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Having attracted much attention in the past few years, predator-prey system provides a good
mathematical model to present the correlation between predators and preys. This paper focuses
on the robust stability of Lotka-Volterra predator-prey system with the fuzzy impulsive control
model, and Takagi-Sugeno (T-S) fuzzy impulsive control model as well. Via the T-S model and
the Lyapunov method, the controlling conditions of the asymptotical stability and exponential
stability are established. Furthermore, the numerical simulation for the Lotka-Volterra predator-
prey system with impulsive effects verifies the effectiveness of the proposed methods.

1. Introduction

Since Volterra presented the differential equation to solve the issue of the sharp change of
the population of the sharks (predator) and the minions (prey) in 1925, the predator-prey
system has been applied into many areas and played an important role in the biomathematics.
Much attention has been attracted to the stability of the predator-prey system. Brauer and
Soudack studied the global behavior of a predator-prey system under constant-rate prey
harvesting with a pair of nonlinear ordinary differential equations [1]. Xu and his workmates
concluded that a short-time delay could ensure the stability of the predator-prey system [2].
After analyzing the different capability between the mature and immature predator, Wang
and his workmates obtained the global stability with the small time-delay system [3]. Li
and his partners studied the impulsive control of Lotka-Volterra predator-prey system and
established sufficient conditions of the asymptotic stability with the method of Lyapunov
functions [4]. Liu and Zhang studied the coexistence and stability of predator-prey model
with Beddington-DeAngelis functional response and stage structure [5]. Li did some work
on the predator-prey system with Holling II functional response and obtained the existence,
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uniqueness and global asymptotic stability of the in random perturbation [6]. Furthermore,
Ko and Ryu studied the qualitative behavior of nonconstant positive solutions on a general
Gauss-type predator-prey model with constant diffusion rates under homogenous Neumann
boundary condition [7]. Additionally, many papers discussed the predator-prey system with
other different methods, such as LaSalle’s invariance principle method [8], Liu and Chen’s
impulsive perturbations method [9], and Moghadas and Alexander’s generalized Gauss-type
predator-prey model [10].

In recent years, fuzzy impulsive theory has been applied to the stability analysis of the
non-linear differential equations [11-15]. However, it should be admitted that the stability
of fuzzy logic controller (FLC) is still an open problem. It is well-known that the parallel
distributed compensation technique has been the most popular controller design approach
and belongs to a continuous input control way. It is important to point out that there exist
many systems, like the predator-prey system, which cannot commonly endure continuous
control inputs, or they have impulsive dynamical behavior due to abrupt jumps at certain
instants during the evolving processes. In this sense, it is the same with communication
networks, biological population management, chemical control, and so forth [16-23]. Hence,
it is necessary to extend FLC and reflect these impulsive jump phenomena in the predator-
prey system. Until recently, few papers talk about the stability of Lotka-Volterra predator-
prey system with fuzzy impulsive control. In this paper, the writer will study the robustness
of the predator-prey system by the fuzzy impulsive control based on the T-S mathematical
model.

The rest of this paper is organized as follows. Section 2 describes the Lotka-Volterra
predator-prey system and T-S fuzzy system with impulsive control. In Section 3, the theoretic
analysis and design algorithm on stability of the impulsive fuzzy system are performed.
Numerical simulations for the predator-prey system with impulsive effects are carried out
with respect to the proposed method in Section 4. Finally, some conclusions are made in
Section 5.

2. Problem Equation

The Lotka-Volterra predator-prey system is expressed with the following differential
equation:

x1(t) = x1(F) (1 — rioxa(t)),

2.1)
%o (t) = x2(t) (—p2 + r21 21 (F)),

where x1(t), x2(t) (x1(t) > 0,x2(t) > 0) denote the species density of the preys and the
predators in the group at time t respectively. The coefficient y; > 0 denotes the birth rate
of the preys, and p, > 0 denotes the death rate of the predators. The other two coefficients ri»
and r»; (both positive) describe interactions between the species.

In order to discuss the stability of the system, a matrix differential equation is present-
ed as follows:

(2.2)

0 —112X1X
X =Ax+®d(x), where A = [P:)l ], D(x) = [ . 2].
_I/L2

121X1X2
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Lemma 2.1. x = f(x(t)), where x(t) € R" is the state variable, and f € C[R", R"] satisfiesf (0) = 0,
is a vector field defined over a compact region W C R". By using the methods introduced in [24], one
can construct fuzzy model for system (2.1) as follows.

Control Rule i (i = 1,2,...,7): IF z1(t) is My, z2(t) is My ..., and z,(t) is My, THEN
x(t) = Aix(t), where r is the number of T-S fuzzy rules, and z1(t), za(t), ..., z,(t) are the premise
variables, each M;; (j =1,2,...,p) is a fuzzy set, and A; € R™" is a constant matrix.

Thus, the nonlinear equation can be transformed to the following linear equation.

Ifo(t) is M;

X = Aix(t)/ t7éTj/

Ax|t=T)_ = Ki,,-x(t), t= T]', (23)

i=1,2,...,r j=12..,

where

- d,’T 0
A = I:,Ml 12 ], (2.4)
dirn  —u

and d; is related to the value of xo(t) (here, d; = xa(t)). M;, x(t), A; € R*>*2,r is the number of the

IF-THEN rules, K;; € R** 2 denotes the control of the j th impulsive instant, Axl|ir, = x(1] - 77).

Correspondently, with center-average defuzzifier, the overall T-S fuzzy impulsive system can
be represented as follows:

x(t) = D hi(xa () (Ax(h), t#T,
i1

2.5)
Ax|t=7‘j = Zhi(xZ(t))Ki,]’x, t= T]',
i=1

where h;(x2(t)) = wi(x2(t))/ D wi(xa2(t)) and w;(xa2(F)) = ;’le,-,j(xz(t)).
Obviously, hi(x2(t)) >0, X7 hi(x(t) =1,i=1,2,...,7.

Lemma 2.2. If P is a real semipositive matrix, then a real matrix C exists, making P = CTC.

3. Stability Analysis

Theorem 3.1. Assume that \; is the maximum eigenvalue of [AI.T + Ai]l(i=1,2,...,7), let Ma) =
max;{A;i}, 0 < 6; = 7j — Tj1 < oo is impulsive distance [25]. If AM(a) > 0 and there exists a constant
scalar € > 1 and a semipositive matrix P, such that

ln(sﬁj) + )L(“)(S] <0, PA; = AP, (31)
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where

P=C'C, pj= max||C(I + Kij) - (32)

Then the system (2.5) is stable globally and asymptotically.

Proof. Let the candidate Lyapunov function be in the form of
1 r
V(x) = 5% Px. (3.3)
Clearly, for t #;,
Y, _15 T[ 4T '
V (x) = E;hi(xz(t))x [ATP + P
= 1Zhi(xz(t))xTP[P-lAlTP + Allx
2
1 TpX (34)
< sA@)x Pl;hi(xz(t))x

= %A(a)xTPx

= Ma)V(x(1)),

wheret € (751, 77] (j=1,2,...).
For t = 7;, we have

v(x(r)) = %;hi(xz(t)) (I + Ko))x ()] P(I + Ki)x(r)]
B %éhim(t)) [(1+ Kij)x(7)]" CTC(I + Kij)x(7;)]

= 2 Shia®)C(1+ Ky)x(r)|
= (3.5)

<3 SO+ Ki) )
< 3 e x()|
i=1

=piV(x(7)), jeN.
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Let j = 1, for any t € (7, 71], by (3.4), we obtain
V(x(t) < V(x(0)) exp (M) (£ - 70)). (3.6)
Then
V(x(m1)) < V(x(70)) exp(M(a) (11 - 10)). (3.7)
From (3.5) and (3.7), we obtain
V(x(r))) <V (x(1)) < p1V(x(10)) exp(M(a) (11 - 70)). (3.8)
In the same way, for any € (11, 7,], we have
V(t,x) < V(rf,2) exp(M@) (t 1)) < BV (10, %) exp(A(a) (¢ ~ ). (3.9)
Similarly, for all k and ¢ € (7, Ti1], we obtain
V(t,x) < Pr -+ Pof1 V (1o, x) exp(A(a) (¢ - T0)). (3.10)

From (3.2), we obtain
1
Prexp(A(a)dk) < = k € N. (3.11)

Thus, for t € (1k, Tk+1], k € N, we have
Vi(x(t) < V(x(10))p1f2 - - Pr exp(Ma)(t - T0))
= V(x(m) [pr expA@60)] - [frexpA @8] expA@ (E-1)) (31
1
< V(x(To))g—k exp(A(a) (t — 7).
So, if t — oo, then k — oo and V(t,x) — 0. So the system (2.5) is stable globally and
asymptotically. O
Theorem 3.2. Assume that \; is the maximum eigenvalue of [A; + AiT](i =1,2,...,7r), let Ma) =

max;{A;}, 0 < 6; = 7j — Tj1 < oo is impulsive distance. If A(a) < 0 and a constant scalar 0 < € <
—\(a) exists, such that

In(B) -6, <0, PA; = AP, (3.13)

where P = CTC and p; = max;||C(I + K;)]|.
Then the system (2.5) is stable globally and exponentially.
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Proof. Let the candidate Lyapunov function be in the form of
1 r
V(x) = 5x Px. (3.14)

Firstly, (3.4)-(3.10) hold.
From (3.13), we obtain

Prexp(—eox) <1, ke N. (3.15)

Thus, for t € (1, k1], k € N,

V(x(t)) < V(x(to)pifa - freexp(A(@)(t - to))
= V(x(to)pifa -+ Prexp((-€) (t ~ to)) exp((A(a) +€) (t - o)
= V(x(t)) [B1 exp(-e(ts — t0))] -+ [B) exp(—e(t — £))] exp((A(a) + &) (E ~ ko))
< V(x(to)) exp((A@) + ) (¢ ~ fo)).

(3.16)

Note that 0 < ¢ < —A(a), thus A(a) + € < 0. So the system (2.5) is stable globally and
exponentially.

Next, we consider some special cases of the two theorems. Assume that K = K;; and
o = oj in the two theorems above, so we can have the following corollary. O

Corollary 3.3. Let \; be the largest eigenvalue of [A + AT],(i=1,2,...,7),AM(a) = max;{\;} > 0. If
there exists a constant € > 1 and a real semi-positive P such that

In(ef) +A(a)6 <0, PA; = AP, (3.17)
where P = CTC, p; = max;||C(I + K;;)|l, and 0 < 6 = 7; — 7.1 < oo (j € N) is impulsive distance.
Then the system (2.5) is stable globally and asymptotically.

Corollary 3.4. Let \; be the largest eigenvalue of [A + AT](i =1,2,...,7),Ma) = max;{A;} < 0. If
there exists a constant 0 < € < —\(a) and a real semi-positive P such that

In(B) —e6<0, PA;= AP, (3.18)

where P = CTC, B = max||C(I + K )|, and 0 < 6 = 7j — 7j.1 < oo(j € N) is impulsive distance.
Then the system (2.5) is stable globally and exponentially.

4. Numerical Simulation

In this section, we present a design example to show how to perform the impulsive fuzzy
control on the Lotka-Volterra predator-prey systems with impulsive effects. Especially, the
biological systems are very complex, nonlinear, and uncertain. As a result, they should be
represented by fuzzy logical method with linguistic description.
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Figure 1: The phase portrait of the system with fuzzy impulsive control.

Now;, consider a predator-prey system with impulsive effects as follows:

%= Ax + ®(x), (4.1)
where,
A= [” v 0 ] D(x) = [_mxm]. 4.2)
0 - 721X1X2
Solving

From (2.3), we have the following impulsive fuzzy control for the above predator-prey model.

Rule i

IF x,(t) is M;, then

x(t) = Aix(t) t#T;,
()= Ax(t) t#1, i=1,2, jeN, (4.3)
Ax = Ki,jx(t) t= Tj,
where,
—dr 0 - (1/2)dr 0
A = [#1 12 ], Ay = [#1 ( )driz ]/ (4.4)
dray - (1/2)dra1 —po

due to x5(t) € [0,d] = [0,0.12], and M1 (x2(t)) = x2(t)/d, My (x2(t)) = —x2(t)/d.
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Lete = 1.2, 6= 005, P= I, H1 = 0.2, H2 = 016, T2 = 010, T = 0.31.
From Theorem 3.1 and Corollary 3.3, we can get that A(a) = 0.194.
Thus, we have chosen diag ([-0.82, —0.82]) as impulsive control matrix, such that

p=|I+K|=018,  In(ef) + A(@)6 = -1.316 < 0. (4.5)

Thus, from Theorem 3.1 and Corollary 3.3, we can conclude that the numerical
example is globally stable. The phase portrait of the system with impulsive control is shown
in Figure 1.

5. Conclusions

The impulsive control technique, which was proved to be suitable for complex and nonlinear
system with impulsive effects, was applied to analyzing the framework of the fuzzy systems
based on T-S model and the proposed design approach. First, the robustness of the Lotka-
Volterra predator-prey system based on the fuzzy impulsive control was carefully analyzed.
Then, the overall impulsive fuzzy system was obtained by blending local linear impulsive
system. Meanwhile, the asymptotical stability and exponential stability of the impulsive
fuzzy system were derived by Lyapunov method. Finally, a numerical example for predator-
prey systems with impulsive effects was given to illustrate the application of impulsive fuzzy
control. The simulation results show that the proposed method was effective.
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