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We investigate the wave equation in Bianchi type III space-time. We construct a Lagrangian of
the model, calculate and classify the Noether symmetry generators, and construct corresponding
conserved forms. A reduction of the underlying equations is performed to obtain invariant
solutions.

1. Introduction

The study of partial differential equations (PDEs) in terms of Lie point symmetries is
well known and well established [1–5], where these symmetries can be used to obtain,
inter alia, exact analytic solutions of the PDEs. In addition, Noether symmetries are also
widely investigated and are associated with PDEs that possess a Lagrangian. Noether [6]
discovered the interesting link between symmetries and conservation laws showing that for
every infinitesimal transformation admitted by the action integral of a system there exists
a conservation law. Investigations have been devoted to understand Noether symmetries of
Lagrangians that arise from certain pseudo-Riemannian metrics of interest [7, 8]. Recently, a
study was aimed at understanding the effect of gravity on the solutions of the wave equation
by solving the wave equation in various space-time geometries [9].

In [10], the Bianchi universes were investigated using Noether symmetries. The
authors of [11] studied the Noether symmetries of Bianchi type I and III space-times in scalar
coupled theories. Therein, they obtained the exact solutions for potential functions, scalar
field, and the scale factors, see also [12].

We pursue an investigation of the symmetries of the wave equation in Bianchi III
space-time. We construct solutions of these equations and find conservation laws associated
with Noether symmetries. The plan of the paper is as follows.
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In Section 2, we discuss the procedure to obtain an expression representing Noether
symmetries and conservation laws. In Section 3, we derive and classify strict Noether
symmetries of the Bianchi III space-time. Also in Section 3, we briefly describe the relation
of Noether symmetries to conservation laws. We then illustrate the reduction of the wave
equation and obtain invariant solutions.

2. Definitions and Notation

We briefly outline the notation and pertinent results used in this work. In this regard, the
reader is referred to [13].

The convention that repeated indices imply summation is used. Let x =
(x1, x2, . . . , xn) ∈ Rn be independent variable with xi, and let u = (u1, u2, . . . , um) ∈ Rm

be the dependent variable with coordinates uα. Furthermore, let π : Rn+m → Rn be the
projection map π(x, u) = x. Also, suppose that s : χ ⊂ Rn → U ⊂ Rn+m is a smooth
map such that π ◦ s = 1χ, where 1χ is the identity map on χ. The r-jet bundle Jr(U) is
given by the equivalence classes of sections of U. The coordinates on Jr(U) are denoted by
(xi, uα, . . . , uα

i1···ir ), where 1 ≤ i1 ≤ · · · ≤ ir ≤ n and uα
i1···ir corresponds to the partial derivatives

of uα with respect to xi1 , . . . , xir . The partial derivatives of u with respect to x are connected
by the operator of total differentiation

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, . . . , n, (2.1)

as

uα
i = Di(uα), uα

ij = DjDi(uα), . . . (2.2)

The collection of all first-order derivatives ua
i will be denoted by u(1). Similarly, the collections

of all higher order derivatives will be denoted by u(2), u(3), . . ..
The r-jet bundle on U will be written as Jr(U) = {(x, u, u(1), . . . , u(r))/(x, u) ∈ U}. We

now review the space of differential forms on Jr(U). To this end, let Ωr
k(U) be the vector

space of differential k-forms on Jr(U) with differential d. A smooth differential k-form on
Jr(U) is given by

ω = fi1,i2,...,ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (2.3)

where each component fi1,i2,...,ik ∈ Ωr
0(U). Note that for differential functions f ∈ Ωr

0(U),

Df = Djfdx
j , (2.4)

where D is the total differential or the total exterior derivative. Moreover, the total exterior
derivative of ω is

Dω = Dfi1,i2,...,ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (2.5)
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and by invoking (2.4) one has

Dω = Dfi1,i2,...,ik dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik . (2.6)

The total differential D has properties analogous to the algebraic properties of the usual
exterior derivative d:

D(ω ∧ υ) = Dω ∧ υ + (−1)kω ∧Dυ, (2.7)

for ω a k-form and υ an l-form and D(Dω) = 0. Also, it is known that if D(Dω) = 0, then ω
is a locally exact k-form, that is, ω = Dυ for some (k − 1)-form υ, [14].

2.1. Action of Symmetries

Consider an rth-order system of partial differential equations of n independent variables and
m dependent variables:

Eβ(x, u, u(1), . . . , u(r)
)
= 0, β = 1, . . . , m̃. (2.8)

Definition 2.1. A conserved form of (2.8) is a differential (n − 1)-form,

ω = Ti(x, u, u(1), . . . , u(r−1)
)
(

∂

∂xi
�
(
dx1 ∧ · · · ∧ dxn

))
, (2.9)

defined on Jr−1(U) if

Dω = 0 (2.10)

is satisfied on the surface given by (2.8).

Remark 2.2. When Definition 2.1 is satisfied, (2.10) is called a conservation law for (2.8).
It is clear that (2.10) evaluated on the surface (2.8) implies that

DiT
i = 0 (2.11)

on the surface given by (2.8), which is also referred to as a conservation law of (2.8). The
tuple T = (T1, . . . , Tn), Tj ∈ Ωr−1

0 (U), j = 1, . . . , n, is called a conserved vector of (2.8).

We now review some definitions and results relating to Euler-Lagrange, Lie, and
Noether operators ([15, 16] and references therein).

Let A =
⋃p

r=0 Ω
r
0(U) for some p < ∞. Then A is the universal space of differential

functions of finite orders.
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Consider a symmetry operator given by the infinite formal sum:

X = ξi
∂

∂xi
+ ηα ∂

∂uα
+
∑

s≥1
ζαi1···is

∂

∂uα
i1···is

, (2.12)

where ξi, ηα ∈ A, and the additional coefficients are determined uniquely by the prolongation
formulae

ζαi1···is = Di1 · · ·Dis(W
α) + ξjuα

ji1...is
, s > 1. (2.13)

In (2.13),Wα is the Lie characteristic function given by

Wα = ηα − ξjuα
j . (2.14)

In particular, a symmetry operator of the form X̃ = Qα∂/∂uα + · · · , where Qα ∈ A, is called a
canonical or evolutionary representation of X, and Qα is called its characteristic.

An operatorX is said to be a Noether symmetry corresponding to a Lagrangian L ∈ A,
if there exists a vector Bi = (B1, . . . , Bn), Bi ∈ A, such that

X(L) + LDi

(
ξi
)
= Di

(
Bi
)
. (2.15)

If Bi = 0, (i = 1, . . . , n), then X is referred to as a strict Noether symmetry corresponding to
a Lagrangian L ∈ A. This case is also obtained by setting the Lie derivative on the n-form
Ldx1 ∧ · · · ∧ dxn in the direction of X to zero, that is,

LXLdx
1 ∧ · · · ∧ dxn = X

(
Ldx1 ∧ · · · ∧ dxn

)
= 0, (2.16)

where L is the Lie derivative operator.
In view of the above discussions and definitions, the Noether theorem [6] is

formulated as follows.

Noether’s Theorem

For any Noether symmetry X corresponding to a given Lagrangian L ∈ A, there corresponds
a vector Ti = (T1, . . . , Tn), T i ∈ A, defined by

Ti = Bi −Ni(L), i = 1, . . . , n, (2.17)

which is a conserved current of the Euler-Lagrange equations δL/δuα = 0, α = 1, . . . , m,
where δ/δuα is the Euler-Lagrange operator given by

δ

δuα
=

∂

∂uα
+
∑

s≥1
(−1)sDi1 · · ·Dis

∂

∂uα
i1···is

, α = 1, . . . , m, (2.18)
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and the Noether operator associated with the operator X is given by

Ni = ξi +Wα δ

δuα
i

+
∑

s≥1
Di1 · · ·Dis(W

α)
δ

δuα
ii1···is

, i = 1, . . . , n, (2.19)

in which the Euler-Lagrange operators with respect to derivatives of uα are obtained from
(2.18) by replacing uα by the corresponding derivatives, for example,

δ

δuα
i

=
∂

∂uα
i

+
∑

s≥1
(−1)sDj1 · · ·Djs

∂

∂uα
ij1···js

, i = 1, . . . , n, α = 1, . . . , m. (2.20)

3. Bianchi III Space-Time

Consider the Bianchi III metric:

ds2 = −β2dt2 + t2L
(
dx2 + e−2ax/Ndy2

)
+ t2L/mdz2. (3.1)

The wave equation in (3.1) takes the form [17]

− 1
β
(2L + 1)t2Le−(a/N)xut − 1

β
t2L+1e−(a/N)xutt

− aβ

N
te−(a/N)xux + βte−(a/N)xuxx

+ βte(a/N)xuyy + βt2L+1−(2L/m)e−(a/N)xuzz = 0.

(3.2)

In [17], some aspects of the wave equation on the Bianchi metric were studied. The
multiplier method [1]was adopted to determine some of the conserved densities. This lengthy
procedure ultimately leads to the construction of only three symmetries and its associated
conserved vectors.

In this paper, we investigate the wave equation on the Bianchi III metric using
Noether’s theorem and the method of differential forms. We obtain a wide range of results
and also perform symmetry reductions of the wave equation for some cases to obtain
invariant solutions. For the purposes of Sections 3.1 and 3.2, we denote the Lagrangian by L.

3.1. The Strict Noether Symmetries of (3.2)

We classify the cases that yield strict Noether symmetries (gauge is zero) of (3.2), via the
Lagrangian

L = −β
2
te−(a/N)xux

2 − β

2
te(a/N)xuy

2 − β

2
t2L+1−(2L/m)e−(a/N)xuz

2 +
1
2β

t2L+1e−(a/N)xut
2. (3.3)

Many of the calculations have been left out as they are tedious—the details are available to
the reader in a number of texts that have been cited here.
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The principle Noether algebra is

X1 = ∂y,

X2 = ∂z,

X3 = ∂u,

X4 =
N

a
∂x + y∂y,

X5 =
−2ay
N

∂x +
1
N2

(
−a2y2 +N2e2ax/N

)
∂y.

(3.4)

Furthermore, specific cases of L and m give rise to the symmetries X1 to X5 from above, and
some additional symmetries.

Case 1 (L = 1, m = 1/3). The additional symmetries are,

X6 = −2z∂z + t∂t,

X7 = −
(

4z2t4 + β2

4t4

)

∂z + zt∂t.
(3.5)

Case 2 (L = 1, m = −1). The additional symmetries are,

X8 = −z∂z − t

2
∂t + u∂u. (3.6)

Case 3 (L = 1, m = 1). The additional symmetries are,

X9 = −t∂t + u∂u. (3.7)

Table 1 contains the conserved forms corresponding to each Noether symmetryXi (i =
1, . . . , 9), that is, it lists the three form ω. The four form is Dω, and Dω vanishes on the
solutions of (3.2). Thus

ω = −Ttdx ∧ dy ∧ dz + Tzdx ∧ dy ∧ dt − Tydx ∧ dz ∧ dt + Txdy ∧ dz ∧ dt, (3.8)

so that

DtT
t +DxT

x +DyT
y +DzT

z = 0 (3.9)

in (3.2).
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3.2. Symmetry Reduction and Invariant Solutions

We briefly show how the order of the (1+3) wave equation (3.2) can be reduced. Ultimately
the equation with four independent variables is reduced to an ordinary differential equation.

3.2.1. Reduction—Using the Principle Noether Algebra

We begin reducing (3.2) using X2 followed by X4. The characteristic equations are

adx

N
=

dt

0
=

dy

y
=

du

0
. (3.10)

Integrating yields s = ye−(a/N)x and (3.2) is reduced to

−1
β
t2Lutt − 1

β
(2L + 1)t2Lut + βt

(

1 +
a2

N2
s2
)

uss + 2s
a2

N2
βtus = 0, (3.11)

with u = u(s, t).
A Lagrangian of (3.11) is

L = −1
β
t2L+1

u2
t

2
+ βt

(

1 +
a2

N2
s2
)

u2
s

2
. (3.12)

It turns out that we if we let L = 1, N = 1 in (3.11), we can obtain its Noether symmetries,
namely,

X∗
1 = t∂t − u∂u, X∗

2 = ∂u. (3.13)

We reduce (3.11)with X∗
1, and the characteristic equations are

dt

t
=

ds

0
=

du

−u. (3.14)

Integrating yields Y = tu and (3.11) is reduced to the ordinary differential equation:

1
β
Y + β

(
1 + s2a2

)
Y ′′ + 2a2βsY ′ = 0, (3.15)
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Ta
b
le

1:
C
on

se
rv
ed

Fo
rm

ω
.

T
t
=

e−
a
x
/
N
t1
+
2L
(−

u
y
u
t
+
u
u
ty
)

2β
,

T
x
=

1 2
e−

a
x
/
N
tβ
(u

y
u
x
−u

u
x
y
),

X
1

T
y
=

e−
a
x
/
N
t−

2L
/
m
(e

2a
x
/
N
N
t1
+
(2
L
/
m
) β

2 u
y
2
+
u
(N

t1
+
2L
β
2 u

z
z
−t

2L
/
m
(a
tβ

2 u
x
+
N
(−

tβ
2 u

x
x
+
t2
L
((
1
+
2L

)u
t
+
tu

tt
))
))
)

2N
β

,

T
z
=

1 2
e−

a
x
/
N
t1
+
(2
L
(−

1+
m
)/

m
) β
(u

z
u
y
−u

u
y
z
)

T
t
=

e−
a
x
/
N
t1
+
2L
(−

u
z
u
t
+
u
u
tz
)

2β
,

T
x
=

1 2
e−

a
x
/
N
tβ
(u

z
u
x
−u

u
x
z
),

X
2

T
y
=

1 2
ea

x
/
N
tβ
(u

z
u
y
−u

u
y
z
),

T
z
=

e−
a
x
/
N
t−

2L
/
m
(N

t1
+
2L
β
2 u

z
2
+
t2
L
/
m
u
(e

2a
x
/
N
N
tβ

2 u
y
y
−a

tβ
2 u

x
+
N
(t
β
2 u

x
x
−t

2L
((
1
+
2L

)u
t
+
tu

tt
))
))

2N
β

X
3

T
t
=
−e

−a
x
/
N
t1
+
2L
u
t

β
,

T
x
=
e−

a
x
/
N
tβ
u
x
,

T
y
=
ea

x
/
N
tβ
u
y
,

T
z
=
e−

a
x
/
N
t1
+
2L

−(
2L

/
m
) β
u
z

T
t
=
−e−

a
x
/
N
t1
+
2L
(a
y
u
y
u
t
+
N
u
x
u
t
−u

(a
y
u
ty
+
N
u
tx
))

2a
β

,

T
x
=

1 2a
β

( e
−a

x
/
N
t−

2L
/
m
( t

1+
(2
L
/
m
) β

2 u
x

( a
y
u
y
+
N
u
x

)

X
4

+
u
( N

t1
+
2L
β
2 u

z
z
+
t2
L
/
m
( e

2a
x
/
N
N
tβ

2 u
y
y
−a

tβ
2 u

x
−a

ty
β
2 u

x
y
−N

t2
L
u
t
−2

L
N
t2
L
u
t
−N

t1
+
2L
u
tt

))
))
,

T
y
=

1
2a

N
β
e−

a
x
/
N
t−

2L
/
m
( e

2a
x
/
N
N
t1
+
(2
L
/
m
) β

2 u
y

( a
y
u
y
+
N
u
x

)

+
u
( a

N
t1
+
2L
y
β
2 u

z
z
−t

2L
/
m
( a

e2
a
x
/
N
N
tβ

2 u
y
+
a
2 t
y
β
2 u

x
+
N
( e

2a
x
/
N
N
tβ

2 u
x
y
+
a
y
( −

tβ
2 u

x
x
+
t2
L
((
1
+
2L

)u
t
+
tu

tt
))
))
))
,

T
z
=

e−
a
x
/
N
t1
+
(2
L
(−

1+
m
)/

m
) β
(u

z
(a
y
u
y
+
N
u
x
)
−u

(a
y
u
y
z
+
N
u
x
z
))

2a

T
t
=

1
2N

2 β

( e
−a

x
/
N
t1
+
2L
( −
( e

2a
x
/
N
N

2
−a

2 y
2)
u
y
u
t
+
2a

N
y
u
x
u
t
+
u
((
e2

a
x
/
N
N

2
−a

2 y
2)
u
ty
−2

a
N
y
u
tx

))
) ,

T
x
=

1
2N

2 β
e−

a
x
/
N
t−

2L
/
m
( t

1+
(2
L
/
m
) β

2 u
x

((
e2

a
x
/
N
N

2
−a

2 y
2)
u
y
−2

a
N
y
u
x

)

+
u
( −

2a
N
t1
+
2L
y
β
2 u

z
z
+
t2
L
/
m
( −

2a
e2

a
x
/
N
N
tβ

2 u
y
−2

a
e2

a
x
/
N
N
ty
β
2 u

y
y
+
2a

2 t
y
β
2 u

x
−e

2a
x
/
N
N

2 t
β
2 u

x
y
+
a
2 t
y
2 β

2 u
x
y

X
5

+
2a

N
t2
L
y
u
t
+
4a

L
N
t2
L
y
u
t
+
2a

N
t1
+
2L
y
u
tt

))
) ,
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with Y = Y (s), and which has a solution in terms of special functions, that is,

Y (s) = C1 LegendreP

⎡

⎢
⎣
−aβ +

√
−4 + a2β2

2aβ
, ias

⎤

⎥
⎦

+ C2 LegendreQ

⎡

⎢
⎣
−aβ +

√
−4 + a2β2

2aβ
, ias

⎤

⎥
⎦,

(3.16)

where C1, C2 are arbitrary constants, LegendreP[n, x] refers to the Legendre polynomial
Pn(x), and Q[n, z] refers to the Legendre function of the second kind Qn(z).

3.2.2. Reduction—Case 1, L = 1, m = 1/3.

We reduce (3.2) using X1 followed by X6 from Case 1. The characteristic equations are

dz

−2z =
dt

t
=

dx

0
=

du

0
. (3.17)

Integrating yields r = t2z and (3.2) is reduced to

−8
β
re

−
ax

N ur −
aβ

N
e
−
ax

N ux + βe
−
ax

N uxx + e
−
ax

N

(
β2 − 4r2

β

)

urr = 0, (3.18)

with u = u(r, x).
A Lagrangian of (3.18) is

L = βe−ax/N
u2
x

2
+ e−ax/N

(
β2 − 4r2

β

)
u2
r

2
. (3.19)

Hence, we obtain the Noether symmetries of (3.18), namely,

X∗
3 = ∂x +

a

2N
u∂u, X∗

4 = ∂u. (3.20)

We reduce (3.18)with X∗
3, and the characteristic equations are

dx

1
=

dr

0
=

2Ndu

au
. (3.21)

Integrating yields Z = e−ax/2Nu and (3.18) is reduced to the ordinary differential equation:

−8
β
rZ′ +

(
β2 − 4r2

β

)

Z′′ − a2β

4N2
Z = 0, (3.22)
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with Z = Z(r), and which has a solution in terms of special functions, that is,

Z(r) = C1 LegendreP

⎡

⎢
⎣
−2N +

√
4N2 − a2β2

4N
,
2r
β

⎤

⎥
⎦

+ C2 LegendreQ

⎡

⎢
⎣
−2N +

√
4N2 − a2β2

4N
,
2r
β

⎤

⎥
⎦,

(3.23)

where, as before, C1, C2 are arbitrary constants, LegendreP[n, x] refers to the Legendre
polynomial Pn(x), and Q[n, z] refers to the Legendre function of the second kind Qn(z).

4. Conclusion

We classified the Noether symmetry generators, determined some conserved forms, and
reduced some cases of the underlying equations associated with the wave equation on the
Bianchi III manifold. The first reduction done above involved the principle Noether algebra,
whilst the second dealt with a particular case. To obtain other reductions, one needs to
conclude a three-dimensional subalgebra of symmetries to reduce to an ordinary differential
equation whose solution would be an invariant solution invariant under the subalgebra.
Alternatively, a lower dimensional subalgebra can be used to reduce to a partial differential
equation which may be tackled using other methods. The final solution in this case will be
invariant only under the lower dimensional algebra. In general, the procedure performed
above is the most convenient.
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