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We introduce certain type of weighted variant of Riemann-Liouville fractional integral on R
n and

obtain its sharp bounds on the central Morrey and λ-central BMO spaces. Moreover, we establish a
sufficient and necessary condition of the weight functions so that commutators of weighted Hardy
operators (with symbols in λ-central BMO space) are bounded on the central Morrey spaces. These
results are further used to prove sharp estimates of some inequalities due to Weyl and Cesàro.

1. Introduction

Let 0 < α < 1. The well-known Riemann-Liouville fractional integral Iα is defined by

Iαf(x) :=
1

Γ(α)

∫x

0

f(t)

(x − t)1−α
dt, x > 0, (1.1)

for all locally integrable functions f on (0,∞). The study of Riemann-Liouville fractional
integral has a very long history and number of papers involved its generalizations, variants,
and applications. For the earlier development of this kind of integrals and many important
applications in fractional calculus, we refer the interested reader to the book [1]. Among
numerous material dealing with applications of fractional calculus to (ordinary or partial)
differential equations, we choose to refer to [2] and references therein.
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As the classical n-dimensional generalization of Iα, the well-known Riesz potential
(the solution of Laplace equation) Iα with 0 < α < n is defined by setting, for all locally
integrable functions f on R

n,

Iαf(x) := Cn,α

∫
Rn

f(t)
|x − t|n−α dt, x ∈ R

n, (1.2)

where Cn,α := πn/22α(Γ(α/2))/(Γ((n − α)/2)). The importance of Riesz potentials lies
in the fact that they are indeed smoothing operators and have been extensively used in
many different areas such as potential analysis, harmonic analysis, and partial differential
equations. Here we refer to the paper [3], which is devoted to the sharp constant in the
Hardy-Littlewood-Sobolev inequality related to Iα.

This paper focused on another generalization, the weighted variants of Riemann-
Liouville fractional integrals on R

n. We investigate the boundedness of these weighted
variants on the type of central Morrey and central Campanato spaces and also give the sharp
estimates. This development begins with an equivalent definition of Iα as

xαIαf(x) =
∫1

0
f(tx)

1

Γ(α)(1 − t)1−α
dt, x > 0. (1.3)

More generally, we use a positive function (weight function)ω(t) to replace 1/(Γ(α)(1−t)1−α)
in (1.3) and generalize the parameter x from the positive axle to the Euclidean space R

n

therein. We then derive a weighted generalization of |x|αIα on R
n, which is called the

weighted Hardy operator (originally named weighted Hardy-Littlewood avarage) Hω.
More precise, let ω be a positive function on [0, 1]. The weighted Hardy operator Hω is

defined by setting, for all complex-valued measurable functions f on R
n and x ∈ R

n,

Hωf(x) :=
∫1

0
f(tx)ω(t)dt. (1.4)

Under certain conditions on ω, Carton-Lebrun and Fosset [4] proved that Hω maps Lp(Rn),
1 < p < ∞, into itself; moreover, the operatorHω commutes with the Hilbert transform when
n = 1, and with certain Calderón-Zygmund singular integrals including the Riesz transform
when n ≥ 2. Obviously, for n = 1 and 0 < α < 1, if we take ω(t) := 1/(Γ(α)(1 − t)1−α), then as
mentioned above, for all x > 0,

Hωf(x) = x−αIαf(x). (1.5)

A further extension of [4]was due to Xiao [5] as follows.

Theorem A. Let 1 < p < ∞. Then, Hω is bounded on Lp(Rn) if and only if

A :=
∫1

0
t−n/pω(t)dt < ∞. (1.6)
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Moreover,
∥∥Hωf

∥∥
Lp(Rn)→Lp(Rn) = A. (1.7)

Remark 1.1. Notice that the condition (1.6) implies that ω is integrable on [0, 1] since∫1
0 ω(t)dt ≤ ∫10 t−n/pω(t)dt. We naturally assumeω is integrable on [0, 1] throughout this paper.

Obviously, Theorem A implies the celebrated result of Hardy et al. [6, Theorem 329],
namely, for all 0 < α < 1 and 1 < p < ∞,

‖Iα‖Lp(dx)→Lp(x−pαdx) =
Γ
(
1 − 1/p

)
Γ
(
1 + α − 1/p

) . (1.8)

The constant A in (1.6) also seems to be of interest as it equals to p/(p − 1) if ω ≡ 1 and n = 1.
In this case, Hω is precisely reduced to the classical Hardy operator H defined by

Hf(x) =
1
x

∫x

0
f(t)dt, x > 0, (1.9)

which is the most fundamental integral averaging operator in analysis. Also, a celebrated
operator norm estimate due to Hardy et al. [6], that is,

‖H‖Lp(R+)→Lp(R+) =
p

p − 1 (1.10)

with 1 < p < ∞, can be deduced from Theorem A immediately.
Recall that BMO(Rn) is defined to be the space of all b ∈ Lloc(Rn) such that

‖b‖BMO := sup
B⊂Rn

1
|B|
∫
B

|b(x) − bB| dx < ∞, (1.11)

where bB = (1/|B|) ∫B b and the supremum is taken over all balls B in R
n with sides parallel

to the axes. It is well known that L∞(Rn) � BMO(Rn), since BMO(Rn) contains unbounded
functions such as log |x|. Another interesting result of Xiao in [5] is that the weighted Hardy
operator Hω is bounded on BMO(Rn), if and only if

∫1

0
ω(t)dt < ∞. (1.12)

Moreover,

‖Hω‖BMO(Rn)→BMO(Rn) =
∫1

0
ϕ(t)dt. (1.13)

In recent years, several authors have extended and considered the action of weighted Hardy
operators on various spaces. Wemention here, the work of Rim and Lee [7], Kuang [8], Krulić
et al. [9], Tang and Zhai [10], Tang and Zhou [11].
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The main purpose of this paper is to make precise the mapping properties of weighted
Hardy operators on the central Morrey and λ-central BMO spaces. The study of the central
Morrey and λ-central BMO spaces are traced to the work of Wiener [12, 13] on describing the
behavior of a function at the infinity. The conditions he considered are related to appropriate
weighted Lq (1 < q < ∞) spaces. Beurling [14] extended this idea and defined a pair of dual
Banach spaces Aq and Bq′ , where 1/q + 1/q′ = 1. To be precise, Aq is a Banach algebra with
respect to the convolution, expressed as a union of certainweighted Lq spaces. The space Bq′ is
expressed as the intersection of the corresponding weighted Lq′ spaces. Later, Feichtinger [15]
observed that the space Bq′ can be equivalently described by the set of all locally q′-integrable
functions f satisfying that

∥∥f∥∥Bq′ = sup
k≥0

(
2−kn/q

′∥∥fχk

∥∥
q′

)
< ∞, (1.14)

where χ0 is the characteristic function of the unit ball {x ∈ R
n : |x| ≤ 1}, χk is the characteristic

function of the annulus {x ∈ R
n : 2k−1 < |x| ≤ 2k}, k = 1, 2, 3, . . ., and ‖ · ‖q′ is the norm in Lq′ .

By duality, the space Aq, called Beurling algebra now, can be equivalently described by the
set of all locally q-integrable functions f satisfying that

∥∥f∥∥Aq =
∞∑
k=0

2kn/q
′∥∥fχk

∥∥
q < ∞. (1.15)

Based on these, Chen and Lau [16] and Garcı́a-Cuerva [17] introduced an atomic spaceHAq

associated with the Beurling algebra Aq and identified its dual as the space CMOq, which is
defined to be the space of all locally q-integrable functions f satisfying that

sup
R≥1

(
1

|B(0, R)|
∫
B(0,R)

∣∣f(x) − fB(0,R)
∣∣qdx

)1/q

< ∞. (1.16)

By replacing k ∈ N ∪ {0} with k ∈ Z in (1.3) and (1.6), we obtain the spaces Ȧq and
Ḃq′ , which are the homogeneous version of the spaces Aq and Bq′ , and the dual space of Ȧq

is just Ḃq′ . Related to these homogeneous spaces, in [18, 19], Lu and Yang introduced the
homogeneous counterparts of HAq and CMOq, denoted by ḢAq and CṀOq, respectively.
These spaces were originally denoted by HKq and CBMOq in [18, 19]. Recall that the space
CṀOq is defined to be the space of all locally q-integrable functions f satisfying that

sup
R>0

(
1

|B(0, R)|
∫
B(0,R)

∣∣f(x) − fB(0,R)
∣∣qdx

)1/q

< ∞. (1.17)

It was also proved by Lu and Yang that the dual space of ḢAq is just CṀOq.
In 2000, Alvarez et al. [20] introduced the following λ-central bounded mean

oscillation spaces and the central Morrey spaces, respectively.
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Definition 1.2. Let λ ∈ R and 1 < q < ∞. The central Morrey space Ḃq,λ(Rn) is defined to be the
space of all locally q-integrable functions f satisfying that

∥∥f∥∥Ḃq,λ = sup
R>0

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣f(x)∣∣qdx
)1/q

< ∞. (1.18)

Definition 1.3. Let λ < 1/n and 1 < q < ∞. A function f ∈ L
q

loc(R
n) is said to belong to the

λ-central bounded mean oscillation space CṀOq,λ(Rn) if

∥∥f∥∥CṀOq,λ = sup
R>0

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣f(x) − fB(0,R)
∣∣qdx

)1/q

< ∞. (1.19)

We remark that if two functions which differ by a constant are regarded as a function
in the space CṀOq,λ, then CṀOq,λ becomes a Banach space. Apparently, (1.19) is equivalent
to the following condition:

sup
R>0

inf
c∈C

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣f(x) − c
∣∣qdx

)1/q

< ∞. (1.20)

Remark 1.4. Ḃq,λ is a Banach space which is continuously included in CṀOq,λ. One can easily
check Ḃq,λ(Rn) = {0} if λ < −1/q, Ḃq,0(Rn) = Ḃq(Rn), Ḃq,−1/q(Rn) = Lq(Rn), and Ḃq,λ(Rn) �

Lq(Rn) if λ > −1/q. Similar to the classical Morrey space, we only consider the case −1/q <
λ ≤ 0 in this paper.

Remark 1.5. The space CṀOq,λ when λ = 0 is just the space CṀOq. It is easy to see that
BMO ⊂ CṀOq for all 1 < q < ∞. When λ ∈ (0, 1/n), then the space CṀOq,λ is just the central
version of the Lipschitz space Lipλ(R

n).

Remark 1.6. If 1 < q1 < q2 < ∞, then by Hölder’s inequality, we know that Ḃq2,λ ⊂ Ḃq1,λ for
λ ∈ R, and CṀOq2,λ ⊂ CṀOq1,λ for λ < 1/n.

For more recent generalization about central Morrey and Campanato space, we refer
to [21]. We also remark that in recent years, there exists an increasing interest in the study of
Morrey-type spaces and the related theory of operators; see, for example, [22].

In this paper, we give sufficient and necessary conditions on the weight ω which
ensure that the corresponding weighted Hardy operator Hω is bounded on Ḃq,λ(Rn) and
CṀOq,λ(Rn). Meanwhile, we can work out the corresponding operator norms. Moreover, we
establish a sufficient and necessary condition of the weight functions so that commutators
of weighted Hardy operators (with symbols in central Campanato-type space) are bounded
on the central Morrey-type spaces. These results are further used to prove sharp estimates of
some inequalities due to Weyl and Cesàro.
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2. Sharp Estimates of Hω

Let us state our main results.

Theorem 2.1. Let 1 < q < ∞ and −1/q < λ ≤ 0. Then Hω is a bounded operator on Ḃq,λ(Rn) if and
only if

B :=
∫1

0
tnλω(t)dt < ∞. (2.1)

Moreover, when (2.1) holds, the operator norm ofHω on Ḃq,λ(Rn) is given by

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) = B. (2.2)

Proof. Suppose (2.1) holds. For any R > 0, using Minkowski’s inequality, we have

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣(Hωf
)
(x)
∣∣qdx

)1/q

≤
∫1

0

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣f(tx)∣∣qdx
)1/q

ω(t)dt

=
∫1

0

(
1

|B(0, tR)|1+λq
∫
B(0,tR)

∣∣f(x)∣∣qdx
)1/q

tnλω(t)dt

≤ ∥∥f∥∥Ḃq,λ(Rn)

∫1

0
tnλω(t)dt.

(2.3)

It implies that

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) ≤
∫1

0
tnλω(t)dt. (2.4)

Thus Hω maps Ḃq,λ(Rn) into itself.
The proof of the converse comes from a standard calculation. If Hω is a bounded

operator on Ḃq,λ(Rn), take

f0(x) = |x|nλ, x ∈ R
n. (2.5)

Then

∥∥f0∥∥Ḃq,λ(Rn) = Ω−λ
n

1(
nqλ + n

)1/q , (2.6)

where Ωn = πn/2/(Γ(1 + n/2)) is the volume of the unit ball in R
n.
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We have

Hωf0 = f0

∫1

0
tnλω(t)dt, (2.7)

‖Hω‖Ḃq,λ(Rn)→ Ḃq,λ(Rn) ≥
∫1

0
tnλω(t)dt. (2.8)

(2.8) together with (2.4) yields the desired result.

Corollary 2.2. (i) For 0 < α < 1, 1 < q < ∞, and −1/q < λ ≤ 0,

‖Iα‖Ḃq,λ(dx)→ Ḃq,λ(x−qαdx) =
Γ(1 + λ)

Γ(1 + α + λ)
. (2.9)

(ii) For 1 < q < ∞ and −1/q < λ ≤ 0,

‖H‖Ḃq,λ → Ḃq,λ =
1

1 + λ
. (2.10)

Next, we state the corresponding conclusion for the space CṀOq,λ(Rn).

Theorem 2.3. Let 1 < q < ∞ and 0 ≤ λ < 1/n. Then Hω is a bounded operator on CṀOq,λ(Rn)
if and only if (2.1) holds. Moreover, when (2.1) holds, the operator norm of Hω on CṀOq,λ(Rn) is
given by

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) = B. (2.11)

Proof. Suppose (2.1) holds. If f ∈ CṀOq,λ(Rn), then for any R > 0 and ball B(0, R), using
Fubini’s theorem, we see that

(
Hωf

)
B(0,R) =

∫1

0

(
1

|B(0, R)|
∫
B(0,R)

f(tx)dx

)
ω(t)dt =

∫1

0
fB(0,tR)ω(t)dt. (2.12)
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Using Minkowski’s inequality, we have

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣∣(Hωf
)
(x) − (Hωf

)
B(0,R)

∣∣∣qdx
)1/q

=

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣∣∣∣
∫1

0

(
f(tx) − fB(0,tR)

)
dt

∣∣∣∣∣
q

dx

)1/q

≤
∫1

0

(
1

|B(0, R)|1+λq
∫
B(0,R)

∣∣f(tx) − fB(0,tR)
∣∣qdx

)1/q

ω(t)dt

=
∫1

0

(
1

|B(0, tR)|1+λq
∫
B(0,tR)

∣∣f(x) − fB(0,tR)
∣∣qdx

)1/q

tnλω(t)dt

≤ ∥∥f∥∥CṀOq,λ(Rn)

∫1

0
tnλω(t)dt,

(2.13)

which implies Hω is bounded on CṀOq,λ(Rn) and

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) ≤ B. (2.14)

Conversely, ifHω is a bounded operator on CṀOq,λ(Rn), take

f0(x) =

{
|x|nλ, x ∈ R

n
r ,

−|x|nλ, x ∈ R
n
l
,

(2.15)

where R
n
r and R

n
l
denote the right and the left halves of R

n, separated by the hyperplane
x1 = 0, and x1 is the first coordinate of x ∈ R

n.
Thus, by a standard calculation, we see that (f0)B(0,R) = 0 and

∥∥f0∥∥CṀOq,λ(Rn) = Ω−λ
n

1(
nqλ + n

)1/q ,

Hωf0 = f0

∫1

0
tnλω(t)dt.

(2.16)

From this formula we have

‖Hω‖CṀOq,λ(Rn)→CṀOq,λ(Rn) ≥ B. (2.17)

The proof is complete.
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Corollary 2.4. (i) For 1 < q < ∞ and 0 ≤ λ < 1, we have

‖H‖CṀOq,λ →CṀOq,λ =
1

1 + λ
. (2.18)

(ii) For 1 < q < ∞, we have ‖H‖CṀOq →CṀOq = 1.

3. A Characterization of Weight Functions via Commutators

Awell-known result of Coifman et al. [23] states that the commutator generated by Calderón-
Zygmund singular integrals and BMO functions is bounded on Lp(Rn), 1 < p < ∞. Recently,
we introduced the commutators of weightedHardy operators and BMO functions introduced
in [24]. For any locally integrable function b on R

n and integrable function ω : [0, 1] →
[0,∞), the commutator of the weighted Hardy operator Hb

ω is defined by

Hb
ωf := bHωf −Hω

(
bf
)
. (3.1)

It is easy to see that when b ∈ L∞(Rn) and ω satisfies the condition (1.6), then the
commutator Hb

ω is bounded on Lp(Rn), 1 < p < ∞. An interesting choice of b is that
it belongs to the class of BMO(Rn). When symbols b ∈ BMO(Rn), the condition (1.6) on
weight functions ω can not ensure the boundedness of Hb

ω on Lp(Rn). Via controlling Hb
ω

by the Hardy-Littlewood maximal operators instead of sharp maximal functions, we [24]
established a sufficient and necessary (more stronger) condition onweight functionsωwhich
ensures that Hb

ω is bounded on Lp(Rn), where 1 < p < ∞. More recently, Fu and Lu [25]
studied the boundedness ofHb

ω on the classical Morrey spaces. Tang et al. [26] and Tang and
Zhou [11] obtained the corresponding result on some Herz-type and Triebel-Lizorkin-type
spaces. We also refer to the work [27] for more general m-linear Hardy operators.

Similar to [24], we are devoted to the construction of a sufficient and necessary
condition (which is stronger than B = ∞ in Theorem 2.1) on the weight functions so that
commutators of weighted Hardy operators (with symbols in λ-central BMO space) are
bounded on the central Morrey spaces. For the boundedness of commutators with symbols
in central BMO spaces, we refer the interested reader to [28, 29] and Mo [30].

Theorem 3.1. Let 1 < q1 < q < ∞, 1/q1 = 1/q + 1/q2, −1/q < λ < 0. Assume further that ω
is a positive integrable function on [0, 1]. Then, the commutator Hb

ω is bounded from Ḃq,λ(Rn) to
Ḃq1,λ(Rn), for any b ∈ CṀOq2(Rn), if and only if

C :=
∫1

0
tnλω(t) log

2
t
dt < ∞. (3.2)

Remark 3.2. The condition (2.1), that is, B < ∞, is weaker than C < ∞. In fact, let

D :=
∫1

0
tnλω(t) log

1
t
dt < ∞. (3.3)
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By C = B log 2 + D, we know that C < ∞ implies B < ∞. But the following example shows
that B < ∞ does not imply C < ∞. For 0 < β < 1, if we take

es(−nλ−1)ω̃(s) =

⎧⎪⎪⎨
⎪⎪⎩
s−1+β, 0 < s ≤ 1,
s−1−β, 1 < s < ∞,

0, s = 0,∞,

(3.4)

and ω(t) = ω̃(log(1/t)), where 0 ≤ t ≤ 1, then B < ∞ and C = ∞.

Proof. (i) Let R ∈ (0,∞). Denote B(0, R) by B and B(0, tR) by tB. Assume C < ∞. We get

(
1
|B|
∫
B

∣∣∣Hb
ωf(x)

∣∣∣q1dx
)1/q1

≤
(

1
|B|
∫
B

(∫1

0

∣∣(b(x) − b(tx))f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

≤
(

1
|B|
∫
B

(∫1

0

∣∣(b(x) − bB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

+

(
1
|B|
∫
B

(∫1

0

∣∣(bB − btB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

+

(
1
|B|
∫
B

(∫1

0

∣∣(b(tx) − btB)f(tx)
∣∣ω(t)dt

)q1

dx

)1/q1

:= I1 + I2 + I3.

(3.5)

By the Minkowski inequality and the Hölder inequality (with 1/q1 = 1/q + 1/q2), we
have

I1 ≤
∫1

0

(
1
|B|
∫
B

∣∣(b(x) − bB)f(tx)
∣∣q1dx

)1/q1
ω(t)dt

≤
∫1

0

(
1
|B|
∫
B

|b(x) − bB|q2dx
)1/q2( 1

|B|
∫
B

∣∣f(tx)∣∣qdx
)1/q

ω(t)dt

≤ |B|λ‖b‖CṀOq2

∫1

0

(
1

|tB|1+qλ
∫
tB

∣∣f(x)∣∣qdx
)1/q

tnλω(t)dt

≤ |B|λ‖b‖CṀOq2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t)dt.

(3.6)
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Similarly, we have

I3 ≤
∫1

0

(
1
|B|
∫
B

∣∣(b(tx) − btB)f(tx)
∣∣q1dx

)1/q1
ω(t)dt

≤
∫1

0

(
1

|tB|
∫
tB

|b(x) − btB|q2dx
)1/q2( 1

|tB|
∫
tB

∣∣f(x)∣∣qdx
)1/q

ω(t)dt

≤ |B|λ‖b‖CṀOq2

∫1

0

(
1

|tB|1+qλ
∫
tB

∣∣f(x)∣∣qdx
)1/q

tnλω(t)dt

≤ C|B|λ‖b‖CṀOq2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t)dt.

(3.7)

Now we estimate I2,

I2 ≤
∫1

0

(
1
|B|
∫
B

∣∣f(tx)∣∣q1dx
)1/q1

|bB − btB|ω(t)dt

≤ ∥∥f∥∥Ḃq,λ

∫1

0
|tB|λ|bB − btB|ω(t)dt

=
∥∥f∥∥Ḃq,λ

∞∑
k=0

∫2−k

2−k−1
|tB|λ|bB − btB|ω(t)dt

≤ ∥∥f∥∥Ḃq,λ

∞∑
k=0

∫2−k

2−k−1
|tB|λ
{(

k∑
i=0

|b2−iB − b2−i−1B|
)

+ |b2−k−1B − btB|
}
ω(t)dt.

(3.8)

We see that

k∑
i=0

|b2−iB − b2−i−1B| ≤ C
k∑
i=0

(
1

|2−iB|

∫
2−iB

∣∣b(y) − b2−iB
∣∣q2dy

)1/q2

≤ C‖b‖CṀOq2 (k + 1).

(3.9)

Therefore,

I2 ≤ C|B|λ‖b‖CṀOq2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t) log

1
t
dt. (3.10)

Combining the estimates of I1, I2, and I3, we conclude that Hb
ω is bounded from

Ḃq,λ(Rn) to Ḃq1(Rn).
Conversely, assume that for any b ∈ CṀOq2 ,Hb

ω is bounded from Ḃq,λ(Rn) to Ḃq2,λ(Rn).
We need to show that C < ∞. Since C = B log 2 + D, we will prove that B < ∞ and D < ∞,
respectively. To this end, let

b0(x) = log|x| (3.11)
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for all x ∈ R
n. Then it follows from Remark 1.5 that b0 ∈ BMO ⊂ CṀOq2 , and

∥∥∥Hb0
ω

∥∥∥
Ḃq,λ → Ḃq1 ,λ

< ∞. (3.12)

Let f0(x) = |x|nλ, x ∈ R
n. Then

∥∥f0∥∥Ḃq,λ = Ω−λ
n

1(
nqλ + n

)1/q ,

Hb0
ω f0(x) = |x|nλ

∫1

0
tnλω(t) log

1
t
dt.

(3.13)

For λ > −1/q > −1/q1, we obtain

∥∥∥Hb0
ω f0
∥∥∥
Ḃq1 ,λ

= Ω−λ
n

1(
nq1λ + n

)1/q1
∫1

0
tnλω(t) log

1
t
dt. (3.14)

So,

∥∥∥Hb0
ω

∥∥∥
Ḃq1 ,λ → Ḃq,λ

≥ Cn,λ,q,q1

∫1

0
tnλω(t) log

1
t
dt. (3.15)

Therefore, we have

D < ∞. (3.16)

On the other hand,

∫1/2

0
tnλω(t)dt ≤ C

∫1/2

0
tnλω(t) log

1
t
dt < ∞,

∫1

1/2
tnλω(t)dt < ∞,

(3.17)

since tnλ andω(t) are integrable functions on [1/2, 1]. Combining the above estimates, we get

B < ∞. (3.18)

Combining (3.18) and (3.16), we then obtain the desired result.

Notice that comparing with Theorems 2.1 and 2.3, we need a priori assumption
in Theorem 3.1 that ω is integrable on [0, 1]. However, by Remark 1.1, this assumption is
reasonable in some sense.
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When b ∈ CṀOq2,λ2(Rn) with λ2 > 0, namely, b is a central λ-Lipschitz function, we
have the following conclusion. The proof is similar to that of Theorem 3.1. We give some
details here.

Theorem 3.3. Let 1 < q1 < q < ∞, 1/q1 = 1/q + 1/q2, −1/q < λ < 0, −1/q1 < λ1 < 0,
0 < λ2 < 1/n, and λ1 = λ + λ2. If (2.1) holds true, then for all b ∈ CṀOq2,λ2(Rn), the corresponding
commutator Hb

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Proof. Let I1, I2, and I3 be as in the proof of Theorem 3.1. Then, following the estimates of I1
and I3 in the proof of Theorem 3.1, we see that

I1 ≤ |B|λ1‖b‖CṀOq2 ,λ2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t)dt,

I3 ≤ |B|λ1‖b‖CṀOq2 ,λ2

∥∥f∥∥Ḃq,λ

∫1

0
tnλ1ω(t)dt

≤ |B|λ1‖b‖CṀOq2 ,λ2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t)dt.

(3.19)

For I2, we also have

I2 ≤
∥∥f∥∥Ḃq,λ

∞∑
k=0

∫2−k

2−k−1
|tB|λ
{(

k∑
i=0

|b2−iB − b2−i−1B|
)

+ |b2−k−1B − btB|
}
ω(t)dt. (3.20)

Since now 0 < λ2 < 1/n, we see that

k∑
i=0

|b2−iB − b2−i−1B| ≤ C
k∑
i=0

(
1

|2−iB|

∫
2−iB

∣∣b(y) − b2−iB
∣∣q2dy

)1/q2

≤ C‖b‖CṀOq2 ,λ2 |B|λ2
k∑
i=0

2−inλ2

≤ C‖b‖CṀOq2 ,λ2 |B|λ2 .

(3.21)

Therefore,

I2 ≤ C|B|λ1‖b‖CṀOq2 .λ2

∥∥f∥∥Ḃq,λ

∫1

0
tnλω(t)dt. (3.22)

Combining the estimates of I1, I2, and I3, we conclude that Hb
ω is bounded from

Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Different from Theorem 3.1, it is still unknown whether the condition (2.1) in
Theorem 3.3 is sharp. That is, whether the fact thatHb

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn)
for all b ∈ CṀOq2,λ2(Rn) induces (2.1)?
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More general, we may extend the previous results to the kth order commutator of the
weighted Hardy operator. Given k ≥ 1 and a vector 	b = (b1, . . . , bk), we define the higher
order commutator of the weighted Hardy operator as

H
	b
ωf(x) =

∫1

0

⎛
⎝ k∏

j=1

(
bj(x) − bj(tx)

)
⎞
⎠f(tx)ω(t)dt, x ∈ R

n. (3.23)

When k = 0, we understand thatH	b
ω = Hω. Notice that if k = 1, then H

	b
ω = Hb

ω.
Using the method in the proof of Theorems 3.1 and 3.3, we can also get the following

Theorem 3.4. For the sake of convenience, we give the sketch of the proof of Theorem 3.4(i)
here.

Theorem 3.4. Let k ≥ 2, 1 < q1 < q, q2, . . . , qk < ∞, 1/q1 = 1/q +
∑k

i=2 1/qi, −1/q < λ < 0,
−1/q1 < λ1 < 0, 0 ≤ λ2, . . . , λk < 1/n, and λ1 = λ +

∑k
i=2 λi.

(i) Assume further that ω is a positive integrable function on [0, 1]. The commutator H	b
ω is

bounded from Ḃq,λ(Rn) to Ḃq1,λ(Rn), for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), if
and only if

∫1

0
tnλω(t)

(
log

2
t

)k−1
dt < ∞. (3.24)

(ii) Let λ2, . . . , λk > 0 and 	b = (b2, . . . , bk) ∈ CṀOq2,λ2(Rn) × · · · × CṀOqk,λk(Rn). If (2.1) holds
true, then the corresponding commutator H	b

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn).

Proof. Let R ∈ (0,∞). Denote B(0, R) by B and B(0, tR) by tB. Assume C < ∞. We get

(
1
|B|
∫
B

∣∣∣H	b
ωf(x)

∣∣∣q1dx
)1/q1

≤
⎧⎨
⎩

1
|B|
∫
B

⎡
⎣
∫1

0

∣∣∣∣∣∣
⎛
⎝ k∏

j=2

(
bj(x) − bj(tx)

)
⎞
⎠f(tx)

∣∣∣∣∣∣ω(t)dt

⎤
⎦

q1

dx

⎫⎬
⎭

1/q1

≤ C
∑

I⊂{2,...,k}

∑
J⊂{2,...,k},J∩I=∅

⎧⎨
⎩

1
|B|
∫
B

⎡
⎣
∫1

0

∣∣∣∣∣∣
⎛
⎝∏

i∈I

∏
j∈J

∏
m∈{2,...,k}\(I∪J)

(bi(x) − bi(tx))

×
(
bj(x) −

(
bj
)
B

)
(bm(tx) − (bm)tB)

⎞
⎠f(tx)

∣∣∣∣∣∣ω(t)dt

⎤
⎦

q1

dx

⎫⎬
⎭

1/q1

.

(3.25)
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Then, applying the Minkowski inequality and the Hölder inequality (with 1/q1 = 1/q +∑k
i=2 1/qi), and repeating the arguments in the proof of Theorem 3.1, H	b

ω is bounded from
Ḃq,λ(Rn) to Ḃq1(Rn) for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), provided

∫1

0
tnλω(t)

(
log

2
t

)k−1
dt < ∞. (3.26)

Conversely, assume that H
	b
ω is bounded from Ḃq,λ(Rn) to Ḃq1(Rn) for any 	b =

(b2, . . . , bk) ∈ CṀOq2(Rn)×· · ·×CṀOqk(Rn). We choose 	b = (b2, . . . , bk)with bj(x) = log |x| for
all x ∈ R

n and j ∈ {2, . . . , k}. Then 	b ∈ CṀOq2(Rn)×· · ·×CṀOqk(Rn). Repeating the argument
in the proof of Theorem 3.1 then yields the desired conclusion.

We point out that, it is still unknown whether the condition (2.1) in Theorem 3.4(ii) is
sharp.

4. Adjoint Operators and Related Results

In this section, we focus on the corresponding results for the adjoint operators of weighted
Hardy operators.

Recall that the weighted Cesàro operator Gω is defined by

Gωf(x) =
∫1

0
f
(x
t

)
t−nω(t)dt, x ∈ R

n. (4.1)

If 0 < α < 1, n = 1, and ω(t) = 1/(Γ(α)((1/t) − 1)1−α), then Gωf(·) is reduced to
(·)1−αJαf(·), where Jα is a variant of Weyl integral operator and defined by

Jαf(x) =
1

Γ(α)

∫∞

x

f(t)

(t − x)1−α
dt

t
(4.2)

for all x ∈ (0,∞). When ω ≡ 1 and n = 1, Gω is the classical Cesàro operator:

Gf(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫∞

x

f
(
y
)

y
dy, x > 0,

−
∫x

−∞

f
(
y
)

y
dy, x < 0.

(4.3)

It was pointed out in [5] that the weighted Hardy operator Hω and the weighted
Cesàro operator Gω are adjoint mutually, namely,

∫
Rn

g(x)Hωf(x)dx =
∫

Rn

f(x)Gωg(x)dx (4.4)

for all admissible pairs f and g.
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Since Ȧq and Ḃq′ are a pair of dual Banach spaces, it follows from Theorem 2.1 the
following.

Theorem 4.1. Let 1 < q < ∞. Then Gω is bounded on Ȧq(Rn) if and only if

E :=
∫1

0
ω(t)dt < ∞. (4.5)

Moreover, when (4.5) holds, the operator norm of Gω on Ȧq(Rn) is given by

‖Gω‖Ȧq(Rn)→ Ȧq(Rn) = E. (4.6)

Corollary 4.2. (i) For 0 < α < 1 and 1 < q < ∞,

‖Jα‖Ȧq(dx)→ Ȧq(xq(1−α)dx) =
Γ(1)

Γ(1 + α)
. (4.7)

(ii) For 1 < q < ∞, we have

‖G‖Ȧq(Rn)→ Ȧq(Rn) = 1. (4.8)

Since the dual space of HȦq(1 < q < ∞) is isomorphic to CṀOq′ (see [18, 19]),
Theorem 2.3 implies the following result.

Theorem 4.3. Let 1 < q < ∞. ThenGω is a bounded operator onHȦq(Rn) if and only if (4.5) holds.
Moreover, when (4.5) holds, the operator norm of Gω onHȦq(Rn) is given by

‖Gω‖HȦq(Rn)→HȦq(Rn) = E. (4.9)

Corollary 4.4. For 1 < q < ∞, we have

‖G‖HȦq →HȦq = 1. (4.10)

Following the idea in Section 3, we define the higher order commutator of the
weighted Cesàro operator as

G
	b
ωf(x) =

∫1

0

⎛
⎝ k∏

j=1

(
bj
(x
t

)
− bj(x)

)⎞⎠f
(x
t

)
t−nω(t)dt, x ∈ R

n. (4.11)

When k = 0, G	b
ω is understood as Gω. Notice that if k = 1, then G

	b
ω = Gb

ω. Similar to the proofs
of Theorems 3.1 and 3.3, we have the following result.

Theorem 4.5. Let k ≥ 2, 1 < q1 < q, q2, . . . , qk < ∞, 1/q1 = 1/q +
∑k

i=2 1/qi, −1/q < λ < 0,
−1/q1 < λ1 < 0, 0 ≤ λ2, . . . , λk < 1/n, and λ1 = λ +

∑k
i=2 λi.
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(i) Assume further that ω is a positive integrable function on [0, 1]. The commutator G	b
ω is

bounded from Ḃq,λ(Rn) to Ḃq1,λ(Rn), for any 	b = (b2, . . . , bk) ∈ CṀOq2(Rn) × · · · × CṀOqk(Rn), if
and only if

∫1

0
t−n(λ+1)ω(t)

(
log

2
t

)k−1
dt < ∞. (4.12)

(ii) Let λ2, . . . , λk > 0 and 	b = (b2, . . . , bk) ∈ CṀOq2,λ2(Rn) × · · · ×CṀOqk,λk(Rn). Then the
corresponding commutator G	b

ω is bounded from Ḃq,λ(Rn) to Ḃq1,λ1(Rn), provided that

∫1

0
t−n(λ+1)ω(t)dt < ∞. (4.13)

We conclude this paper with some comments on the discrete version of the weighted
Hardy and Cesàro operators.

Let N0 be the set of all nonnegative integers and 2−N0 denote the set {2−j : j ∈ N0}.
Let now ϕ be a nonnegative function defined on 2−N0 and f be a complex-valued measurable
function on R

n. The discrete weighted Hardy operator H̃ω is defined by

(
H̃ωf

)
(x) =

∞∑
k=0

2−kf
(
2−kx

)
ω
(
2−k
)
, x ∈ R

n, (4.14)

and the corresponding discrete weighted Cesàro operator is defined by setting, for all x ∈ R
n,

(
G̃ωf

)
(x) =

∞∑
k=0

f
(
2kx
)
2k(n−1)ω

(
2−k
)
. (4.15)

We remark that, by the same argument as above with slight modifications, all the results
related to the operatorsHω andGω in Sections 1–4 are also true for their discrete versions H̃ω

and G̃ω.
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