y0
)

, g
(

y0
) ≥ F(y0, x0

)

. (2.37)

Then F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

. (2.38)

Proof. Proceeding exactly as in Theorem 2.4, we have that {g(xn)} and {g(yn)} are Cauchy
sequences in the complete metric space (g(X), d). Then, there exist x, y ∈ X such that
g(xn) → g(x) and g(yn) → g(y). Since {g(xn)} is increasing and {g(yn)} is decreasing,
using the assumptions (a) and (b), we have

g(xn) < g(x), g
(

yn
)

> g
(

y
)

, (2.39)

for each n ≥ 0. Using triangle inequality together with (2.8), we find

d
(

F
(

x, y
)

, g(x)
) ≤ d(F(x, y), g(xn)

)

+ d
(

g(xn), g(x)
)

= d
(

F
(

x, y
)

, F
(

xn−1, yn−1
))

+ d
(

g(xn), g(x)
)

.
(2.40)
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Similarly,

d
(

F
(

y, x
)

, g
(

y
)) ≤ d(F(y, x), g(yn

))

+ d
(

g
(

yn
)

, g
(

y
))

= d
(

F
(

y, x
)

, F
(

yn−1, xn−1
))

+ d
(

g
(

yn
)

, g
(

y
))

.
(2.41)

Taking side-by-side sum of the above mentioned inequalities and having in mind (2.39), the
fact that g(xn) → g(x), g(yn) → g(y) and Lemma 2.3, we get

d
(

F
(

x, y
)

, g(x)
)

+ d
(

F
(

y, x
)

, g
(

y
))

≤ d(F(x, y), F(xn−1, yn−1
))

+ d
(

F
(

y, x
)

, F
(

yn−1, xn−1
))

+ d
(

g(xn), g(x)
)

+ d
(

g
(

yn
)

, g
(

y
))

<
[

d
(

g(x), g(xn−1)
)

+ d
(

g
(

y
)

, g
(

yn−1
))]

+ d
(

g(xn), g(x)
)

+ d
(

g
(

yn
)

, g
(

y
)) −→ 0,

(2.42)

as n → ∞. Hence, we end up with d(F(x, y), g(x)) = 0 = d(F(y, x), g(y)), that is, F(x, y) =
g(x) and F(y, x) = g(y), which completes the proof.

As a particular case of Theorems 2.4 and 2.6, we state the following corollary where
the function g is taken as the identity function.

Corollary 2.7. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X. Suppose that F satisfies the following conditions:

(i) F has the mixed strict monotone property,

(ii) F is a weak Meir-Keeler type contraction,

(iii) there exist x0, y0 ∈ X such that

x0 < F
(

x0, y0
)

, y0 ≥ F
(

y0, x0
)

. (2.43)

Assume either F is continuous or X satisfies the following property:

(a) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . .,

(b) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..

Then F has a coupled fixed point; that is, there exist x, y ∈ X such that

F
(

x, y
)

= x, F
(

y, x
)

= y. (2.44)

We give the following examples.
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Example 2.8. Let X = R and d(x, y) = |x−y|. Set F : X2 → X and let g : X → X be defined as
F(x, y) = (3x3 − 7y3)/12 and g(x) = x3. Then, the mapping F has the strict mixed monotone
property. We claim that condition (2.1) holds, but the condition (1.18) is not satisfied.

Note that in order to guarantee (1.18), we must have

ε ≤ 1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

< ε + δ(ε) =⇒ d
(

F
(

x, y
)

, F(u, v)
)

< ε, (2.45)

for x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v). This means that

ε ≤ 1
2

(∣

∣

∣x3 − u3
∣

∣

∣ +
∣

∣

∣y3 − v3
∣

∣

∣

)

< ε + δ(ε) =⇒
∣

∣

∣

∣

∣

3x3 − 7y3

12
− 3u3 − 7v3

12

∣

∣

∣

∣

∣

< ε. (2.46)

Choosing x = u for simplicity (so g(x) = g(u)), we get

ε ≤ 1
2

(∣

∣

∣y3 − v3
∣

∣

∣

)

< ε + δ(ε), g
(

y
) ≥ g(v). (2.47)

Hence for g(y) > g(v), (2.46) implies that

∣

∣

∣

∣

∣

3x3 − 7y3

12
− 3u3 − 7v3

12

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

7v3 − 7y3

12

∣

∣

∣

∣

∣

=
7
12

∣

∣

∣y3 − v3
∣

∣

∣ < ε. (2.48)

Combining (2.47) and(2.48), we get that

2ε ≤
∣

∣

∣y3 − v3
∣

∣

∣ <
12
7
ε < 2ε, (2.49)

which is a contradiction.
On the other hand, F and g satisfy (2.1). Indeed, if we take the sum of

∣

∣

∣

∣

∣

3x3 − 7y3

12
− 3u3 − 7v3

12

∣

∣

∣

∣

∣

≤ 3
12

∣

∣

∣x3 − u3
∣

∣

∣ +
7
12

∣

∣

∣v3 − y3
∣

∣

∣, g(x) ≤ g(u), g(y) ≥ g(v),
∣

∣

∣

∣

∣

3y3 − 7x3

12
− 3v3 − 7y3

12

∣

∣

∣

∣

∣

≤ 3
12

∣

∣

∣v3 − y3
∣

∣

∣ +
7
12

∣

∣

∣x3 − u3
∣

∣

∣, g(x) ≤ g(u), g(y) ≥ g(v),
(2.50)
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and divide by 2, we obtain for g(x) ≤ g(u) and let g(y) ≥ g(v)

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

=
1
2

(∣

∣

∣

∣

∣

3x3 − 7y3

12
− 3u3 − 7v3

12

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

7x3 − 3y3

12
− 7u3 − 3v3

12

∣

∣

∣

∣

∣

)

≤ 5
12

(∣

∣

∣x3 − u3
∣

∣

∣ +
∣

∣

∣y3 − v3
∣

∣

∣

)

=
5
6

{

1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

}

.

(2.51)

Choosing δ(ε) < ε/5, we get the desired result. Note also that x0 = −1 and y0 = 1 satisfy (2.6).
So Theorem 2.4 can be applied to F ad g in this example to conclude that F and g have

a coupled coincidence point (0, 0), while Theorem 1.13 cannot be applied since (1.18) is not
satisfied.

Example 2.9. Let X = R and d(x, y) = |x − y|. Set F : X2 → X and let g : X → X be defined
as F(x, y) = (x − 2y)/4 and g(x) = 2x. Then, the mapping F has the strict mixed monotone
property. We claim that condition (2.1) holds for g(x) ≤ g(u) and g(y) ≥ g(v). Indeed,

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

=
1
2

(∣

∣

∣

∣

x − 2y
4

− u − 2v
4

∣

∣

∣

∣
+
∣

∣

∣

∣

y − 2x
4

− v − 2u
4

∣

∣

∣

∣

)

=
3
8
(

(u − x) + (

y − v))

=
3
8

{

1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

}

.

(2.52)

Choosing δ(ε) < 5ε/3, we get the desired result. Note also that x0 = 0 and y0 = 1 satisfy (2.6).
All hypotheses of Theorem 2.4 are satisfied. Here, F and g have a coupled coincidence

point (0, 0).

3. Uniqueness of Common Coupled Fixed Point

In this section we will prove the uniqueness of a common coupled fixed point. We endow the
product space X2 with the following partial order:

(u, v) ≤ (

x, y
) ⇐⇒ u ≤ x, y ≥ v, ∀(x, y), (u, v) ∈ X2. (3.1)

Note that a pair (x, y) ∈ X2 is comparable with (u, v) ∈ X2 if either (x, y) ≤ (u, v) or (u, v) ≤
(x, y). We next state the conditions for the existence and uniqueness of a common coupled
fixed point of maps F and g.
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Theorem 3.1. In addition to the hypotheses of Theorem 2.4 (resp., Theorem 2.6), assume that for all
(x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then, F and g have a unique common coupled fixed
point, that is:

x = g(x) = F
(

x, y
)

, y = g
(

y
)

= F
(

y, x
)

. (3.2)

Proof. The set of coupled coincidence points of F and g is not empty due to Theorem 2.4
(resp., Theorem 2.6). We suppose that (x, y), (x∗, y∗) ∈ X2 are two coupled coincidence points
of F and g. We distinguish the following two cases.

First Case. (F(x, y), F(y, x)) is comparable to (F(x∗, y∗), F(y∗, x∗)with respect to the ordering
in X2, where

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

, F
(

x∗, y∗) = g(x∗), F
(

y∗, x∗) = g
(

y∗). (3.3)

Without loss of the generality, we may assume that

g(x) = F
(

x, y
)

< F
(

x∗, y∗) = g(x∗), g
(

y
)

= F
(

y, x
) ≥ F(y∗, x∗) = g

(

y∗). (3.4)

By Lemma 2.3, we have

d
(

g(x), g(x∗)
)

+ d
(

g
(

y
)

, g
(

y∗)) = d
(

F
(

x, y
)

, F
(

x∗, y∗)) + d
(

F
(

y, x
)

, F
(

y∗, x∗))

< d
(

g(x), g(x∗)
)

+ d
(

g
(

y
)

, g
(

y∗)),
(3.5)

which is a contradiction. Therefore, we have g(x) = g(x∗) and g(y) = g(y∗).

Second Case. Suppose that (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)) are not comparable.
By assumption there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)).

Setting a = a0, b = b0, as in the proof of Theorem 2.4, we define the sequences {g(an)}
and {g(bn)} as follows:

g(an+1) = F(an, bn), g(bn+1) = F(bn, an) ∀n = 0, 1, 2, . . . . (3.6)

Since (F(x, y), F(y, x)) = (g(x), g(y)) and (F(a, b), F(b, a)) = (g(a1), g(b1)) are comparable,
we may assume without loss of generality that g(x) < g(a1) and g(y) ≥ g(b1). Inductively,
we observe that g(x) < g(an) and g(y) ≥ g(bn) for all n ≥ 1. Thus, by Lemma 2.3, we get that

d
(

g(x), g(an+1)
)

+ d
(

g
(

y
)

, g(bn+1)
)

= d
(

F
(

x, y
)

, F(an, bn)
)

+ d
(

F
(

y, x
)

, F(bn, an)
)

< d
(

g(x), g(an)
)

+ d
(

g
(

y
)

, g(bn)
)

.
(3.7)

Set λn = d(g(x), g(an)) + d(g(y), g(bn)). Hence, for each n ≥ 0

λn+1 < λn. (3.8)
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Therefore, the sequence {λn} is decreasing and bounded below by 0. Hence, it converges to
some L ≥ 0. Assume that L > 0. Then, for some positive integer k, we have for all n ≥ k

ε ≤ λn
2

=
1
2
[

d
(

g(x), g(an)
)

+ d
(

g
(

y
)

, g(bn)
)]

< ε + δ(ε), (3.9)

where we choose ε = L/2. In particular, for n = k

ε ≤ λk
2

=
1
2
[

d
(

g(x), g(ak)
)

+ d
(

g
(

y
)

, g(bk)
)]

< ε + δ(ε). (3.10)

Having in mind (3.10) and the fact that F is a weak generalized g-Meir-Keeler contraction,
we get that

1
2
[

d
(

F
(

x, y
)

, F(ak, bk)
)

+ d
(

F
(

y, x
)

, F(bk, ak)
)]

< ε, (3.11)

which is equivalent to

1
2
[

d
(

g(x), g(ak+1)
)

+ d
(

g
(

y
)

, g(bk+1)
)]

< ε. (3.12)

Hence, we obtain

λk+1
2

< ε, (3.13)

which contradicts (3.9) for n = k + 1. Thus, we deduce that L = 0, that is:

lim
n→∞

d
(

g(x), g(an)
)

+ d
(

g
(

y
)

, g(bn)
)

= 0. (3.14)

In a similar manner, we can show that

lim
n→∞

d
(

g(x∗), g(an)
)

+ d
(

g
(

y∗), g(bn)
)

= 0. (3.15)

By the triangle inequality, we have

0 ≤ d(g(x), g(x∗)
) ≤ d(g(x), g(an)

)

+ d
(

g(an), g(x∗)
)

−→ 0 as n −→ ∞,

0 ≤ d(g(y), g(y∗)) ≤ d(g(y), g(bn)
)

+ d
(

g(bn), g
(

y∗))

−→ 0 as n −→ ∞.

(3.16)
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Combining all observations mentioned previously, we get d(g(x∗), g(x)) = 0 and d(g(y∗),
g(y)) = 0. Hence, we have

g(x) = g(x∗), g
(

y
)

= g
(

y∗). (3.17)

Last, we show that g(x) = x and g(y) = y. Let g(x) = u and g(y) = v. By the commutativity
of F and g and the fact that g(x) = F(x, y) and F(y, x) = g(y), we have

g(u) = g
(

g(x)
)

= g
(

F
(

x, y
))

= F
(

g(x), g
(

y
))

= F(u, v),

g(v) = g
(

g
(

y
))

= g
(

F
(

y, x
))

= F
(

g
(

y
)

, g(x)
)

= F(v, u).
(3.18)

Thus, (u, v) is a coupled coincidence point of F and g. However, according to (3.17), we must
have

g(x) = g(u), g
(

y
)

= g(v). (3.19)

Hence, we deduce

u = g(u) = F(u, v), v = g(v) = F(v, u), (3.20)

that is, the pair (u, v) is the coupled common fixed point of F and g.
We claim that (u, v) is the unique coupled common fixed point of F and g. Assume

that (z,w) is another coupled common fixed point of F and g. But,

u = g(u) = g(z) = z, v = g(v) = g(w) = w (3.21)

follows from (3.17).

The particular case in which g is the identity function can be given as a corollary.

Corollary 3.2. In addition to the hypotheses of Corollary 2.7, assume that for all (x, y), (x∗, y∗) ∈ X2,
there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is comparable to both (F(x, y), F(y, x)) and
(F(x∗, y∗), F(y∗, x∗)). Then, F has a unique coupled fixed point.

4. Application

In this section we give an application of the main theorems relevant to weak generalized
g-Meir-Keeler type contractions. For this, we need the following theorem.

Theorem 4.1. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X. Let
F : X2 → X and let g : X → X be two given mappings. Let also φ : [0,∞) → [0,∞) be a function
satisfying the following:

(i) φ(0) = 0 and φ(t) > 0 for all t > 0,

(ii) φ is nondecreasing and right continuous,
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(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X with g(x) ≤ g(u) and
g(y) ≥ g(v)

ε ≤ φ
(

1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

)

< ε + δ(ε)

=⇒ φ

(

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

)

< ε.

(4.1)

Then the mapping F is a weak generalized g-Meir-Keeler contraction.

Proof. By the condition (i) φ(ε) > 0 for any ε > 0. Then according to (iii), for φ(ε) > 0 there
exists γ > 0 such that, for all x, y, u, v ∈ X with g(x) ≤ g(u) and g(y) ≥ g(v)

φ(ε) ≤ φ
(

1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

)

< φ(ε) + γ

=⇒ φ

(

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

)

< φ(ε).

(4.2)

Since φ is right continuous, so there exists δ > 0 such that

φ(ε + δ) < φ(ε) + γ. (4.3)

Now, fix x, y, u, v ∈ X satisfying g(x) ≤ g(u), g(y) ≥ g(v) and

ε ≤ 1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

< ε + δ. (4.4)

Since φ is nondecreasing, so we have

φ(ε) ≤ φ
(

1
2
[

d
(

g(x), g(u)
)

+ d
(

g
(

y
)

, g(v)
)]

)

≤ φ(ε + δ) < φ(ε) + γ. (4.5)

From (4.2),

φ

(

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

)

< φ(ε). (4.6)

Regarding the nondecreasing behavior of the function φ, we get

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

< ε. (4.7)

Consequently, F is a weak generalized g-Meir-Keeler type contraction.

If g is the identity function, we derive the following special case of the Theorem 4.1.
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Corollary 4.2. Let (X,≤) be a partially ordered set, and suppose that there is a metric d on X. Let
F : X2 → X. Let also φ : [0,∞) → [0,∞) be a function satisfying the following:

(i) φ(0) = 0 and φ(t) > 0 for all t > 0,

(ii) φ is nondecreasing and right continuous,

(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X with x ≤ u and y ≥ v,

ε ≤ φ
(

1
2
[

d(x, u) + d
(

y, v
)]

)

< ε + δ(ε)

=⇒ φ

(

1
2
[

d
(

F
(

x, y
)

, F(u, v)
)

+ d
(

F
(

y, x
)

, F(v, u)
)]

)

< ε.

(4.8)

Then, the mapping F is a weak Meir-Keeler contraction.

The subsequent results are particular cases of Theorems 2.4 and 4.1.

Corollary 4.3. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X and let g : X → X be two given mappings such
that F(X2) ⊆ g(X), g is continuous and commutes with F. Also, suppose the following conditions:

(i) F is continuous,

(ii) F has the mixed strict g-monotone property,

(iii) for any ε > 0, there exists δ(ε) > 0 such that for all x, y, u, v ∈ X satisfying g(x) ≤ g(u)
and g(y) ≥ g(v),

ε ≤
∫ (1/2)[d(g(x),g(u))+d(g(y),g(v))]

0
φ(s)ds < ε + δ(ε)

=⇒
∫ (1/2)[d(F(x,y),F(u,v))+d(F(y,x),F(v,u))]

0
φ(s)ds < ε,

(4.9)

where φ : [0,∞) → [0,∞) is locally integrable and for all t > 0

∫ t

0
φ(s)ds > 0, (4.10)

(iv) there exist x0, y0 ∈ X such that

g(x0) < F
(

x0, y0
)

, g
(

y0
) ≥ F(y0, x0

)

. (4.11)

Then, F and g have a coupled coincidence point; that is, there exist x, y ∈ X such that

F
(

x, y
)

= g(x), F
(

y, x
)

= g
(

y
)

. (4.12)
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If, in addition, for all (x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is
comparable to both (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)), then F and g have a unique common
coupled fixed point.

Corollary 4.4. Let (X,≤) be a partially ordered set, and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Let F : X2 → X be a mapping satisfying the following conditions:

(i) F is continuous,

(ii) F has the mixed strict monotone property,

(iii) for any ε > 0 there exists δ(ε) > 0 such that for all x, y, u, v ∈ X satisfying x ≤ u and
y ≥ v,

ε ≤
∫ (1/2)[d(x,u)+d(y,v)]

0
φ(s)ds < ε + δ(ε)

=⇒
∫ (1/2)[d(F(x,y),F(u,v))+d(F(y,x),F(v,u))]

0
φ(s)ds < ε,

(4.13)

where φ : [0,∞) → [0,∞) is locally integrable and for all t > 0

∫ t

0 φ(s)ds > 0, (4.14)

(iv) there exist x0, y0 ∈ X such that

x0 < F
(

x0, y0
)

, y0 ≥ F
(

y0, x0
)

. (4.15)

Then F has a coupled fixed point; that is, there exist x, y ∈ X such that

F
(

x, y
)

= x, F
(

y, x
)

= y. (4.16)

If, in addition, for all (x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F(a, b), F(b, a)) is
comparable to both (F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)), then F has a unique coupled fixed
point.
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