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This paper presents the application of homotopy perturbation and variational iteration methods
as numerical methods for Fredholm integrodifferential equation of fractional order with initial-
boundary conditions. The fractional derivatives are described in Caputo sense. Some illustrative
examples are presented.

1. Introduction

Fractional differential equations have attracted much attention, recently, see for instance
[1–4]. This is mostly due to the fact that fractional calculus provides an efficient and
excellent instrument for the description of many practical dynamical phenomena arising
in engineering and scientific disciplines such as, physics, chemistry, biology, economy,
viscoelasticity, electrochemistry, electromagnetic, control, porous media and many more, see
for example, [5, 6].

During the past decades, the topic of fractional calculus has attracted many
scientists and researchers due to its applications in many areas, see [4, 7–9]. Thus
several researchers have investigated existence results for solutions to fractional differential
equations, see [10, 11]. Further, many mathematical formulation of physical phenomena
lead to integrodifferential equations, for example, mostly these type of equations arise in
fluid dynamics, biological models and chemical kinetics, and continuum and statistical
mechanics, for more details see [12–16]. Integrodifferential equations are usually difficult to
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solve analytically, so it is required to obtain an efficient approximate solution. The homotopy
perturbation method and variational iteration method which are proposed by He [17–26] are
of the methods which have received much concern. These methods have been successfully
applied by many authors, such as the works in [19, 27, 28].

In this work, we study the Integrodifferential equations which are combination of
differential and Fredholm-Volterra equations that have the fractional order. In particular,
we applied the HPM and VIM for fractional Fredholm Integrodifferential equations with
constant coefficients

∞∑

k=0

PkD
α
∗y(t) = g(t) + λ

∫a

0
H(x, t)y(t)dt, a ≤ x, t ≤ b, (1.1)

under the initial-boundary conditions

Dα
∗y(a) = y(0), (1.2)

Dα
∗y(0) = y′(a), (1.3)

where a is constant, and 1 < α < 2, and Dα
∗ is the fractional derivative in the Caputo sense.

For the geometrical applications and physical understanding of the fractional
Integrodifferential equations, see [14, 26]. Further, we also note that fractional integro-
differential equations were associated with a certain class of phase angles and suggested a
new way for understanding of Riemann’s conjecture, see [29].

In present paper, we apply the HPM and VIM to solve the linear and nonlinear
fractional Fredholm Integrodifferential equations of the form (1.1). The paper is organized
as follows. In Section 2, some basic definitions and properties of fractional calculus theory
are given. In Section 3, the basic idea of HPM exists. In Section 4, also is the basic idea of
VIM. In Sections 5 and 6, analysis of HPM and VIM exsists, respectively. some examples are
given in Section 7. Concluding remarks are listed in Section 8.

2. Preliminaries

In order to modeling the real world application the fractional differential equations are
considered by using the fractional derivatives. Thus, in this section, we give some basic
definitions and properties of fractional calculus theory which is used in this paper. There
are many different starting points for the discussion of classical fractional calculus, see
for example, [30]. One can begin with a generalization of repeated integration. If f(t) is
absolutely integrable on [0, b), as in [31] then

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
f(t1)dt1 =

1
(n + 1)!

∫ t

0
(t − t1)n−1f(t1)dt1 =

1
(n + 1)!

tn−1 ∗ f(t),
(2.1)
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where n = 1, 2, . . ., and 0 ≤ t ≤ b. On writing Γ(n) = (n − 1)!, an immediate generalization in
the form of the operation Iα defined for α > 0 is

(
Iαf
)
(t) =

1
Γ(α)

∫ t

0
(t − t1)α−1f(t1)dt1 =

1
Γ(α)

tα−1 ∗ f(t), 0 ≤ t < b, (2.2)

where Γ(α) is the Gamma function and tα−1 ∗ f(t) =
∫ t
0 f(t − t1)

α−1(t1)dt1 is called the
convolution product of tα−1 and f(t). Equation (2.2) is called the Riemann-Liouville fractional
integral of order α for the function f(t). Then, we have the following definitions.

Definition 2.1. A real function f(x), x > 0 is said to be in space Cμ, μ ∈ R if there exists a real
number p > μ, such that f(x) = xpf1(x), where f1(x) ∈ C(0,∞), and it is said to be in the
space Cn

μ if fn ∈ Rμ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function
f ∈ Cμ, μ ≥ −1 is defined as

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, t > 0. (2.3)

In particular, J0f(x) = f(x).
For β ≥ 0 and γ ≥ −1, some properties of the operator Jα:

(1) JαJβf(x) = Jα+βf(x),

(2) JαJβf(x) = JβJαf(x),

(3) Jαxγ = (Γ(γ + 1)/Γ(α + γ + 1))xα+γ .

Definition 2.3. The Caputo fractional derivative of f ∈ Cm
−1, m ∈ N is defined as

Dαf(x) =
1

Γ(m − α)

∫x

0
fm(t)dt, m − 1 < α ≤ m. (2.4)

Lemma 2.4. Ifm − 1 < α ≤ m, m ∈ N, f ∈ Cm
μ , μ > −1 then the following two properties hold

(1) Dα[Jαf(x)] = f(x),

(2) Jα[Dαf(x)] = f(x) −∑m−1
k=1 fk(0)(xk/k!).

Now, if f(x) is expanded to the block pulse functions, then the Riemann-Liouville
fractional integral becomes

(
Iαf
)
(x) =

1
Γ(α)

xα−1 ∗ f(x) � ξT
1

Γ(α)

{
xα−1 ∗ φm(x)

}
. (2.5)

Thus, if xα−1 ∗φm(x) can be integrated, then expanded in block pulse functions, the Riemann-
Liouville fractional integral is solved via the block pulse functions. Thus, one notes on that
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Kronecker convolution product can be expanded in order to define the Riemann-Liouville
fractional integrals for matrices by using the Block Pulse operational matrix as follows:

1
Γ(α)

∫ t

0
(t − t1)α−1φm(t1)dt1 � Fαφm(t), (2.6)

where

Fα =
(

b

m

)α 1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ξ2 ξ3 · · · ξm
0 1 ξ2 · · · ξm−1
0 0 1 · · · ξm−2

0 0 0
. . .

...
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.7)

see [32].

3. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the following nonlinear differential
equation:

A(u) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator; B is a boundary operator; f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

In general, the operator A can be divided into two parts L and N, where L is linear,
whileN is nonlinear. Equation (3.1) therefor, can be rewritten as follows:

L(u) +N(u) − f(r) = 0. (3.3)

By the homotopy technique [33–35], we construct a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies

H
(
v, p
)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
A(v) − f(r)

]
= 0, p ∈ [0, 1], r ∈ Ω (3.4)

or

H
(
v, p
)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0, (3.5)



Abstract and Applied Analysis 5

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation of (3.1)which
satisfies the boundary conditions. From (3.2) and (3.3)we have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0
(3.6)

the changing in the process of p from zero to unity is just that of v(r, p) from u0(r) to u(r).
In topology, this called deformation, and L(v) − L(u0) and A(v) − f(r) are called homotopic.
Now, assume that the solution of (3.2) and (3.3) can be expressed as

v = v0 + pv1 + p2v2 + · · · . (3.7)

Setting p = 1 results in the approximate solution of (3.1).
Therefore,

u = limv
p→ 1

= v0 + v1 + v2 + · · · . (3.8)

4. The Variational Iteration Method

To illustrate the basic concepts of VIM, we consider the following differential equation

L(u) +N(u) = g(x), (4.1)

where L is a linear operator; N is nonlinear operator, and g(x) is an nonhomogeneous term.
According to VIM, one constructs a correction functional as follows:

yn+1 = yn +
∫x

0
λ
[
Lyn(s) −Nỹn(s)

]
ds, (4.2)

where λ is a general Lagrange multiplier, and ỹn denotes restricted variation that is δỹn = 0.

5. Analysis of Homotopy Perturbation Method

To illustrate the basic concepts of HPM for Fredholm Integrodifferential equation (1.1) with
boundary conditions (1.2) and (1.3). We use the view of He in [19, 20], where the following
homotopy was constructed for (1.1) as the following:

(
1 − p

) ∞∑

k=0

PkD∗αy(x) + p

[ ∞∑

k=0

PkD∗αy(x) − g(t) − λ

∫b

a

H(x, t)y(x)dx

]
= 0 (5.1)

or

∞∑

k=0

PkD∗αy(x) = p

[
g(t) + λ

∫b

a

H(x, t)y(x)dx

]
, (5.2)
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where p ∈ [0, 1] is an embedding parameter. If p = 0, (5.2) becomes linear fractional differen-
tial equation

∞∑

k=0

PkD∗αy(x) = 0, (5.3)

and when p = 1, the (5.2) turn out to be the original equation. In view of basic assumption of
HPM, solution of (1.1) can be expressed as a power series in p

y(x) = y0(x) + p1y1(x) + p2y2(x) + · · · , (5.4)

when p = 1, we get the approximate solution of (5.4)

y(x) = y0(x) + y1(x) + y2(x) + · · · . (5.5)

The convergence of series (5.5) has been proved in [21]. Substitution (5.4) into (5.2), and
equating the terms with having identical power of p, we obtain the following series of
equations:

p0 :
∞∑

k=0

PkD
α
∗y0 = 0,

p1 :
∞∑

k=0

PkD
α
∗y1 = g(t) − λ

∫b

a

H(x, t)y0(x)dx,

p2 :
∞∑

k=0

PkD
α
∗y2 = −λ

∫b

a

H(x, t)y1(x)dx,

p3 :
∞∑

k=0

PkD
α
∗y3 = −λ

∫b

a

H(x, t)y2(x)dx,

...

(5.6)

with the initial-boundary conditions

Dα
∗y(a) = y(0), Dα

∗y(0) = y′(a). (5.7)

The initial approximation can be chosen in the following manner.

y0 =
1∑

j=0

γj
xj

j!
= γ0 + γ1x, where γ0 = Dα

∗y(a)γ1 = Dα
∗y(0). (5.8)
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Note that the (5.6) can be solved by applying the operator Jα∗ and by some computation, we
approximate the series solution of HPM by the following N-term truncated series

χn(x) = y0(x) + y1(x) + · · · + yN−1(x), (5.9)

which is the approximate solution of (1.1)–(1.3).

6. Analysis of VIM

To solve the fractional Integrodifferential equation by using the variational iteration method,
with boundary conditions (1.2) and (1.3) we construct the following correction functional:

yk+1(x) = yk(x) + Jα
[
μ

( ∞∑

k=0

PkD
α
∗y(x) − g̃(x) − λ

∫a

0
H(x, s)ỹk(s)ds

)]
(6.1)

or

yk+1(x) = yk(x) +
1

Γ(α)

∫x

0
(x − s)α−1μ(s)

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk

(
p
)
dp

]
,

(6.2)

where μ is a general Lagrange multiplier, and g̃k(x) and ỹk(x) are considered as restricted
variation, that is, δg̃k(x) = 0 and δỹk(x) = 0.

Making the above correction functional stationary, the following condition can be
obtained

δyk+1(x) = δyk(x) +
∫x

0
(x − s)α−1μ(s)

[ ∞∑

k=0

PkδD
α
∗y(s) − δg̃k(s) − λ

∫a

0
H
(
x, p
)
δỹk

(
p
)
dp

]
.

(6.3)

It’s boundary condition can be obtained as follows:

1 − μ′(s) |x=s = 0, μ(s) |x=s = 1. (6.4)

The Lagrange multipliers can be identified as follows:

μ(s) =
1
2
(x − s). (6.5)
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We obtain the following iteration formula by substitution of (6.5) in (6.2):

yk+1(x)

= yk(x) +
1

2Γ(α − 1)

∫x

0
(x − s)α−2(s − x)

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk

(
p
)
dp

]
ds.

(6.6)

That is,

yk+1(x) = yk(x) − (α − 1)
2Γ(α)

∫x

0
(x − s)α−1

[ ∞∑

k=0

PkD
α
∗y(s) − g̃k(s) − λ

∫a

0
H
(
x, p
)
ỹk

(
p
)
dp

]
ds.

(6.7)

This yields the following iteration formula:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[ ∞∑

k=0

PkD
α
∗y(x) − gk(x) − λ

∫a

0
H(x, s)ỹk(s)ds

]
. (6.8)

The initial approximation y0 can be chosen by the following manner which satisfies initial-
boundary conditions (1.2)-(1.3)

y0 = γ0 + γ1x, where γ0 = Dα
∗y(a) γ1 = Dα

∗y(0). (6.9)

We can obtain the following first-order approximation by substitution of (6.9) in (6.8)

y1(x) = y0(x) − (α − 1)
2

Jα
[ ∞∑

k=0

PkD
α
∗y(x) − g0(x) − λ

∫a

0
H(x, s)ỹ0(s)ds

]
. (6.10)

Finally, by substituting the constant values of γ0 and γ1 in (6.10) we have the results as the
approximate solutions of (1.1)–(1.3), see the further details in [36–40].

7. Applications

In this section, we have applied homotopy perturbation method and variational iteration
method to fractional Fredholm Integrodifferential equations with known exact solution.

Example 7.1. Consider the following linear Fredholm Integrodifferential equation:

Dαy(x) =

(
3
2
+
e2x

2

)
+
∫x

0
ety(t)dt 0 ≤ x ≤ 1, 1 < α ≤ 2, (7.1)
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with initial boundary conditions

y(0) = 1, y′(1) = e (7.2)

the exact solution is y(x) = ex. Now we construct

Dαy(x) = p

((
3
2
+
e2x

2

)
+
∫x

0
ety(t)dt

)
. (7.3)

Substitution of (5.4) in (7.3) and then equating the terms with same powers of p, we get the
series

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) =
(
3
2
+
2
3
e2x
)
+
∫x

0
ety0(t)dt,

p2 : Dαy2(x) = −
∫x

0
ety1(t)dt.

...

(7.4)

Now applying the operator Jα to the equations (7.4) and using initial-boundary conditions
yields

y0(x) = 1, (7.5)

y1(x) = 1 +Ax + Jα
((

3
2
+
e2x

2

)
+
∫x

0
ety0dt

)
, (7.6)

y2(x) = Jα
(∫x

0
ety1dt

)
, (7.7)

yn(x) = Jα
(∫x

0
etyn−1dt

)
, n = 2, 3, 4, . . . . (7.8)

Then by solving (7.5)–(7.8), we obtain y1, y2, . . . as

y1(x) = 1 +Ax +
5xα

2Γ(α + 1)
+

2xα+1

Γ(α + 2)
+

3xα+2

2Γ(α + 3)
+

5xα+3

6Γ(α + 4)
, (7.9)

y2(x) =
xα+1

Γ(α + 2)
+ (A + 1)

xα+2

2Γ(α + 3)
+
(
A

3
+
1
2

)
xα+3

Γ(α + 4)

+
(
A

8
+

1
12

)
xα+4

Γ(α + 5)
+

Axα+5

15Γ(α + 6)
+

5x2α+1

2Γ(2α + 2)
+ · · · .

(7.10)
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Table 1: Values of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A −2.33209843875457 −1.906444021198994 −0.88898224618462 −0.098915873901025

Table 2: Value of A for different values of α using (7.14).

α = 1.25 α = 1.5 α = 1.75 α = 2
A 1.23429062479478 0.73267858113358 0.66218167845861 0.54744784230252

Now, we can form the 2 term approximation as follows:

φ2(x) = 1 +Ax +
5xα

2Γ(α + 1)
+

3xα+1

Γ(α + 2)
+ (A + 2)

xα+2

2Γ(α + 3)

+ (A + 4)
xα+3

3Γ(α + 4)
+
(
A

8
+

1
12

)
xα+4

Γ(α + 5)
+

Axα+5

15Γ(α + 6)
+

5x2α+1

2Γ(2α + 2)
+ · · · ,

(7.11)

where A can be determined by imposing initial-boundary conditions (7.2) on φ2. Table 1
shows the values of A for different values of α.

Now, we solve (7.1)-(7.2) by variational iteration method. According to variational
iteration method, the formula (6.8) for (7.1) can be expressed in the following form:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[
Dαy(x) −

(
3
2
+
e2x

2

)
−
∫x

0
ety(t)dt

]
. (7.12)

Then, in order to avoid the complex and difficult fractional integration, we can consider the
truncated Taylor expansions for exponential term in (7.6)–(7.8) for example, ex ∼ 1 + x +
x2/2 + x3/6 and further, suppose that an initial approximation has the following form which
satisfies the inial-boundary conditions

y0(x) = 1 +Ax. (7.13)

Now by iteration formula (7.12), the first approximation takes the following form:

y1(x) = y0(x) − (α − 1)
2

Jα
[
Dαy0(x) −

(
3
2
+
e2x

2

)
−
∫x

0
ety0(t)dt

]

= 1 +Ax +
(α − 1)

2
xα

[
5

Γ(α + 1)
+

2x
Γ(α + 2)

+
(A + 3)x2

2Γ(α + 3)

+
(5/2 +A)x3

3Γ(α + 4)
+
(A/2 + 1/6)x4

6Γ(α + 5)
− Ax5

30Γ(α + 6)

]
.

(7.14)

By imposing initial-boundary conditions (7.2) on y1, we can obtain the values of A for
different α which we show in Table 2.
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Example 7.2. Consider the following linear Fredholm Integrodifferential equation:

Dαy(x) =
(
1 − x

4

)
+
∫x

0
xty2(t)dt 0 ≤ x ≤ 1, 1 < α ≤ 2 (7.15)

with initial boundary conditions

y(0) = 0, y′(1) = 1. (7.16)

then the exact solution is y(x) = x. By applying the HPM, we have

Dαy(x) = p

((
1 − x

4

)
+
∫x

0
xty2(t)dt

)
. (7.17)

Substitution of (5.4) in (7.15) and then equating the terms with same powers of p, we get the
following series expressions:

p0 : Dαy0(x) = 0,

p1 : Dαy1(x) =
(
1 − x

4

)
+
∫x

0
xty0

2(t)dt,

p2 : Dαy2(x) = 2
∫x

0
xty0(t)y1(t)dt,

p3 : Dαy3(x) =
∫x

0
xt
(
y0(t)y2(t) + y1

2(t)
)
dt,

p4 : Dαy4(x) =
∫x

0
xt
(
2y0(t)y4(t) + 2y1y3 + y2

2(t)
)
dt,

...

(7.18)

Applying the operator Jα to (7.18) and using initial-boundary conditions, then we get

y0(x) = 0,

y1(x) = Ax + Jα
((

1 − x

4

)
+
∫x

0
xty0

2(t)dt
)
,

y2(x) = 0,

y3(x) = Jα
(∫x

0
xt
(
y0(t)y2(t) + y1

2(t)
)
dt

)
,

y4(x) = Jα
(∫x

0
xt
(
2y0(t)y4(t) + 2y1y3 + y2

2(t)
)
dt

)
,

...

(7.19)
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Table 3: Value of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A 0.179304 0.153796 0.0673477 0.124989

Table 4: Value of A for different values of α.

α = 1.25 α = 1.5 α = 1.75 α = 2
A 0.88967375 0.76492075 0.650263 0.5625

Thus, by solving (7.19), we obtain y1, y2, y3, . . .

y1(x) = Ax +
xα

Γ(α + 1)
− xα+1

4Γ(α + 2)
,

y2(x) = 0,

y3(x) =
A2xα+5

4Γ(α + 6)
+

2Ax2α+4

(α + 3)Γ(α + 1)Γ(2α + 5)
+

x3α+3

(2α + 2)Γ(α + 1)Γ(α + 1)Γ(3α + 4)
+ · · · .

(7.20)

Now, we can form the 3 term approximation

φ2(x) = Ax +
xα

Γ(α + 1)
− xα+1

4Γ(α + 2)
+

A2xα+5

4Γ(α + 6)
+

2Ax2α+4

(α + 3)Γ(α + 1)Γ(2α + 5)

+
x3α+3

(2α + 2)Γ(α + 1)Γ(α + 1)Γ(3α + 4)
+ · · · ,

(7.21)

where A can be determined by imposing initial-boundary conditions (7.16) on φ2. Thus, we
have Table 3.

Similarly, by variational iteration method we have the following form:

yk+1(x) = yk(x) − (α − 1)
2

Jα
[
Dαy(x) −

(
1 − x

4

)
+
∫x

0
xty2(t)dt

]
, (7.22)

where we suppose that an initial approximation has the following form which satisfies
the initial-boundary conditions y0(x) = Ax. Now by using the iteration formula, the first
approximation takes the following form:

y1(x) = y0(x) − (α − 1)
2

Jα
[
Dαy0(x) −

(
1 − x

4

)
+
∫x

0
xty0

2(t)dt
]

= Ax +
(α − 1)

2
Jα
[

−xα

Γ(α + 1)
+

xα+1

4Γ(α + 2)

]
.

(7.23)

By imposing initial-boundary conditions, we can obtain the following Table 4.
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8. Conclusion

In this work, homotopy perturbation method (HPM) and variational iteration method (VIM)
have been applied to linear and nonlinear initial-boundary value problems for fractional
Fredholm Integrodifferential equations. Two examples are presented in order to illustrate the
accuracy of the present methods. Comparisons of HPM and VIM with exact solution have
been given in the Tables 1–4.
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