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The present paper is concerned with the design of lock gates submitted to ship impacts. In this
paper, a simplified analytical method is presented to evaluate the resistance of such structures
under collision. The basic idea is to assume that the resistance is first provided through a local
deforming mode, corresponding to a localized crushing of some impacted structural elements.
For consecutive larger deformations, the resistance is then mostly provided through a global
deforming mode, corresponding to an overall movement of the entire gate. For assessing the
resistance in the case of the local deforming mode, the structure is divided into a given number of
large structural entities called “superelements.” For each of them, a relation between the resistance
of the gate and the penetration of the striking ship is established. However, as some results are
already available in the literature, this subject is not treated extensively in this paper. On the
contrary, the calculation of the resistance of the gate provided through the global mode is detailed
and the strategy to switch from local to global deformation is highlighted. Finally, we propose to
validate our developments by making a comparison between results obtained numerically and
those predicted by the present analytical approach.

1. Introduction

Amongst all the loads that have to be expected for the design of lock gates, the collision of a
vessel is one of the most difficult to handle.

A collision may result in someminor damages to the plating or to the stiffening system
of the gate, producing, for example, a local loss of water tightness. However, if the initial
velocity of the striking ship is large enough, the displacements imposed to the structure may
cause a complete collapse of the gate. This would result in the emptying of the damaged
reach, with probably the complete sinking of the striking ship.
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To deal properly with ship impact, it is of course possible to use nonlinear finite
element methods. Nevertheless, at the predesign stage of a gate, such approaches are rather
restrictive because of the time required to model and simulate collisions. Therefore, we pro-
pose here to establish an analytical simplifiedmethod in order to verify the resistance of gates
submitted to a ship impact.

For the moment, the development of such simplified methods is not really reported
in the literature. Some very interesting results have been established for the purpose of
analyzing collisions between two ships. For example, the crushing resistance of web girders
has already been theoretically and experimentally studied by Wierzbicki and Culbertson
Driscoll [1], Wang and Ohtsubo [2], Simonsen [3], Zhang [4], and Hong and Amdahl [5].
Each of them developed analytical formulations that may be useful for studying locally the
contact between a ship and a gate.

Additional results are also available for impacted panels, which have been investi-
gated in detail by Wang [6], Wang and Ohtsubo [7], and Zhang [8]. Some references are also
useful for evaluating the resistance of metal plates after rupture, when they are submitted to
tearing and cutting. For example, these phenomena have been studied byWang and Ohtsubo
[7], Zhang [8], Wierzbicki [9], and Zheng [10]. In the particular case of stiffened panels
subjected to lateral loads, the developments performed by Paik [11], Cho and Lee [12], or
Ueda et al. [13] constitute a very accurate basis for performing analytical estimation of the
resistance of such structural components.

The previous brief literature review shows that some results are already available to
deal with a simplified approach of collisions between ships and gates. All these developments
constitute of course an invaluable help for developing simplified collision models of lock
gates, but they are not sufficient. The principal reason is that the behavior of an impacted
gate may not directly be assimilated to the one of an impacted vessel. Consequently, some
researches in this domain are still needed.

The aim is to develop some analysis tools, which would be time and cost-effective in
the predesign stage of gates. To achieve this goal, we will follow a similar method to the one
proposed by Le Sourne et al. [14]. The basic idea is that the total resistance of the struck gate
is provided by two deforming modes:

(i) the local one, which implies a local crushing of all the impacted structural elements;

(ii) the global one, which supposes an overall deformation of the gate.

In the present paper, we try to go further into this philosophy.

2. General Description of the Problem

In this paper, we consider the exceptional situation of ship colliding with a lock gate. The
collision scenario is depicted in Figure 1, where the general coordinate system is denoted
by (X,Y,Z). For avoiding confusion in the present paper, we will use the terminology
“transversal,” “vertical,” and “longitudinal” in accordance with the respective orientation
of X, Y , and Z axes.

In our scenario, the vessel is coming from upstream, and, consequently, the impact is
located on the downstream gate of the lock. It is clear that this case is the least desired because
the hydrostatic pressure is acting in the same direction as the impact force. On the contrary,
if the collision was happening in the downstream reach of the lock, the resulting hydrostatic
pressure would act in opposition with the impact force and would compensate it partially.
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Figure 1: Plane and section views of the impact situation.

In order to derive an analytic procedure for estimating the collision resistance of the
gate, we first need to describe the ship and the gate using various parameters. This is the
purpose of the subsequent sections.

2.1. Geometrical Description of the Striking Vessel

The vessel is characterized through the following: massM0 and velocity V0. In other words,
we assume a certain kinetic energy M0V

2
0 /2 for the striking ship. These two parameters are

chosen according to the waterway class, which determines the maximal speed as well as the
allowable shipping of the vessels.

From the geometric point of view, we first assume that the shape of the bow at the
uppermost deck may be fairly modeled by a parabola Γ (see Figure 1) having a transversal
radius p and a longitudinal radius q. Consequently, in the local axes (xb, zb) positioned in
point A, the equation of the curve Γ is given by

Γ ≡ zb = q ·
(
1 − x2

b

p2

)
. (2.1)

In order to have a global description of the geometry of the ship, it is also required to
introduce the following parameters (see also Figure 1):

(i) the height hb between the uppermost deck and the bottom of the ship;

(ii) the side angle ψ and the stem angle φ, which are used to fix the inclination of the
bow.

It is important to note that all the above mentioned properties are required input data,
which have to be provided by the user before the beginning of the calculation process.
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Figure 2: Three-dimensional representation of the considered type of gate.

2.2. Description of the Gate

In this paper, we will only focus on gates with a single plating. A three-dimensional picture
of such a structure is depicted in Figure 2, where the notations H and L are used for
representing, respectively, the total vertical and the total transversal extension of the gate.
In fact, these gates are rather similar to large orthotropic plates, constituted by a plating (for
retaining water) stiffened by the following elements (see Figures 2 and 3):

(i) the transversal frames, which may be seen as beams presenting a T-shaped cross-
section; they are placed in the transversal direction (i.e., along the X axis);

(ii) the vertical frames, which are also beams with a T-shaped cross-section but are
arranged in the vertical direction (i.e., along the Y axis);

(iii) the stiffeners, which are optional reinforcing beams disposed transversally on the
plating in order to avoid instabilities in shells; their cross-section may exhibit
various shapes.

The geometric data required for characterizing the stiffening system are mainly the
dimensions of the different cross-sections. As shown in Figure 3, the needed values are the
height hw and thickness tw of the web, as well as the height hf and thickness tf of the flange.
For the plating, it is only necessary to precise its thickness tp. With all these parameters
and knowing the properties of the material constituting the gate, it is possible to derive the
mechanical properties of all the stiffening elements.

Another point that has to be clarified concerns the assumed support conditions of
the structure. When the gate is closed, the contact is supposed to be established against the
support denoted by S1, S2, and S3 in Figure 3, and, consequently, we may admit that:

(i) the gate is simply applied against the two lock walls (supports S1 and S2 in
Figure 3). The translational degree of freedom in the Z direction has therefore to
be blocked along the all vertical extensions of the gate in S1 and S2;
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Figure 3: Plan and section views of the gate.

(ii) the gate is simply applied against the sill located at the bottom of the chamber
(support S3 in Figure 3). Therefore, it seems to be reasonable to restrain the
translational displacement in the Z direction along the all transversal extension of
the gate in S3.

2.3. Description of the Material

The present paper is concerned with the resistance of a lock gate impacted by a ship. The
primary goal is not to assess the damages caused to the vessel: we are much more interested
in the ability aspect of the structural resistance to collisions. As a consequence, we assume
that the material constituting of the striking vessel is infinitely rigid. In other words, we will
not allow any deformation in the ship structure, which is a conservative approach in the
evaluation of the resistance.

On the contrary, the previous hypothesis is not valid for the gate as it is supposed to be
deformable. Nowadays, the most common material used for such structures is construction
steel, so we will only deal with this material in the present paper. This kind of steel exhibits
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Figure 4: Real (1) and idealized (2) constitutive law of standard construction steel.

a constructive law represented by curve (1) in Figure 4 and may be defined by the following
parameters:

(i) the maximal elastic stress σ0, with which is associated the maximal elastic deforma-
tion ε0;

(ii) the rupture stress σu, for which tearing is observed in the material; the correspond-
ing deformation is called εu;

(iii) Young’s modulus E characterizing the stiffness of the material during the elastic
phase.

In order to simplify the analytical derivation of the collision resistance, we will
suppose here that the steel has a so-called elastic-perfectly plastic behavior. This means that
the relation between stresses and strains is idealized by curve (2) in Figure 4. Consequently,
we neglect the additional resistance coming from hardening of steel, which is in fact a
conservative assumption.

2.4. General Positioning in the Space

To define the collision scenario, it is still necessary to position the resistance element as well
as the striking ship within the area of space. To do so, different kinds of input data are still
required:

(i) the impact point E, that is, the point of the gate where the first contact between
the bow and the plating will be established; this point is located by its coordinate
(XE, YE), as shown in Figures 5 and 6;

(ii) the transversal positions Xi of the vertical frames, that is, the position of each
vertical frame along the X axis (see Figure 5);

(iii) the vertical positions Yi of the horizontal frames, that is, the position of each
horizontal frame along the Y axis (see Figure 5);

(iv) the total number of stiffeners distributed along the vertical heightH of the gate.

When all the previous inputs are placed, the three-dimensional configuration of the
gate is completely defined.
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3. Methodology for Evaluating the Collision Resistance

3.1. General Principles

When a ship collides with a gate, its action on the impacted structure may be represented by
a force Pt acting in the same direction as the indentation δ of the striking vessel (see Figure 6).
By equilibrium, this forcemay be seen as the resistance opposed by the gate to the progression
of the ship. Therefore, the goal of our work is to assess the value of Pt for a given indentation
δ of the vessel. In other words, our aim is to derive the evolution of Pt with δ by means of
simplified analytical procedures.

When a ship is entering into a lock, it seems reasonable to admit that its initial velocity
V0 is quite small. Consequently, the dynamic effects in the gate remain moderate, and we
may assume that the initial kinetic energy M0V

2
0 /2 of the ship is entirely dissipated by

deformation of the impacted gate Eint, that is,

1
2
M0V

2
0 = Eint. (3.1)

Knowing the relation between Pt and δ, it is possible to calculate Eint simply by
integration (see Figure 7):

Eint =
∫δmax

0
Pt(δ) · dδ. (3.2)
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For a given ship of mass M0 and velocity V0, (3.1) and (3.2) give the maximal
penetration δmax, which has to be supported by the gate to withstand an impact with such a
vessel. According to the maximal degradation level accepted for the gate, it can be decided if
this value of δmax may be applicable or not.

3.2. Theoretical Basis

The theoretical basis for deriving Pt(δ) is the so-called upper-bound theorem, which states that
“if the work rate of a system of applied loads during any kinematically admissible collapse of a structure
is equated to the corresponding internal energy dissipation rate, then that system of loads will cause
collapse, or incipient collapse, of the structure.”

In the present case, it is obvious that the external dissimilation rate Ėext is entirely
produced by the force Pt applied by the ship on the gate. Therefore, we have

Ėext = PtV0 = Ptδ̇, (3.3)
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where (˙) = ∂/∂t is the derivative with respect to time. On the other hand, if we neglect the
dynamic effects in the structure, the internal dissipation rate Ėint is entirely coming from the
deformation of the gate. If V is the total volume of the structure, using Einstein’s notation we
have:

Ėint =
∫∫∫

V
σij ε̇ijdX dY dZ, (3.4)

where σij and ε̇ij are, respectively, the stress and the strain rate tensors defined over the entire
volume V of the gate. By application of the upper-bound theorem, we have

Ėext = Ėint =⇒ Pt =
1
δ̇

∫∫∫
V
σij ε̇ijdX dY dZ. (3.5)

Consequently, (3.5) may be useful for deriving Pt(δ), provided that we are able to
establish a relation between the deformation rate ε̇ij and the velocity δ̇. To do so, we need to
define the displacements over the entire volume V. For example, in Figure 8, if we suppose
that pointA is moving to point B for a given value of δ, we may define the three components
U1(X,Y,Z, δ), U2(X,Y,Z, δ), and U3(X,Y,Z, δ) of the displacement field along axis X, Y , or
Z, respectively. Note that in the remaining part of this paper, we will also use the equivalent
notations (U,V,W) and (X1, X2, X3) for designating (U1, U2, U3) and (X,Y,Z).

Using the Green-Lagrange tensor, it is finally possible to find a link between the
deformation and the penetration of the ship δ:

εij =
1
2

(
∂Ui

∂Xj
+
∂Uj

∂Xi
+
∂Uk

∂Xi

∂Uk

∂Xj

)
. (3.6)



10 Journal of Applied Mathematics

Equation (3.6)may be rewritten in the following shorter form:

εij = fij(X,Y,Z, δ) ⇐⇒ ε̇ij =
∂fij

∂δ
δ̇. (3.7)

If we want to apply formula (3.5) to obtain a relation between Pt and δ, it is also
required to evaluate the stresses σij as a function of δ. This may be achieved using the
constitutive laws giving a relation between σij and εij . As the evolution of εij with δ is known
by (3.6), we also have

σij = gij(X,Y,Z, δ). (3.8)

Note that U1, U2, and U3 are unknown; for a given value of δ, we have to postulate a
certain displacement field. Provided that this displacement field is kinematically admissible,
we may apply the upper-bound theorem and calculate the resistance Pt with formula (3.5).
In fact, if we combine (3.7) and (3.8) in (3.5), we obtain

Pt =
∫∫∫

V
gij(X,Y,Z, δ)

∂fij

∂δ
dX dY dZ. (3.9)

Equation (3.9) is the needed relation between Pt and δ. However, the crucial point in
the above-described approach is to define properly a kinematically admissible displacement
field, otherwise the upper-bound theorem may lead to an overestimation of the crushing
resistance.

3.3. The Superelements Method

The integration of (3.9) has to be performed over the whole volume V of the struck structure
and is rather impossible to derive analytically. As a consequence, we need to simplify the
procedure described here over, and this may be achieved by splitting the gate into superele-
ments.

The basic idea is to divide the gate into different substructures (the so-called superel-
ements) that we assume working independently. For the lock gate depicted in Figure 2, the
structure may be decomposed into two types of superelements.

(i) The first superelement (SE1) is a rectangular plate simply supported on its four
edges and impacted perpendicularly to its plane, undergoing therefore important
out-of-plane displacements. Such elements are typically used for modeling the
plating of the gate.

(ii) The second superelement (SE2) is a beam with a T-shaped cross-section, impacted
in its plane. This kind of element is therefore quite relevant for modeling transversal
and horizontal frames.

The division of the gate into superelements is only based on geometric considerations.
In order to illustrate this process, we can consider, for example, only a small part of the lock
gate represented in Figure 2, for which the division principle is shown in Figure 9. As it can
be seen, the two previous types of elements are sufficient for analyzing the structure.
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Figure 9: Illustration of the subdivision of a structure into superelements.

As long as there is no contact between the ship and a given superelement, this latter
will remain inactive. This means that it will not deform until it has been collided by the
bow, which is a consequence of the above-mentioned hypothesis that each substructure is
working independently. After being activated, the superelement will deform and dissipate
a certain amount of energy. If the gate is divided into n superelements, as each of them is
decoupled from the others, the total internal energy Eint is simply obtained by summation of
the individual contributions coming from the n superelements, that is,

Eint =
n∑
k=1

E
(k)
int =⇒ Ėint =

n∑
k=1

Ė
(k)
int , k ∈ {1, . . . , n}, (3.10)



12 Journal of Applied Mathematics

whereE(k)
int is the internal energy dissipated by superelement number k for a given penetration

δ of the ship. Before using (3.10), it is preliminary required to know Ė
(k)
int . To do so, formula

(3.4) is still valid, but it has to be reequated for the case of superelement k:

Ė
(k)
int =

∫∫∫
Vk

σ
(k)
ij · ε̇(k)ij · dX dY dZ, k ∈ {1, . . . , n}, (3.11)

where we have introduced the following notations:

(i) σ(k)
ij is the stress tensor defined on the entire volume of superelement k,

(ii) ε̇(k)ij is the strain rate tensor defined on the entire volume of superelement k,

(iii) Vk is the volume of superelement k.

By following a similar reasoning as for relations (3.7) and (3.8), we get finally the
particularization of (3.9):

P
(k)
t =

∫∫∫
Vk

g
(k)
ij ·

∂f
(k)
ij

∂δ
· dX dY dZ =⇒ Pt =

n∑
k=1

∫∫∫
Vk

g
(k)
ij ·

∂f
(k)
ij

∂δ
· dX dY dZ, (3.12)

where P (k)
t may be seen as the contribution of superelement k to the total resistance of the gate

(note that Einstein’s notation has been used for the subscripts i and j). In fact, relation (3.12)
is of primary importance because it constitutes the fundamental basis of the present method.
Of course, we still need to develop adequately the functions involved in this expression. This
will be done later for SE1 and SE2.

3.4. Global and Local Deforming Modes

We previously assumed that each superelement was working independently from the others.
This hypothesis remains valid as long as the penetration δ is reasonably minor. However,
when the penetration δ of the ship is increasing, deformations will occur in superelements
that still have not been undertaken by the bow. Consequently, the internal energy rate for
superelement k may not be equal to zero, although it has not been activated. This may be
seen on Figure 10, where out-of-plane displacements occur in the entire gate, even if some
regions have not been impacted by the striking ship bow.

In order to take this coupling into account, let us introduce the concept of local and
global deforming modes.

(i) We say that the structure exhibits a local deforming mode (see Figure 10) when
the developments performed in Section 3.3 may be applied. In other words, we
suppose here that the penetration of the vessel into the gate is only allowed by
the local deformations of the activated superelements. Only the area impacted by
the ship contributes to the energy dissipation; the other parts of the gate remain
undeformed. Of course, it may be easily understood that the local mode is only
valid for quite small values of δ.

(ii) On the contrary, we say that the structure exhibits a global deforming mode (see
Figure 10) when the displacements are not confined in a small area located around
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the impact point. In this case, the entire gate is involved in the energy dissipation
process and we may no longer assume that it behaves like a set of independent
substructures activated progressively. Consequently, the superelements method is
not valid anymore and the resisting force Pt has to be evaluated by another way
than the one discussed in Section 3.3. This is precisely the topic of Section 5.

In order to model the phenomena depicted in Figure 10, we suppose that there is
a sudden switch between the two modes. At the beginning, when the striking ship starts
moving into the gate, the resistance Pt is essentially provided by the local deforming mode.
This statement remains valid as long as the penetration δ does not exceed a transition value
δt, for which the global mode is activated. In fact, the switch between the two modes occurs
when the force Pt applied by the ship on the gate is sufficient to cause an overall displacement
of the whole structure. As soon as δ ≤ δt two different values for Pt are computed:

(i) the value of Pt obtained by supposing a local deforming mode; it is denoted by Ploc;

(ii) the value of Pt obtained by supposing a global deforming mode; it is denoted by
Pglob.

For a given penetration δ, Ploc and Pglob are then compared. As long as Ploc < Pglob, the
force exerted locally by the ship is not sufficient to cause an overall displacement of the gate,
so the ship continues penetrating into the structure by local indentation. However, as soon as
Ploc = Pglob, the force becomes sufficient and the switch from the local mode to the global one
is obtained. The corresponding value of δ is the required δt (see Figure 11). After that, for the
values of δ greater than δt, the resistance Pt is evaluated using equations specially developed
for the global mode (see Section 5).
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4. Evaluation of the Resistance in the Local Deforming Mode

In the local deforming mode, the resistance of the gate is given by (3.12), where we assume
that the total resisting force is simply obtained by adding the individual contributions of all
the activated substructures. In this section, the laws governing the behavior of the two types
of superelements introduced in Section 3.3 are detailed. However, as this topic is already well
treated in the literature (see e.g., [4]), in order to avoid any redundancy, we have made a
quite concise presentation of our approach.

Note

In the two following sections, we will use the superscript (k) for characterizing any property
of the superelement number k.

4.1. Superelement Type 1 (SE1)

The first superelement is used for modeling the plating of the lock gate. Its boundaries are
defined by the surrounding transversal and vertical frames, as shown in Figure 12. Consid-
ering the location of the impact point E, it is possible to fix the four parameters a(k)1 , a(k)2 , b(k)1 ,
and b(k)2 .

The thickness of the plate is equal to the thickness tp of the plating. However, a
correction is needed for taking into account the horizontal stiffeners placed in the transversal
direction. During the collision, the stiffeners are mainly submitted to an axial extension; they
will deform along the X direction by exhibiting a membrane behavior. Consequently, the
plate thickness has to be modified for taking these effects into account. If As is the total area
of all the stiffeners connected to the superelement k (see Figure 13), then we obtain

t
(k)
X = tp +

A
(k)
s

b
(k)
1 + b(k)2

. (4.1)
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This correction has to be applied for the calculation of membrane effects in the X
direction. However, if we consider membrane effects in the Y direction, the stiffeners have
no influence and they do not need to be considered. Consequently, we have t(k)Y = tp and the
plate becomes orthotropic.

In the present approach, we suppose that the impacted plate is completely indepen-
dent from the surrounding other superelements. Therefore, it is acceptable to consider the
plate as simply supported on its four edges. For a given indentation δ, the superelement will
undergo mostly a membrane deformation; the effects of bending remain negligible.

When superelement SE1 is impacted by the bow of the vessel, for a given value of δ,
we may deduct the deformation pattern shown in Figure 14. With this displacements field, it
is possible to evaluate the internal energy rate, which has already been done by Zhang [4].

For the situation illustrated in Figure 14, Zhang [4] found the following crushing
resistance for superelement k:

P
(k)
t =

σ0

2
√
3

(
a
(k)
1 + a(k)2

)(
b
(k)
1 + b(k)2

)( t
(k)
X

a
(k)
1 a

(k)
2

+
t
(k)
Y

b
(k)
1 b

(k)
2

)
. (4.2)
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4.2. Superelement Type 2 (SE2)

The second superelement that we will consider is used for modeling the transversal and
vertical frames. The boundaries of a horizontal superelement are defined by the two adjacent
vertical frames (and inversely for a vertical superelement).

The principal dimensions a(k)1 and a(k)2 (see Figure 15) of superelement k are positioned
in accordance with the location of the impact point. The resisting cross-section has a T-shape,
whose properties are defined in the general geometry of the gate.

When this superelement is impacted, we suppose that it will deform like a concertina.
To do so, three plastic hinges are formed. They are designated by ABF, ACF, and ADF in
Figure 16. These lines allow for relative rotation between the triangular surfaces ABC, ACD,
BCF, and FCD. Bending effects are therefore preponderant along these lines.

However, the rotational movement of the triangular surfaces is not free because
it must respect the compatibility between surfaces ABD and BFD along their common
line BD. Therefore, surfaces ABD and BFD are submitted to an axial extension implying
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mainly membrane effects. Consequently, for a given indentation δ, the web will be folded
as represented in Figure 16, where 2H is the total height of one fold. According to the
previous hypothesis, during this motion, the energy is absorbed by membrane extension of
the triangular regions ABD and BFD, but also by bending effects in the three plastic hinges
ABF, ACF, and ADF. The phenomenon of concertina folding has already been studied by
a great number of authors. For example, it was theoretically and experimentally studied by
Wierzbicki and Culbertson Driscoll [1], Wang and Ohtsubo [2], Simonsen [3], and Zhang [4].
Hong and Amdahl [5] compared all these various approaches and also developed their own
model.

According to the developments performed by Zhang [4], for a given penetration δ, the
resistance of superelement number k is to be taken as

P
(k)
t =

σ0t
(k)
w√
3

(
b
(k)
1 + b(k)2

)
·
(

t
(k)
w√
Hδ

+
4
3

Hδ

b
(k)
1 b

(k)
2

)
, (4.3)

where t(k)w is the web thickness of superelement k. In this formula,H is a parameter fixed by
minimizing the mean crushing resistance over one fold. By so doing, Zhang [4] found that

H = 3

√
3π
16

b
(k)
1 b

(k)
2 t

(k)
w . (4.4)

4.3. Total Resistance in Local Deforming Mode

The total resistance of the gate in the local deforming mode is simply obtained by summing
the individual contributions of the n superelements:

Ploc =
n∑
k=1

P
(k)
t . (4.5)

Of course, for a given value of δ, if a superelement has not been activated, it will not
provide any resistance to the total resistance, and so we have

P
(k)
t = 0. (4.6)
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Figure 17: (a) Assumed displacements field. (b) Displacement profile in the plan X = XE.

5. Evaluation of the Resistance in the Global Deforming Mode

5.1. Displacements Fields

When the global mode is activated, the gate is assumed to undergo a global motion involving
the entire structure. The displacements field obtained in this case is plotted in Figure 17(a).
As mentioned earlier, the first contact between the bow and the plating is located in point
E, with coordinates (XE, YE, 0). In the vertical plan passing through this point (i.e., the plan
with equation X = XE), we suppose that the displacements are distributed along the vertical
Y axis as shown in Figure 17(b). The mathematical formulation of this profile is as follows:

WE(Y, δ) =

⎧⎨
⎩δ · Y

YE
if 0 ≤ Y < YE,

δ if YE ≤ Y ≤ H,
(5.1)

whereWE indicates that we consider the displacement in the plan X = XE.
The two previous formulae are only valid as long as there is no other contact between

the ship and the gate. However, as the vessel is moving forward, another contact will appear
between the plating and the lowermost deck (see Figure 18). The particular value of δ for
which this situation will occur is denoted by δc, and we have

δc = YE · cotφ, (5.2)

where φ is the stem angle. When δ ≥ δc, the contact between the bow and the plating is
completely developed along the height hb (see Figure 18). Consequently, it is required to
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Figure 18: Assumed displacements field after second contact between the bow and the plating.

adapt the previous displacements fields in order to account for this phenomenon. Then, for
δ ≥ δc, we will use the following equations:

WE(Y, δ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
δ − hb cotφ

) · Y

YE − hb if 0 ≤ Y < YE − hb,
δ + (Y − YE)cotφ if YE − hb ≤ Y < YE,

δ if YE ≤ Y ≤ H.

(5.3)

5.2. Mechanical Model of the Gate

In the previous section, we have postulated a kinematically admissible displacements field.
In accordance with the upper-bound method, it is now possible to use the principle of virtual
velocities in order to estimate the resistance of the structure deformed in the global mode.

Unfortunately, it is rather difficult to derive analytically the resistance of a gate
submitted to the displacements given by (5.1), (5.3). In order to simplify the problem, we
make the assumption that the main contribution to the resistance is coming from the bending of
the gate between the two lock walls. This hypothesis seems to be reasonable for a global mode,
especially when the ratio H/L is wide, but we have to bear in mind that it may not remain
valid in some special cases. As a consequence, the resistance in the global deforming mode
is mostly provided by transversal frames, the stiffeners. Therefore, the gate may be seen as
a set of independent beams subjected to a given displacements field. The contribution of the
vertical frames is only to apply the expected displacements to these beams; we suppose that
they do not take part mechanically in the resistance. According to these hypotheses, we obtain
the equivalent model of the gate depicted in Figure 19.

The previously mentioned beams have a cross-section obtained by taking the gross
cross-section of the transversal frames, to which the collaborating part of the plating is added
(see the picture at the top of Figure 19). The values of hf , tf , hw, tw, and tp are defined as
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Figure 19: Mechanical model of the gate for assessing the resistance in the global deforming mode.

an input of the calculation process, but the collaborating length bf has to be chosen in order
to account for the following phenomena:

(i) the shear lag effect occurring at the junction between the plating and webs of
transversal frames;

(ii) the overall buckling of the stiffened panel located between two transversal frames;
this situation corresponds to the configuration (a) plotted in Figure 20.

(iii) the local buckling of the plating located between two stiffeners; this is illustrated
by the configuration (b) in Figure 20.

The calculation of the effective width beff (see Figure 20) on both sides of each trans-
versal frame can be achieved by applying the rules provided by Eurocode 3 for longitudinally
stiffened plates.

Finally, in order to achieve the mechanical modeling of the gate, we still have to give
some details about the support conditions of the beams. As they are connected to the vertical
frames, they will be mostly restrained at two levels:

(i) a rotational restriction along the transversal X axis, which will hinder the torsional
effects in the beams;

(ii) a translational restriction along the longitudinal Z axis, which will hinder out-of-
plane shearing and bending of the beams.

Of course, it is rather difficult to precisely account for these effects in an analytical
procedure. As we are not trying to have an accurate resistance of the gate (but a good
approximation), it is admissible to consider that each beam is simply supported at both ends.
By so doing, we completely omit the additional restrains provided by the vertical frames,
which is a conservative hypothesis for evaluating globally the impact resistance.
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5.3. Elastic Resistance

The mechanical model presented here is a set of n beams submitted to the displacements
fields detailed in Section 5.1. In this section, we use the superscript (k) in order to refer to
a particular beam, with k ∈ {1, 2 . . . , n}. At the beginning of the impact, a beam located at
any given vertical position Y (k) is deformed according to the classical bending theory (see
Figure 21). The deflected shape is then given by a parabola:

W (k)(X, δ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X

XE

X2 +X2
E − 2LXE

2XE(XE − L) ·W (k)
E (δ) = f1(X) ·W (k)

E (δ) if 0 ≤ X < XE,

X − L
XE − L

X2 +X2
E − 2LXE

2XE(XE − L) ·W (k)
E (δ) = f2(X) ·W (k)

E (δ) if XE ≤ X < L,

(5.4)

whereW (k)
E (δ) = WE(Y (k), δ) and has been defined in Section 5.1. The curvature χ(k) and the

bending momentsM(k) are obtained using the two following well-known relations:

χ(k) =
∂2W

∂X2
, M(k) = EI(k)

∂2W

∂X2
, (5.5)

where E is the elastic modulus and I(k) is the bending inertia of beam k.
If we only consider the deformation energy arising from the bending of beam k, the

internal power defined by (3.4) can be calculated by

Ė
(k)
int =

∫L
0
M(k)χ̇(k)dX = EIδ̇W (k)

E (δ)
∂W

(k)
E

∂δ

⎛
⎝∫XE

0

(
∂2f1

∂X2

)2

dX +
∫L−XE

XE

(
∂2f2

∂X2

)2

dX

⎞
⎠.

(5.6)
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By introducing (5.4) into (5.6), the individual contribution of beam k to the elastic
resistance of the gate in the global deforming mode is defined by

P
(k)
t = EI(k)W (k)

E (δ)
∂W

(k)
E

∂δ
· 3L

X2
E(XE − L)2

. (5.7)

5.4. Plastic Resistance

Of course, (5.7) remains valid as long as there is no plastic effect in beam k. However, when it
is bent beyond its elastic limit, the transversal frame exhibits another kind of behavior, which
may be described by using the two following properties:

(i) M(k)
p : the plastic bending moment of beam k, corresponding to a complete plastic

cross- section in bending (see Figure 22(a));

(ii) N(k)
p : the normal plastic force of beam k, corresponding to a complete plastic cross-

section in traction or compression (see Figure 22(b)).

With these properties, a classical plastic analysis may be performed. As soon asM(k)
p is

reached, the section located in X = XE behaves like a plastic hinge and the structure becomes
a mechanism. At this moment, the yield locus characterizing the cross-section is reached.
However, it does not mean that the resistance is not increasing anymore. As the deformations
are increasing, tensile stresses appear inside the beam k, and the cross-section is submitted to
both a normal forceN(k) and a bending momentM(k). As they are linked by the equation of
the yield locus, these two actions are not independent.

In order to evaluate M(k) and N(k) for each of the n beams representing the gate,
we need more information about plastic interaction. Yukio and Rashed [15] have elaborated
a very refined description of the yield locus for the cross-section depicted in Figure 22.
However, as suggested by Paik [11], it is easier to adopt a parabolic interaction criterion
for beam number k (see Figure 23),

M(k)

M
(k)
p

+

⎡
⎣N(k)

N
(k)
p

⎤
⎦

2

= 1 ⇐⇒M(k) =M(k)
p −M(k)

p

⎡
⎣N(k)

N
(k)
p

⎤
⎦

2

. (5.8)
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If we note Δ(k) and θ(k), the axial extension and the rotation in beam k, the required
condition of normality is verified for the present yield locus if we have (see Figure 23)

dM(k)

dN(k)
= −dΔ

(k)

dθ(k)
= − Δ̇

(k)

θ̇(k)
⇐⇒ −2M

(k)
p N(k)(
N

(k)
p

)2 = − Δ̇
(k)

θ̇(k)
. (5.9)

The extensional rate and rotational rates Δ̇(k) and θ̇(k) in beam k may be easily
calculated by geometrical considerations based on Figure 24:

θ̇(k) =
(

1
XE

+
1

L −XE

)
∂W

(k)
E

∂δ
δ̇, Δ̇(k) =WE(δ)

∂W
(k)
E

∂δ

(
1
XE

+
1

L −XE

)
δ̇. (5.10)

By introducing (5.10) into (5.9), we finally get a second relation between M(k) and
N(k). We then obtain the classical formula giving the membrane force in an axially restrained
beam:

N(k) =

(
N

(k)
p

)2
W

(k)
E

2M(k)
p

. (5.11)

At this stage, it is important to note that this result implies that the beam is perfectly
restrained in the axial direction. This hypothesis implies that no transversal motions (along
directionX) occur at the supports whereX = 0 andX = L. This seems quite reasonable for the
gate under consideration because of the action of vertical frames. However, it is important to
keep inmind that we have formulated such an assumption because even small displacements
may reduce considerably the present foreseen resistance.
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The previous relation (5.11) is useful for isolating the associated bendingmomentM(k)

in (5.8). By so doing, we get:

M(k) =M(k)
p −M(k)

p

⎛
⎝N

(k)
p W

(k)

E

2M(k)
p

⎞
⎠

2

. (5.12)

The two previous equations are only valid if N(k) ≤ N
(k)
p because it is impossible to

exceed the total plastic capacity of the cross-section. Consequently, according to (5.11), the
two mentioned equations may still be used as long as:

W
(k)
E ≤ 2M(k)

p

N
(k)
p

. (5.13)

If this limit displacement is exceeded in beam k, we simply have N(k) = N
(k)
p and

M(k) = 0. Once all internal forces and displacements field are completely defined, the upper-
bound theorem is applied for getting the plastic collision resistance of beam k. According to
Jones [16], the internal power of a transversal frame may be written as

Ė
(k)
int =

∫L
0

(
M(k)θ̇(k) +N(k)Δ̇(k)

)
· dX. (5.14)

By introducing (5.10), (5.11), and (5.12) in (5.14), we finally get the individual
contribution of beam k to the plastic resistance of the gate in the global deforming mode:

P
(k)
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L

XE(L −XE)
M

(k)
p

∂W
(k)
E

∂δ
·

⎡
⎢⎣1 +

⎛
⎝N

(k)
p W

(k)
E

4M(k)
p

⎞
⎠

2
⎤
⎥⎦ if W (k)

E ≤ 2M(k)
p

N
(k)
p

,

N
(k)
p

L

XE(L −XE)
W

(k)
E

∂W
(k)
E

∂δ
if W (k)

E >
2M(k)

p

N
(k)
p

.

(5.15)

5.5. Total Resistance in Global Deforming Mode

In Sections 5.3 and 5.4, we have established the individual contribution of each transversal
frame to the total resistance of the gate. In accordance with (3.12), the total collision force is
simply obtained by summation:

Pglob =
n∑
k=1

P
(k)
t , (5.16)

where P (k)
t is given by (5.7) if beam k is still in the elastic regime or by (5.16) if plasticity has

already occurred. To simplify, the transition between the elastic and the plastic resistance is
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Figure 25: Resistance in the global mode of a transversal frame already crushed during the local mode.

supposed to happen when the elastic bending moment in sectionX = XE reaches its maximal
valueM(k)

p .

6. Combination of Local and Global Deforming Modes

6.1. Resistance of the Beams Already Impacted during the Local Phase

The transition between local and global deforming mode has already been discussed in
Section 3.4, where a sudden switch is assumed to occur when δ = δt (the so-called transition
value). In the present section, we give more precision on the way to combine two different
modes. For a given value of δ, Ploc is evaluated by (4.5) and Pglob by (5.16). Two cases are then
possible.

(i) If Ploc > Pglob, then the force applied by the ship on the gate is not sufficient for
activating the global deforming mode. Consequently, we have δ < δt and Pt = Ploc,
with Ploc given by (4.5).

(ii) If Pglob = Ploc, then the global bending mode is activated and the gate starts to resist
by an overall movement. So we have δ = δt; the transition value is reached.

For δ ≥ δt, we know that the global mode is valid, but the resistance Pt may no
longer be evaluated by relation (5.16). If we examine Figure 26, for example, we see that
when the transition occurs at δt, the third transversal frame has already been crushed over a
certain length δt − δ0, where δ0 is the initial distance between the bow and the frame. As a
consequence, for beam 3, we may not assume that (5.7) and (5.15) are still valid.

It is too conservative to suppose that a beam that has already been crushed during
the local phase does not provide any resistance during the global one. On the contrary, the
uncrushed part of the cross-section is still able to develop a certain resistance by acting like a
membrane. This is illustrated in Figure 25, where, for beam k, we see that the total area of the
uncrushed section is

A
(k)
r =

(
h
(k)
w + δ(k)0 − δt

)
t
(k)
w + b(k)f t

(k)
f , (6.1)

where h(k)w , t(k)w , b(k)f , and t
(k)
f are the cross-sectional dimensions for beam k, δ(k)0 is the initial

distance between the bow and beam k.



26 Journal of Applied Mathematics

1

2

3

4

Z

Y Y

δ0
hw + δ0 − δt

Crushed length

δt

1

2

3

4

Z

Figure 26: Combination of local and global deforming modes.

When δ > δt − δ0, the internal power developed while producing an additional
displacement δ + δ0 − δt of beam k is

Ėint = σ0A
(k)
r Δ̇(k), (6.2)

whereΔ(k) is the axial extension of the transversal frame caused by the displacement δ+δ0−δt:

Δ(k) =
L

2
·

(
δ + δ(k)0 − δt

)2
XE(L −XE)

⇐⇒ Δ̇(k) = L · δ + δ(k)0 − δt
XE(L −XE)

δ̇. (6.3)

Finally, by introducing (6.3) into (6.2), we obtain the resistance of a transversal frame
already crushed during the local phase:

P
(k)
t = σ0A

(k)
r L · δ + δ(k)0 − δt

XE(L −XE)
. (6.4)

Of course, this formula has only to be applied if δt ≥ δ
(k)
0 , otherwise beam k is not

impacted during the local mode and the classic formulae of Section 5 remains valid. However,
a correction is still needed to take into account the beginning of a new phase of motion. In fact,
in (5.7) and (5.15), we have to evaluateW (k)

E and ∂W (k)
E /∂δ for the actual global displacement,

that is, δ − δt and not for the total displacement δ, which also includes the displacements
during the local phase. This concept is illustrated in Figure 27.
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6.2. Total Resistance

In the previous sections, we have established all the required formulas for assessing the
resistance in the local and global deforming modes. For clarity, we will now make a short
summary of the results.

(1) At the beginning, the progression of the striking vessel into the gate is allowed by
local deformations of the structure. During this local phase, two different forces are
evaluated:

Ploc(δ) → see formula (4.5)where P (k)
t is given by

(i) formula (4.2) if superelement k is of type 1,
(ii) formula (4.3) if superelement k is of type 2,

Pglob(δ) → see formula (5.16), where P (k)
t is given by

(i) formula (5.7) if beam k is still in the elastic regime,
(ii) formula (5.15) if beam k is in the plastic regime.



28 Journal of Applied Mathematics

During the local phase, the total resistance of the gate Pt is equal to the local one,
which means that Pt(δ) = P (δ).

We assume that deformations remain local as long as Pglob(δ) > Ploc(δ). The
transition between the local and the global mode occurs at the particular value δt,
for which we have Pglob(δt) = Ploc(δt).

(2) For the values of δ greater than δt, the global mode is activated. The total resistance
of the gate is still given by

Pt(δ) = Ploc(δt) +
n∑
k=1

P
(k)
t , (6.5)

where

(i) Pkt is obtained by formula (5.7) or formula (5.15) if beam k has not been
impacted during the local phase; it should be noted that these equations are
evaluated in δ − δt and not in δ (see Figure 27),

(ii) Pkt is obtained by formula (6.4) if beam k has been impacted during the local
deforming mode,

(iii) Ploc(δt) is the total resistance of the gate at the end of the local phase.

7. Numerical Validation

In order to validate all the developments described in the previous sections, we compare them
to the results obtained by numerical simulations on two different gates. For each studied lock
gate, two situations of collision have been considered: in the first case, the impact point E is
located in the upper part of the gate; in the second case, it is positioned in the lower part.

7.1. Numerical Model of the Striking Vessel

As mentioned above, we are only interested by the worst damages that may be caused to the
gate during the collision. So far, we are not concerned by the destruction of the striking vessel.
Therefore, we conservatively assume that the ship is perfectly rigid and will not deform over
the total impact duration.

For the numerical simulations, it is useless to deal with the entire ship. We only need
to have a quite refined model of the bow. As explained in Section 2, the geometry of the
ship is fixed with help of the five parameters p, q, ϕ, ψ, and hb (see Figure 28). Its mass M0

is noted and its initial velocity V0. For the present example, we have chosen the numerical
values listed in Table 1. These parameters have been chosen in order to represent a classical
ship for the inland waterways.

The numerical model of the vessel is shown in Figure 28. It is composed of 6955
Belytschko-Tsai shell elements, which are described in the LS-DYNA theoretical manual by
Hallquist [17]. As it can be seen in Figure 28, the mesh is more refined in the central zone
of the ship, where the contact with the gate is likely to occur. In this region, the mesh size is
about 1 cm × 1 cm. In the remaining parts of the model, as they are not supposed to develop
any contact with the impacted structure, the mesh is coarser.
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Table 1: Numerical data describing the striking vessel.

p q ϕ ψ hb M0 V0

6m 8m 84◦ 84◦ 5m 4000 t 2m/s

ϕ = 84◦

q = 8 m

p = 6 m p = 6 m

h
b
=

5
m

ψ = 84◦h
b
=

5
m

Y

ZZ
X

Y

X

Figure 28: Numerical model of the striking vessel.

Table 2: Useful properties for defining a rigid material law (only required for contact simulation).

Property Notation Value
Density ρ 7850 kg/m3

Young’s modulus EY 210 000MPa
Poisson’s ratio ν 0.33

The material used for modeling the bow is assumed to be rigid. It is defined with
help of the classical properties of steel recalled in Table 2. These parameters are only required
for defining the contact conditions between the ship and the gate. They are not used for
calculating any deformation in the vessel, as the material is infinitely rigid.

7.2. Numerical Model of Gate 1

The main dimensions of the structure are plotted in Figure 29. The total height and length of
the gate areH = 13.1m and L = 13.1m. The stiffening system of the structure is made of

(i) five transversal frames, which are irregularly distributed over the height H of the
gate; their vertical positions along the vertical Y axis are shown in Figure 29(b);

(ii) six vertical frames, which are regularly placed over the length L of the gate; their
locations along the transversal X axis are plotted in Figure 29(c);

(iii) twenty stiffeners distributed over the heightH of the gate with an average space of
66 cm.

Other geometrical data are listed in Table 3. The corresponding notations are defined
in accordance with the symbols introduced in Figure 3. Note that the transversal and vertical
frames have a T-shaped cross-section, while the stiffeners simply have a rectangular one. The
gate is modeled with help of 204226 Belytschko-Tsai shell elements. Themesh is quite refined,
with a mesh size of 5 cm × 5 cm. Of course, it may appear excessive to use such a regular mesh
over the entire structure, but it was required because we did not know in advance which part
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Figure 29: Numerical model of gate 1.

Table 3: Geometrical data defining gate 1.

Element Property Notation Value (mm)
Plating Thickness tp 10

Transversal frames

Web thickness tw 22
Web height hw 1000

Flange thickness tf 22
Flange width bf 300

Vertical frames

Web thickness tw 22
Web height hw 1000

Flange thickness tf 22
Flange width bf 500

Stiffeners

Web thickness tw 10
Web height hw 200

Flange thickness tf 0
Flange width bf 0

of the gate would be impacted by the ship. In order to avoid contact problems, this solution
has been chosen.

The material used for gate 1 is defined to represent more or less the behaviour of
steel. The elastic-plastic stress-strain curve may be divided in two distinct portions (see
Figure 30). The first part of the curve corresponds to the elastic phase. The stress-strain curve
is linear, with an inclination corresponding to Young’s Modulus EY . When the yield stress
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Table 4: Useful properties for defining the material law of steel.

Property Notation Value
Density ρ 7850 kg/m3

Poisson’s ratio ν 0.33
Yield stress σ0 240MPa
Young’s modulus EY 210 000MPa
Tangent modulus ET 1018MPa

σ0 is reached, the plastic phase begins. The stress-strain curve is still linear, but the slope has
changed and is given by the tangent modulus ET . In the present low velocity impact model,
the strain-rate effect is not taken into account. The values of the different parameters are listed
in Table 4.

The support conditions are the ones described in Section 2, that is, displacements in
direction Z are blocked in X = 0, X = L, and Y = 0.

7.3. Numerical Model of Gate 2

The second gate is wider than the first one. Its total height and length are H = 15m and
L = 17.1m. The main dimensions are plotted in Figure 31. (Please note that the origin of
the axes (X,Y,Z) is correctly positioned, regarding all the previous figures.) This time, the
stiffening system is more compact and made of

(i) five transversal frames, whose vertical positions along the Y axis are shown on
Figure 31;

(ii) six vertical frames, regularly separated by a distance of 1.9m;

(iii) twenty-six stiffeners, regularly separated by a distance of 50 cm.

Other geometrical data are listed in Table 6. The gate is modeled by 92671 Belytschko-
Tsai shell elements. The regular mesh size is 10 cm × 10 cm. The material model and the
support conditions are the same as for gate 1.
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Figure 31: Numerical model of gate 2.

Table 5: Impact location for the simulations.

Simulation 1 Simulation 2

Gate 1 XE = 6.55m XE = 6.55m
YE = 8m YE = 13.1m

Gate 2 XE = 8.55m XE = 8.55m
YE = 7.5m YE = 13.25m

7.4. Numerical Simulations

Four numerical simulations have been performed by using the finite-elements software LS-
DYNA. Two simulations are required for each gate, according to the position of the impact
point E. The transversal and vertical positions XE and YE of point E are listed in Table 5 for
the different collision cases considered here.

Concerning the resulting crushing force curves compared in Figures 32 and 33,
simulation 1 corresponds to a ship impact happening in the lower part of the structure and
simulation 2 to an impact in the upper one.

7.5. Comparison of Numerical and Analytical Results

In order to validate the analytical developments established in the previous section, we will
make a comparison between the results provided by LS-DYNA and the ones predicted by our
simplified method. The curves of interest are those showing the evolution of the crushing
force Pt with the total penetration δ. The comparisons are plotted in Figures 32 and 33.
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Figure 32: Comparison of the analytical and numerical crushing forces for gate 1.

The curves referenced as “numerical results” are those obtained by LS-DYNA, while the
“analytical results” are derived by the present simplified approach.

As it can be seen, the agreement between the curves is quite good. In most cases,
the analytical curves provide slightly conservative results. However, for gate 2, the first
simulation (see Figure 33(a)) exhibits a more important divergence: our simplified method
tends to underestimate the crushing resistance, especially for the great values of δ. This
observation is due to a quite conservative approach in the global mode. This may be
explained by the two following reasons.

(i) The resisting cross-sections are determined according to the recommendations
of Eurocode 3. It seems that these rules are quite severe in the present case
as the numerical simulations show that a greater part of the plating is actually
collaborating to the resistance of the transversal frames.
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Table 6: Geometrical date defining gate 2.

Element Property Notation Value (mm)
Plating Thickness tp 12

Transversal frames

Web thickness tw 12
Web height hw 1800

Flange thickness tf 12
Flange width bf 400

Vertical frames

Web thickness tw 12
Web height hw 1400

Flange thickness tf 12
Flange width bf 300

Stiffeners

Web thickness tw 12
Web height hw 300

Flange thickness tf 0
Flange width bf 0

(ii) We do not capture properly the deformation pattern of the vertical frames: we
suppose that their role is limited to the application of the global displacements field,
but we neglect the energy also dissipated through their own global deflection.

This last point is confirmed by the curves plotted on Figure 34, where we compare
the energy dissipated by the different structural components of the gate. The numerical
results are those given by LS-DYNA, while the analytical results are those predicted by the
theoretical model of this paper. As it can be seen on this picture, the discrepancy is satisfactory
for the plating, the stiffeners, and the transverse frames, but it is not really the case for the
vertical frames. Our method underestimates the energy that these elements really dissipate,
but this approximation remains conservative.

8. Conclusion

In this paper, we exposed a simplified procedure for assessing the resistance of a gate sub-
mitted to a ship impact.

It is important to bear in mind the hypotheses that we have formulated for modeling
the struck gate and the striking vessel. Concerning the struck gate, our approach is devoted
to

(i) gates with single plating; structures with double plating or caissons are not covered
by the present developments;

(ii) gates with a classical orthogonal stiffening system, that is, stiffeners and frames in
the transversal direction and frames in the vertical direction;

(iii) gates supported on both sides by the lock walls and by a sill at the bottom of the
lock.

The three former conditions have to be fulfilled for applying themethodology exposed
previously. Concerning the striking vessel, it is modeled by using a certain number of
parameters. The global bow shape is assumed to be a parabola, with given radii p and q,
decreasing according to given stem and side angles ϕ and ψ.

The impacted structure is assumed to behave in two phases. At the beginning, when
the indentation δ of the ship is not too wide, we suppose a localized crushing of some
impacted structural elements. The plating and the stiffening system surrounding the initial
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Figure 33: Comparison of the analytical and numerical crushing forces for gate 2.

contact zone are submitted to heavy deformations, but the remaining of the gate is still
unaffected. In this case, we say that the structure withstands through a local deforming
mode. For such a situation, the resistance is calculated by summing all the contributions of
the activated superelements. As some references are already available in the literature, we
have not reproduced all the developments concerning these superelements.

When the penetration δ becomes wider, the gate withstands through an overall
movement implying the entire structure. In this case, we say that the resistance is provided
through a global deforming mode. For the support conditions assumed presently, the
required theoretical displacements fields have been exposed in detail. We also derived an
equivalent mechanical model for evaluating the resistance in such a situation.

The transition between the local and the global deforming modes is assumed to occur
at a given penetration δt, for which the collision force exerted by the ship during the local
phase is sufficient to produce an overall displacement of the gate.

Finally, our presentation ends with a comparison between some finite elements
numerical results and those obtained by the present simplified approach. In most cases, the
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Figure 34: Comparison of the analytical and numerical internal energy of the various components of the
gate.

procedure exposed here leads to a quite satisfactory estimation of the collision resistance. The
predicted results are conservative, without underestimating too much the numerical values.

The main advantage of the methodology exposed here is to provide rapidly an
evaluation of the collision resistance. The analytical curves plotted in Figures 32 and 33 are
useful for knowing if a lock gate is able to behave satisfactorily to an impact of a ship with
given initial velocity V0 and mass M0. With these curves, it is in fact possible to know the
total needed indentation δmax required for dissipating the initial kinetic energy M0V

2
0 /2. If

this value of δmax exceeds a given criterion, then we may suppose that the structure will not
be able to withstand satisfactorily a collision with a vessel of massM0 and velocity V0.

Of course, we have to be conscious that our simplified analytical method is only
applicable at the predesign stage of a lock. For more advanced stages of a project, it is still
necessary to resort to more advanced tools, like finite elements software.

List of Notations

Lower-Case Latin Notations

a1: Horizontal or vertical dimension of a superelement defined by the impact
point location and the supports of the struck structure

a2: Horizontal or vertical dimension of a superelement defined by the impact
point location and the supports of the struck structure (complementary to a1)

b1: Vertical dimension of a superelement defined by the impact point location and
the supports of the struck structure
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b2: Vertical dimension of a superelement defined by the impact point location and
the supports of the struck structure (complementary to a2)

beff: Effective width for calculating the section properties of a transversal beam
bf : Flange width of a stiffener or a transversal frame
hb: Vertical distance between the lowermost and uppermost decks of the striking

ship
hp: Collaborating width of the plating in the global deforming mode
hw: Web height of a stiffener or a transversal frame
k: Superscript used for referencing a particular property of superelement n◦k
n: Total number of superelements used for modeling the entire gate
(p, q): Parameters defining the parabolic dimensions of the striking ship uppermost

deck
tf : Flange thickness of a stiffener or a transversal beam
tp: Thickness of the plating
tw: Web thickness of stiffener or a transversal frame
tX : Equivalent plating thickness after smearing all the transversal stiffeners
tY : Equivalent plating thickness after smearing all the vertical stiffeners.

Upper-Case Latin Notations

E: Young’s modulus of the steel material constituting the gate
Eext: External energy
Eint Internal energy
ET : Tangent modulus of steel
EY : Young’s modulus of steel
H: Total vertical height of the gate
I: Bending inertia of a transversal beam
L: Total transversal length of the gate
M: Bending moment
Mp: Plastic bending resistance of a transversal beam
M0: Mass of the striking ship
N: Axial force
Np: Plastic axial resistance of a transversal beam
Pglob: Total resistance of the gate in the global deforming mode
Ploc: Total resistance of the gate in the local deforming mode
Pt: Total collision resistance of the impacted gate
W(X, δ): Transversal evolution of the displacement field in the global deforming mode
WE(Y, δ): Vertical evolution of the displacement field in the global deforming mode
(XE, YE): Impact point location on the gate
(X,Y,Z): General coordinate system.

Lower-Case Greek Notations

δ: Penetration of the striking ship
δc: Penetration of the striking ship for which a second contact between the gate

and the bow is established



38 Journal of Applied Mathematics

δt: Penetration of the striking ship at the transition between the local and the global
deforming modes

δmax: Maximal penetration of the striking ship required for completely dissipating its
initial kinetic energy

δ0: Initial distance between the bow and a transversal beam
εu: Deformation for which the ultimate stress σu is reached
ε0: Deformation for which the plastic limit σ0 is reached
εij : Strain tensor
θ: Cross-section rotation
ν: Poisson’s ratio of steel
ρ: Mass density of steel
σu: Ultimate stress of steel
σ0: Plastic limit of steel
σij : Stress tensor
φ: Stem angle
χ: Curvature of a transversal beam
ψ: Side angle.

Upper-Case Greek Notations

Γ: Designation of the parabola describing the striking ship uppermost deck
Δ: Total axial extension of transversal frame.
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