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The fundamental problem in genetic algorithms is premature convergence, and it is strongly
related to the loss of genetic diversity of the population. This study aims at proposing some
techniques to tackle the premature convergence by controlling the population diversity. Firstly,
a sexual selection mechanism which utilizes the mate chromosome during selection is used.
The second technique focuses on controlling the genetic parameters by applying the fuzzy logic
controller. Computational experiments are conducted on the proposed techniques and the results
are compared with other genetic operators, heuristics, and local search algorithms commonly used
for solving multidimensional 0/1 knapsack problems published in the literature.

1. Introduction

Combinatorial optimization problems contain many decision variables, and hence exploring
the search space and finding the optimal solution remain a major challenge for this type
of problem. Problems, such as loading, scheduling, inventory control, and routing, occur in
management fields and in many engineering design processes. Most of these problems are
members of the class of NP-hard problems as classified by Garey and Johnson [1]. They are
usually difficult to solve and cannot be solved in polynomial time.

The genetic algorithm (GA) [2] is a heuristic search technique that mimics natural evo-
lution processes such as selection, crossover, and mutation operations. The selection pressure
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drives the population toward better solutions while crossover, uses genes of selected parents
to produce offspring that will form the next generation. Mutation is used to avoid premature
convergence and consequently escapes from the local optimal. GAs have been very successful
in handling hard combinatorial optimization problems.

This study aims at proposing some techniques to tackle the premature convergence of
GAs by controlling the population diversity. Firstly, a new sexual selection mechanism which
utilizes the mate chromosome during selection is proposed. In a classical GA, chromosomes
reproduce asexually: any two chromosomes may be the parents in crossover. Gender division
and sexual selection here inspire a model of gendered GA in which crossover takes place only
between chromosomes of opposite sex. In this paper, the population is divided into groups of
males and females. During the sexual selection, the female chromosome is selected by using
the tournament selection while the male chromosome is selected based on the Hamming
distance (HD) from the selected female chromosome, fitness value (FV) or the active genes
(AGs) of the male chromosome.

The performance of a GA is strongly related to the equilibrium between the explora-
tion and the exploitation of the genetic operators. Establishing a suitable relationship between
the exploitation and the exploration during the GA implementation is critical for preventing
the premature convergence. In this paper, fuzzy tools are used to dynamically control the
parameters in the GA in order to create an appropriate balance between exploitation and
exploration. In order to dynamically control the parameters in a GA, population diversity
based on the phenotype and the genotype properties is applied as inputs in a fuzzy logic
controller (FLC). Based on these inputs, the fuzzy selection of crossover operator, crossover
probability, mutation operator, and mutation probability are produced as the outputs in the
FLC. The FLC is used in four stages:

(i) fuzzy selection for crossover operator,

(ii) fuzzy selection for crossover probability,

(iii) fuzzy selection for mutation operator,

(iv) fuzzy selection for mutation probability.

The remainder of this paper is organized as follows. In Section 2, a comprehensive lite-
rature review is given. Section 3 explains in detail the proposed algorithm. Computational
experiments based on the benchmark problem instances from the literature are presented in
Section 4. Finally, a brief conclusion is given in Section 5.

2. Literature Review

The GAs have grown to became a significant problem-solving technique in a variety of
areas which encounter problems of design optimization. It is almost impossible for one
to find a uniformly optimum algorithm to resolve all problems of optimization. This is in
line with the “no free lunch” theory which argues that any enhanced performance of an
algorithm over a particular problem class is paid for in its performance over another exactly.
Control parameters and selective operators of the evolutionary algorithms are becoming
more popular because of their capabilities in solving different real world problems.

Fuzzy logic (FL) and GA can be merged in two possible cases: (i) the application of GA
for solving optimization problems related with fuzzy systems and (ii) using fuzzy tools and
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FL-based techniques for modelling and adapting different GA components. The GA resulting
from the merging of the second case is called fuzzy genetic algorithms (FGAs) [3].

Some researchers utilized FL to dynamically control the parameters in GA in order
to create an appropriate balance between exploitation and exploration. A management
technique of crossover and mutation probabilities on the basis of FL was proposed by Song
et al. [4] In this technique, the alteration of the average fitness value between two sequential
generations is considered as the input variables. The method used by [4] encountered some
problems in the fuzzy inference rules that Yun and Gen [5] later overcame by introducing a
modification and a scaling factor for the normalization of the input variables.

Subbu et al. [6] presented a contrast between the performance of an FGA and a para-
meter-tuned GA for a nimble production application whereby parameters of the GA were
dynamically scheduled by FLCs. The tuned genetic algorithm (TGA) performed superior
searches but required more time for searching than the FGA. Therefore, the TGA is slower
than the FGA as it uses a canonical static parameter set.

Li et al. [7] used fuzzy tools in a GA for controlling the crossover and mutation proba-
bilities. Their FGA utilized the information of both the whole generation and the particular
chromosomes. Wang et al. [8] and Wang [9] designed an FGA based on population diversity
measurements whereby the fuzzy controller was employed in controlling the crossover and
mutation probabilities. Liu et al. [10] designed a hybrid consisting of a fuzzy system and
GA which takes into consideration the average fitness value and the best fitness value of
chromosomes in each generation to allow a dynamic control of the crossover and mutation
probabilities. Herrera et al. [11] and Herrera and Lozano [3, 12, 13] attempted to lay the
foundations for FGAs. They formulated different possible definitions for these algorithms.
They suggested an exhaustive analysis of fuzzy-adaptive GA and an adaptive approach for
controlling the mutation probability based on a utilization of FLCs.

Lee and Takagi [14] proposed a method for controlling the crossover and mutation
rate. They also presented an automatic fuzzy design technique which was based on a GA.
Im and Lee [15] presented adaptive crossover, mutation, and selection using a fuzzy system
for GA. In their study, it is not clear how a fuzzy system was based and which parameter of
the GA was used for selection rules and membership functions. Jalali Varnamkhasti and Lee
[16] proposed a new technique for choosing the female chromosome during sexual selection
in a GA. A bilinear allocation lifetime approach is used to label the chromosomes based on
their fitness value which will then be used to characterize the diversity of the population. The
application of this technique is given by Jafari et al. [17] for committee neural networks.

3. Fuzzy Genetic Algorithm

The performance of an FGA depends on the design of various features, the most important
of which are population, selection mechanism, crossover, and mutation operators and their
probabilities and replacement strategy. In the remaining section, we discussed some of the
main components of the FGA as shown in Algorithm 1.

3.1. Encoding

Chromosome encoding can be achieved by a variety of encoding methods and the choice of
method is usually dependent on the optimization problem structure and precision requisites.
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begin
Initialise Population;
Fitness Evaluation;
repeat

Population Diversity;
Sexual Selection;
Fuzzy Controller;

Fuzzy Crossover;
Fuzzy Mutation;

Replacement;
until the end condition is satisfied;
return the fittest solution found;

end

Algorithm 1: FGA

However, the most common methods of encoding chromosomes are binary, integer, and real
number encoding. The most commonly employed method of the three is binary encoding,
primarily because the first works using GA employed this type of encoding. Binary encoding
handles each chromosome as cord of bits, either 1 or 0. In this paper, we used standard binary
encoding.

3.2. Population Diversity

In this study, the genotype and phenotype properties are both considered for the
measurement of the population diversity. In the case of the phenotypic measures, the
methods presented by Srinivas and Patnaik [18] and Zhu and Liu [19] are used with slight
modifications [20]:

T1,t =
nfi

N
,

T2,t =
fmax,t − favg,t

fmax,t
,

(3.1)

where N: population size, nfi : number of unique fitness values in the population, fmax,t:
maximum fitness value in generation t, and, favg,t: average fitness value in generation t.

In the case when the genotypic measure is used, an equation similar to part of the
technique proposed by Jassadapakorn and Chongstitvatana [21] is used:

T3,t =
HD

(
Cfmax,t , Cfmin,t

)

L
, (3.2)

where HD(Cfmax,t , Cfmin,t): HD between the chromosomes with the highest and the lowest FV,
and L: length of the chromosome.

In this technique, the HD is calculated in each generation for only two chromosomes:
the chromosome with the maximum fitness value (Cfmax) and the one with the minimum
fitness value (Cfmin) [20].
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Figure 1: The set of linguistic labels associated with T1,t, T2,t, and T3,t (source: [20]).

As regards to T1,t, T2,t, and T3,t, three membership functions are defined. The set of
linguistic labels associated with T1,t and T3,t are low, medium, and high and those related to
T2,t are low and high. The semantic (meaning) of these labels are illustrated in Figure 1 [20].

3.3. Sexual Selection

The selection mechanism drives the population toward better solutions while the crossover
uses genes of the selected parents to produce offspring that will form the next generation.
This operator chooses chromosomes in the present generation for use in construction of
the following one. In GAs, this operator is quite similar to the biological process of natural
selection. The more fitting chromosomes are better able to survive and breed. The rate of
the GA convergence depends to a great extent on the selection pressure; strong pressure
favours fit chromosomes and leads to fast convergence, and vice versa. Though, when the
selection pressure is very high, few highly fitting chromosomes will dominate the population
thus lowering the diversity due to exploring the various areas of the solution space and
consequently may lead to the premature convergence. On the other hand, when the selection
pressure is very weak, the GA will need a higher number of generations to find the optimum
solution. A balance between the two is needed to conserve the diversity of the population
and escape premature convergence.

In this paper, we use the sexual selection proposed in [20]. This technique utilizes the
mate chromosome during selection. Note that the layout of the male and female chromo-
somes in each generation is different. During the sexual selection, a female chromosome is
selected by tournament selection of size t from the female group. The selection of the male
chromosome is based on the HD from the female chromosome, FV or AG of the male chro-
mosome. Detailed description can be found in [20].

To justify the decision of changing the layout of the male and female group in each
generation, we tested this technique on four nonlinear numerical functions and compared it
with some other sexual selection mechanism available in the literature. A standard GA is used
in this experiment with a population size of 20, uniform crossover with probability, pc = 1.00,
and binary mutation with probability, pm = 0.002. In order to better compare the mate
selection technique, two types of selection mechanisms, random and tournament selections,
are considered. The different sexual selection mechanisms collected from the literature that
are used in the GA are listed in Table 1. The computations are to maximise the four test
functions listed in Table 2 [22]. Each test function is tested on the GA for 30 times with 2000
generations per run.

The average results of 30 runs of the test functions are listed in Table 3. By considering
the results from each test function, it is clear that the proposed technique of grouping
the male and female chromosomes alternately outperforms other grouping techniques of
sexual selection mechanisms.
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Table 1: Sexual selection mechanisms.

Population order Grouping of male and female Selection Selection mechanism

Randomly scattered

First half male, second half
female

1 Male and female randomly

2 Male and female with
tournament size two

Select male and female
alternately

3 Male and female randomly

4 Male and female with
tournament size two

Sorted in non-increasing
order of fitness values

First half male, second half
female

5 Male and female randomly

6 Male and female with
tournament size two

Select male and female
alternately

7 Male and female randomly

8 Male and female with
tournament size two

Table 2: Test functions (source: [22]).

Test Function Constraints
f1(x) = {1 + (x1 + x2 + 1)2 · (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)}·

{30 + (2x1 − 3x2)
2 · (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)}

−10 ≤ xi ≤ 10

f2(x) = (4 − 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (−4 + 4x2

2)x
2
2

−3 ≤ x1 ≤ 3
−2 ≤ x2 ≤ 2

f3(x) = {∑5
i=1 i cos((i + 1)x1 + i)} · {∑5

i=1 i cos((i + 1)x2 + i)} −10 ≤ xi ≤ 10

f4(x) = (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1 − 1/8π) cos(x1) + 10 −5 ≤ x1 ≤ 10

0 ≤ x2 ≤ 15

Table 3: Comparison of gender grouping mechanisms.

f1 f2 f3 f4

Selection 1 7.02 × 1010 121.56 133.82 267.57
Selection 2 8.09 × 1010 162.20 210.08 308.13

Selection 3 8.09 × 1010 162.20 210.08 308.13
Selection 4 8.35 × 1010 162.20 210.23 308.13

Selection 5 7.02 × 1010 110.21 98.66 221.55
Selection 6 7.49 × 1010 117.02 60.14 308.08
Selection 7 8.11 × 1010 162.20 209.83 308.13

Selection 8 8.35 × 1010 162.20 210.23 308.13

3.4. Crossover

3.4.1. Fuzzy Crossover Operator

The performance of a GA is dependent on the genetic operators particularly on the type of
crossover operator. Effective crossover in GAs is achieved through establishing the optimum
relationship between the crossover structure and the search problem itself. The goal of this
section is to provide a crossover selection technique based on the diversity of the population
and a FLC. A crossover operator is selected in each generation from a list of crossover ope-
rators by running fuzzy tools on the results of measurements of the population diversity.
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Table 4: Abbreviations of crossover operators.

Crossover operators Abbreviation
2-Point crossover 2PC
k-Point crossover KPC
Uniform crossover UC
Segregation crossover SC
Inversion crossover IC

Many published works compared the various crossover operators (see, De Jong and
Spears [23, 24], Syswerda [25], and Eshelman et al. [26]). These researchers particularly
investigated the numbers of crossover points, when some segments were exchanged using
k-point type of cross-over techniques. Their results demonstrated that sometimes the final
output would be better if the number of crossover points was increased. Besides empirical
analysis, substantial efforts have been invested in comparing, from theoretical perspectives,
mutation, and crossover as well as the various crossover operators [26]. However, these
theories are not general enough to predict when to apply crossover or what type of crossover
operator to employ. For instance, these theories did not address the issue of size of the study
population even though it may affect the relative usefulness of the crossover operators [23].
Likewise, there is enough evidence suggesting that the relative usefulness of mutation may be
influenced by the size of the population. Mutation seems to be more advantageous compared
to crossover with small population sizes whereas crossover may be more advantageous than
mutation when dealing with large population sizes [26]. Moreover, the relative usefulness of
mutation and crossover are influenced by several other factors like the fitness function, the
representation, and the selection scheme.

For selecting the most appropriate crossover method, the structure of the crossover
and the population diversity should be considered. In this study, we are using the technique
introduced in [20]. In this technique, some crossover operators based on binary encoding
are considered as the default crossover operators. These methods and their abbreviations are
presented in Table 4.

(i) Two-Point Crossover [2]

In a two-point crossover operator, two positive integer random numbers r1 and r2 are
generated as cross-sites such that r1, r2 < L, where L is the length of the chromosome. The
genes bracketed by these numbers are exchanged between two mated parents. If the number
of crossover point is greater than two, this type of crossover is named as k-Point crossover.
In a k-Point crossover, a positive integer random number, r, is generated such that r ≤ L,
where r is the number of cross-points. The genes are exchanged between alternate pairs of
the cross-points.

(ii) Uniform Crossover [25]

In the uniform crossover operator, each gene from either parent is selected for exchange and
an offspring is created by copying the corresponding gene from one of the parent which is
chosen using a randomly generated crossover mask. In each generation, a new crossover
mask is randomly generated for each pair of parents.
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Table 5: Levels of crossover operator based on CA (source: [20]).

Low Medium High

2-point k-point
Uniform

Segregation
Inversion

(ii) Segregation Crossover [27]

In the segregation crossover operator, two cuts, one from each parent, are selected so that
the lengths of these parts are the same and then all genes in these parts are exchanged. In
this technique, similarity in the gene positions for exchange is not a necessity. The difference
between the SC and 2PC methods lies in the positions of the genes that are exchanged.

(iii) Inversion Crossover [27]

In this technique, two positive integer random numbers r1 and r2 are generated as cross-sites
such that r1, r2 < L. The contents bracketed by these sites are exchanged between two parents.
Then, the end points of these exchanged contents switch places.

The explanation of the relative crossover operator and population diversity can be
found in [20]. There are three levels for crossover ability (CA): low, medium and high. When
the CA is low, this means that the operator is weak in keeping population diversity. Medium
CA means the operator is appropriate for keeping genetic diversity and it is effective for
finding different fitness value. If the CA is high, this means that the operator is useful for
increasing genetic diversity and finding different fitness value. Levels of crossover operator
based on CA used in this study are given in Table 5 [20].

As for the T1,t, T2,t, and T3,t inputs, the set of linguistic labels is associated with the
ability of keeping the genetic diversity of low, medium and high. For each linguistic term,
there is a triangular fuzzy set that defines its semantic (meaning) as shown in Figure 2. Note
that the standard Mamdani method is used for fuzzy inference system.

3.4.2. Fuzzy Crossover Probability

Crossover is based on probabilistic model-building procedure in a GA. It controls the rate
at which solutions are to crossover given that, for each problem, the probability is chosen
by the user. The selection of the crossover probability, pc, critically affects the behaviour
and performance of a GA. However, guiding selection principles exist in the literature,
(see, Grefenstette [28], De Jong [29, 30], Goldberg and Sastry [31], and Schaffer et al. [32]).
Researchers usually use a probability of 50%–100% for executing the crossover [33]. Goldberg
and Sastry [31] generalized the schema theorem for pc. They argued that the selection
pressure corresponds to disruption of schema and showed that when the building blocks
are compact (meaning its genes are located close to each other in the chromosome string), the
GA works well for a wide range of combinations of pc and selection rates.

Adaptive techniques that alter the probability of applying an operator in proportion
to the observed performance of the chromosomes created by that operator in the course
of a run were proposed by Davis [34]. Fernandes et al. [35] considered a GA that adapts
the reproduction rate to the size of the population under investigation. Annunziato and
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Low Medium High

0.25 0.750.5
0

1
Low

CA

Medium High

0.25 0.750.5 Pc
0

1

µ µ

Figure 2: The set of linguistic labels associated with CA and pc (source: [20]).

Table 6: Abbreviations of mutation operators.

Mutation operator Abbreviation
Binary mutation BM
Interchanging mutation IM
Reversing mutation RM
Parity Encoding mutation PEM
Simple Sum Coding mutation SSCM
Inversion Sum Coding mutation ISCM
Cycle Sum Coding mutation CSCM

Pizzuti [36] presented a technique for setting the genetic parameters during the course of
a run by adapting the population size and the operator rates to the environmental constraint
of maximum population size. On the other hand, an approach to determine of the probability
of crossover and mutation based on the various fitness potentials of the population was
established by Srinivas and Patnaik [18] where they presented a particular approach which
eliminates the need for parameters in a crossover-based GA.

In this study, the crossover probability is varied on the basis of the phenotype
and genotype characteristics of the chromosome. In addition, the population diversity is
considered and its probability is estimated by an FLC. As for the T1,t, T2,t, and T3,t inputs,
the set of linguistic labels associated with crossover probability comprises of the descriptions
of low, medium, and high. For each linguistic term, there is a triangular fuzzy set that defines
its semantic (meaning) as shown in Figure 2 [20].

3.5. Mutation

3.5.1. Fuzzy Mutation Operator

In GAs, a mutation operator is applied after performing the crossover. The mutation operator
is used to prevent the GAs from falling into a local optimum by preventing the population
of chromosomes from becoming very similar to each other, which results in a premature
convergence. The arguments presented in this subsection lead to the idea of using fuzzy
system for selecting an appropriate mutation operator in order to obtain a more efficient
mutation operator. In this study, some of the mutation operators are chosen from the
literature. The Common abbreviations of these methods are summarized in Table 6.
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(i) Binary Mutation [2]

A binary mutation operator is applied to each offspring which is represented by a binary
code. It introduces small changes to the individual by altering each gene in the offspring
from “1” to “0” or vice versa.

(ii) Interchanging Mutation [37]

In an interchanging mutation, two random position of the string are chosen and the bits
corresponding to those positions are interchanged.

(iii) Reversing Mutation [37]

In a reversing mutation, a random position is chosen and the bits next to that position are
reversed to produce a new offspring.

(iv) Parity Encoding Mutation [38]

Let X = {xk} be an n-bit binary sequence, indexed from left to right of chromosome ci, the
parity encoding, P(X) = {yj}, of X is defined to be yj =

∑
xk, k = 1 to j where

∑
is the base

2 summation. For example, P(1101001) = 1001110 and P(1001110) = 111010. In the PEM, X
is replaced by P(X) in offspring ci.

(v) Simple Sum Coding Mutation [38]

In this operator, a substring of offspring is selected randomly and then this subset is summed
on a base 2 and is replaced with the same place in the offspring. If the number of genes after
summation is more than the places, the extra genes are not considered (right to left). For
example, consider a substring of offspring pi = (10110011100001011) that is chosen between
the second and 7th gene. This result is (1100)+(1100) = 11000 and 1000 replaced the 1100 and
new offspring is p′i = (10100011100001011).

(vi) Inversion Sum Coding Mutation [38]

A substring of offspring is selected randomly, and then the subset is summed with inverse
order of itself on base 2 and replaced with the same place in the offspring. If the number of
genes after summation is more than the places, the extra genes are not considered (right to
left). For example, consider a substring of offspring pi = (10110011100001011) that is chosen
between the second and 7th gene. This result is (1100) + (0011) =1111 and 1111 replaced the
1100 and new offspring is p′i = (10111111100001011).

(vii) Cycle Sum Coding Mutation [38]

In this operation, the start of the sequence is connected to the end to form a cycle. In this
cycle, two substrings are considered where the lengths are the same. These substrings are
summed together on a base 2 and the result replaces the position of one of the substrings
randomly. If the number of genes after summation is more than the places, the extra genes
are not considered (right to left).
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 11 1 1 0 0 0 1 1 1 11 1 1 0 0 0

Mutation: Before After

Offspring 1:

Offspring 2:

Figure 3: An example of Reversing Mutation.

offspring : 1 0 0 1 1 0 0 1 0 0 0

New offspring (SSCM): 1 0 0 1 1 0 1 0 0 0 0

New offspring (ISCM): 1 0 0 1 1 0 1 0 0 0 0

New offspring (PEM): 1 0 0 1 1 0 0 1 1 1 0

With the same offspring, CSCM operator creates new offspring as follows:

0
0

0

1

1

0
0

1

0

0

1

Offspring: New offspring: 

1
0

0

1

1

0
0

1

0

0

0

Offspring: 1 0 0 1 1 0 0 1 0 0 0

New offspring:  0 0 0 1 1 0 0 1 0 0 1

(00100)+(00100 = 01000 )

Figure 4: Comparison of mutation operators of on offspring.

When the BM operator is used as a default mutation operator, a small mutation proba-
bility such as pm = 1/L, where L is the length of the chromosome, is used as the most common
approach. However, this technique has two shortcomings:

(i) when the length of chromosome is short, the mutation probability is high which
forces us to choose an experimentation strategy for the pm selection,

(ii) each gene will be checked based on the mutation probability which renders a high
computation time.

In the IM operator, only two genes are changed for each chromosome. Note that for a
long chromosome, this method is not appropriate. If the layout of genes is symmetric or if all
genes are similar, the RM technique failed to create new offspring as shown by the example
in Figure 3.

When the SSCM, ISCM, CSCM, or PEM is used as the mutation operator, the perfor-
mances of the CSCM and PEM operators are sometimes better than those of the ISCM and
SSCM operators (Figure 4).
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Table 7: Levels of mutation operator based on MA.

Low Medium High
Interchanging Binary Parity Encoding

Reversing Simple Sum Coding Inversion Sum Coding
Cycle Sum Coding

When the genetic diversity of the population is high (T3,t ≥ 0.50), the IM and
RM operators perform well because the genetic diversity is high and there is no need to
made huge changes. Also the time consumptions in the IM and RM methods are less than
other operators. Therefore, it is better to use IM or RM in this case. The diversity of the
population is considered medium when some gene locations in the chromosomes are the
same (0.25 ≤ T3,t ≤ 0.50). In such cases, it is better to use mutation operators that can keep
the diversity or amplitude changes on the genetic diversity. Therefore, it is better to use
BM or SSCM operators in this case. On the other hand, the diversity of the population is
considered low (T3,t < 0.25) when some chromosomes are identical. Hence, we need to use
mutation operators that can increase the genetic diversity of the population but in reasonable
computational time. IM and RM are weak for this situation. In this case, we can use BM or
SSCM operator, but the problem is that we have a high mutation probability. Therefore, it
is better to use PEM, ISCM, or CSCM in this case. The explanation of the relative mutation
operators with the population diversity which consist of three levels of mutation ability (MA)
is given in Table 7.

As for the T1,t, T2,t, and T3,t inputs, the set of linguistic labels associated with MA for
keeping genetic diversity comprises the descriptions of low, medium and high. For each lin-
guistic term, there is a triangular fuzzy set that defines its semantic (meaning) as shown in
Figure 5.

3.5.2. Fuzzy Mutation Probability

The efficiency of the mutation operator as a means of exploring the search space is
questionable. A GA using mutation as the only genetic operator would be a random search
that is biased toward sampling good hyperplanes rather than poor ones. In order to explore
the space reasonably quickly, the pm needs to be high. However, a high pm would disturb the
sampling rates, even for the short schemata, and we would then end up with an essentially
pure random search. On the other hand, if pm is low, the search would be very slow since
application of the mutation operator would often leave a string unchanged. Then the question
is: how could one figure out the probability value to be used for mutation?

This study has taken the population diversity into consideration and the related
probability of mutation has been calculated using an FLC. As for the T1,t, T2,t, and T3,t inputs,
the set of linguistic labels associated with mutation probability comprises the descriptions of
low, medium and high. For each linguistic term, there is a triangular fuzzy set that defines its
semantic (meaning) as shown in Figure 5.

In a traditional GA, usually a very small number is used for mutation probability.
Most of them used pm = 1/L. In this proposed technique, pm = 1/L is used as the center point
for the mutation probability. The range that is considered in this study is at the interval of
(1/L − 1/2L, 1/L + 1/2L) = (1/2L, 3/2L).
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Low Medium High

1/2L 3/2L1/L
0

1
Low

MA

Medium High

0.25 0.750.5
0

1

µ µ

Pm

Figure 5: The set of linguistic labels associated with MA and pm.

3.6. Fuzzy Rules

The linguistic rules describing the control system consist of two parts: an antecedent block
(between the IF and THEN) and a consequent block (following THEN). By making this type
of evaluation, fewer rules can be evaluated, thus simplifying the processing logic and perhaps
even improving the fuzzy logic system performance. There is the possibility of generating a
single rule for each output variable. In this paper, we used the toolbox of Mamdani inference
systems from MATLAB fuzzy logic toolbox. The inputs are combined logically using
the AND/OR operator to produce output (xi, μi(CA)), (yi, μi(MA)), (zi, μi(pc)), and
(wi, μi(pm)) response values for all the expected inputs [20]:

μi(CA) = max
{
μi(T1,t), μi(T2,t), μi(T3,t)

}
,

μi(MA) = max
{
μi(T1,t), μi(T2,t), μi(T3,t)

}
,

μi

(
pc
)
= min

{
μi(T1,t), μi(T2,t), μi(T3,t)

}
,

μi

(
pm

)
= min

{
μi(T1,t), μi(T2,t), μi(T3,t)

}
,

(3.3)

where i = 1, 2, . . . , the number of rules.
Therefore, the proposed fuzzy system with three input variables will have 18 (3×2×3)

rules for each output variable (CA, MA, pc, and pm). This fuzzy rule base is collectively
presented in Table 8. The fuzzy outputs for all rules are finally aggregated to one fuzzy
set. To obtain a crisp decision from this fuzzy set, we use the centre of gravity approach
for defuzzification [20]:

xCA =
∑n

i=1 μi(CA)xi
∑n

i=1 μi(CA)
,

yMA =
∑n

i=1 μi(MA)yi
∑n

i=1 μi(MA)
,

zpc =
∑n

i=1 μi

(
pc
)
zi

∑n
i=1 μi

(
pc
) ,

wpm =
∑n

i=1 μi

(
pm

)
wi

∑n
i=1 μi

(
pm

) .

(3.4)
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Table 8: Fuzzy rule base for CA, pc, MA, and pm.

Rule T1,t T2,t T3,t CA pc MA pm

1 Low Low Low High High High High
2 Low Low Medium High High High High
3 Low Low High Medium Medium Medium High
4 Low High Low High Medium High High
5 Low High Medium Medium Medium Medium Medium
6 Low High High Medium Low Medium Low
7 Medium Low Low High High High High
8 Medium Low Medium Medium Medium Medium Medium
9 Medium Low High Medium Medium Medium Low
10 Medium High Low Medium Medium Medium Medium
11 Medium High Medium Medium Medium Medium Low
12 Medium High High Medium Low Medium Low
13 High Low Low High High High High
14 High Low Medium Medium Medium Medium Medium
15 High Low High Low Medium Low Low
16 High High Low Low Medium Low Medium
17 High High Medium Low Low Low Low
18 High High High Low Low Low Low

3.7. Elitism Replacement with Filtration

After the fuzzy crossover and mutation operators are applied, elitism replacement technique
is used as the replacement strategy. The offsprings will have to compete with their parents
in order to allow transition into the new population. In other words, fitter chromosomes will
survive for the next generation and they are never lost unless better solutions are found.
In the elitism replacement technique, both parent and offspring populations are considered
together as a single population. Then, this population is sorted in a nonincreasing order
of their associated fitness value and the first half of the chromosomes from this combined
population are selected as the chromosomes of the new population for the next generation.

What is meant, within this context, by saying that two chromosomes are identical is
that the loci of their genes are equal. Existence of the identical chromosomes is one of the
critical problems for premature convergence. When large proportion of the chromosomes
in the population are identical, the diversity of the population will be lost and premature
convergence occurs. In order to overcome this problem, the filtration technique is used to add
diversity to the new population. In this technique, one of the identical chromosomes is kept
while the others are removed and replaced by new feasible chromosomes that are generated
randomly. As the filtration procedure involves the process of “identifying,” “regenerating”
and “reevaluating,” of the new chromosomes which requires a fair amount of computation
time, it is sensible to just invoke the procedure every R generation (where R is a parameter,
e.g., 100) or when there is at least 10 percent of the population that are identical [20].

4. Computational Experiments

The multidimensional knapsack problem (MKP) is defined as a combinatorial optimization
problem that is NP hard. The MKP problems have large application, which includes many
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applicable problems such as cargo loading, cutting stock, and bin-packing, among others. The
goal of an MKP is to boost the sum of values of the items to be chosen from some specified
set by means of taking multiple-resource restraints into consideration. This problem has been
widely studied over many decades due both to theoretical interests and its broad applications
in several fields, like engineering, operations research, management, and computer sciences.
Elaborate literature on the MKP and its relations to different problems are published by
Pisinger [33], Gavish and Pirkul [39], Martello and Toth [40], Chu and Beasley [41], and
Freville and Plateau [42]. Basically, the MKP can be formulated as follows [43].

max f(x1, x2, . . . , xn) =
n∑

j=1

pjxj

s.t
n∑

j=1

wijxij ≤ ci i = 1, 2, . . . , m,

xj ∈ {0, 1} j = 1, 2, . . . , n,

with pj > 0, wij ≥ 0, ci ≥ 0,

(4.1)

where n: number of objects; m: number of knapsacks; wij : consumption of resource i for object
j; ci: capacity of the ith knapsack; pj : profit associated with object j; and xj : decision variable
with object j.

In this section, we present the computational results of the proposed FGA and the
comparisons with other variants of heuristic and local search methods. The remaining parts
of this section are organised as follows:

(1) The proposed sexual selection is compared with some selection mechanisms from
the literature.

(2) The proposed FGA based on the crossover operator and probability selection
technique is compared with some crossover operators with fixed probability from
the literature.

(3) The proposed FGA based on the mutation operator and probability selection
technique is compared with some mutation operators with fixed probability from
the literature.

(4) The completed FGA (based on sexual selection, crossover, and mutation operators
with their probability selection technique) is compared with some heuristic and
local search algorithms from the literature, namely; GA by Chu and Beasley [41],
simulated annealing by Qian and Ding [44], and heuristic algorithms by Magazine
and Oguz [45], Volgenant and Zoon [46], and Pirkul [47].

4.1. Experimental Design

The benchmark dataset tested in this research is inclusive of 270 problem instances on the
multidimensional knapsack problems as proposed by Chu and Beasley [41]. These problem
instances have been extensively utilized in literature for the testing of MKP algorithms.
These problems include n = 100, 250, 500 variables and m = 5, 10, 30 constraints. For each
category of n variables, three tightness ratios are considered as α = 0.25, 0.50, 0.75. This set
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Table 9: Abbreviation of selection mechanism.

Selection mechanism Abbreviation
Sexual selection SX
Roulette Wheel RW
Tournament selection TS
Linear Ranking LR
Stochastic Universal Sampling SUS
Truncation selection TR

of problems contains 27 different problem sets, each having 10 randomly generated instances,
thus a total of 270 problems.

In these problem sets, wij are drawn from discrete uniform generator U(0, 1000) and
the right hand side coefficients ci, i ∈ {1, . . . , m}, are set using ci = α

∑n
j=1 wij where α

is the tightness ratio. The objective function coefficients pj , j ∈ {1, . . . , m} are correlated to
wij and are generated as pj =

∑m
i=1(wij/m) + 500ej , where ej is a real number drawn from the

continuous uniform generator U(0, 1) [41]. The performance of these approaches is measured
using the Percentage Deviation (PD) between the benchmark problems taken from the OR
Library [48] and our results. That is,

PD =
|Bi − Ri|

Bi
× 100%, (4.2)

where Bi is the benchmark result and Ri is the computational result obtained by the proposed
algorithm.

All algorithms were coded in C++ and ran on a Pentium IV with 2.0 GHz CPU and
2.0 GB of RAM. For each problem instance, 30 runs were performed. In order to have a fair
comparison between the algorithms in this experiment, we employed duration of 20 CPU
seconds per run.

4.2. Computational Results of Selection Mechanisms

In this subsection, we present the computational results of the proposed sexual selection
and the comparisons with other variants of selection mechanisms from the literature. The
abbreviations of these methods are presented in Table 9.

The computational experiments reported here were performed using standard GAs
(SGAs) with the initial population technique that is proposed by Chu and Beasley [41]. In
these algorithms, the population size of 100, uniform crossover with probability, pc = 0.70,
and binary mutation with probability, pm = 1/L, are considered. The replacement strategy is
the technique explained in Section 3.7.

Generally, the classical selection mechanisms are trying to keep better chromosomes
in the population and consequently they tend to be biased toward certain genes. This would
lead to premature convergence. In order to prevent premature convergence, diverse solutions
and a good coverage of the solution landscape have to be provided in the population. To
see whether the sexual selection provides a good coverage and to avoid the premature
convergence, in the Figure 6, there are the average PDs computed over 10 problem instances
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Figure 6: Average percentage deviation between three categories of standard, large size, and difficult MKPs
based on selection mechanisms.

with 30 runs each for the selection mechanisms mentioned in Table 9 when the algorithms
terminate at 20 CPU seconds per run.

Results emphasised in Figure 6 show that the sexual selection finds better and
comparable solutions for three categories of standard, large size and more difficult
problems described in [41]. Hence, the sexual selection is effective for keeping population
diversity, avoiding premature convergence, and, consequently, finding better and comparable
solutions.

4.3. Computational Results of FGA Based on the Crossover Operator and
Probability Selection Technique

In this subsection, we present the computational results of the proposed FGA based on
the crossover operator and probability selection technique named FGASC for solving the
MKPs. In order to scrutinize the performance of the proposed FGASC, some commonly
used crossover operators in binary encoding are considered. Common abbreviations of these
operators were mentioned in Table 4.

The computational experiments reported here were performed by using SGAs with
the initial population technique described in [41]. Once again, the population size is kept as
100, with the tournament selection of size two being used as the default selection mechanism,
and the binary mutation with probability, pm = 1/L, is considered. The replacement strategy
is the technique explained in Section 3.7. The crossover operators listed in Table 4 are applied
with a fixed crossover probability, pc = 0.70 on the SGAs. The average PDs computed over
10 problem instances with 30 runs each of the SGAs and the FGASC when the algorithms
terminate at 20 CPU seconds per run are shown in Figure 7.

Figure 7 presents the average PDs of SGAs and FGASC for three categories of
standard, large size, and difficult MKPs. The results show that the FGASC performs
significantly better than the SGAs. This shows that the FGASC is able to produce better
quality solutions compared to SGAs in a fixed CPU time. There is clear evidence from Figure 7



18 Journal of Applied Mathematics

0

1

2

2 PC
KPC
UC

SC
IC
FGASC

Standard Large size Difficult

0.5

1.5

2.5

(A
ve

. P
D
)

Figure 7: Average percentage deviation between three categories of standard, large size, and difficult MKPs
based on crossover operators.

that, on average, the FGASC is the best algorithm followed by the SGAs with SC, IC, UX,
KPC, and finally the SGA with 2PC. The algorithms find problems of m = 30 to be the most
challenging. With other things (n and α) being equal, when we increase the value of m, then
PD will increase.

4.4. Computational Results of FGA Based on the Mutation Operator and
Probability Selection Technique

The computational results of the proposed FGA based on the mutation operator and
probability selection technique called FGASM is presented in this subsection. In order to
assess the performance of the proposed FGASM, some commonly used mutation operators
in binary encoding mentioned in Table 6 are considered.

The computational experiments reported here were performed by using SGAs with the
initial population technique introduced by [41]. In these algorithms, a population with size of
100, tournament selection of size two, 2-point crossover with fixed probability, pc = 0.70, and
a fixed mutation probability, pm = 1/L, are considered. A 2-point crossover is used because
this operator is weak in keeping the population diversity. Hence, the effect of the mutation
operators towards the computational results will be more comparable. The replacement
strategy is technique explained in Section 3.7. The average PDs of the comparison of the
FGASM with the other mutation operators on SGAs are shown in Figure 8.

Figure 8 presents the average PDs computed over 10 problem instances with 30 runs
each of the SGAs and FGASM for three categories of standard, large size, and difficult MKPs.
As observed from Figure 8, the highest average PD is obtained by RM. The average PDs
for SSCM, ISCM, CSCM, and PEM are better than that of BM, IM, and RM whereas the
average PDs for FGASM are the best. Therefore, we can conclude that the mutation operator
and probability selection technique are effective in keeping population diversity, avoiding
premature convergence, and, consequently, finding better and comparable solutions for the
MKPs.
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Table 10: Abbreviation of the heuristics and local search algorithms.

Algorithm Abbreviation
Heuristic by Magazine and Oguz M&O
Heuristic by Volgenant and Zoon V&Z
Heuristic by Pirkul MKHEUR
Simulated Annealing by Qian and Ding SA
GA by Chu and Beasley GACB
Fuzzy Genetic Algorithm FGA
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Figure 8: Average percentage deviation between three categories of standard, large size, and difficult MKPs
based on mutation operators.

4.5. Comparison of FGA with Heuristics and Local Search Algorithms

In this subsection, we present the results of the proposed complete FGA for solving the MKPs.
In order to assess of the performance of the proposed FGA, the heuristics and local search
algorithms found in the literature are considered. The abbreviations of these methods are
presented in Table 10.

For all these algorithms, since the original source codes were not available to us, we
used the computational results presented in Chu and Beasley [41] and Qian and Ding [44].
The same benchmark problem instances are used for the computational experiments. The
numerical results are computed after making 30 independent runs for statistical significance.
Each run is terminated if one of the following stopping conditions is satisfied:

(1) the fitness value does not improved after 100 generations;

(2) the number of generations is equal to 106; or

(3) the CPU time is more than 500 CPU seconds.

Table 11 directly compares the performance of the complete FGA with other well-known
heuristics and local search algorithms by means of average PDs. The benchmark column
represents the average computational results of 10 problem instances from each problem set
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Table 11: Computational results of FGA with heuristics and local search algorithms.

m n α Benchmark Heuristics and local search algorithms FGA
M&O V&Z MKHEUR SA GACB

5

100
0.25 24197.20 13.69 10.30 1.59 2.95 0.99 0.12
0.50 43252.90 6.71 6.90 0.77 1.67 0.45 0.08
0.75 60471.00 5.11 5.86 0.48 0.87 0.32 0.01

250
0.25 60409.70 6.64 5.85 0.53 3.09 0.23 0.01
0.50 109284.60 5.22 4.40 0.24 1.89 0.12 0.00
0.75 151555.90 3.56 3.59 0.16 0.84 0.08 0.00

500
0.25 120615.50 4.93 4.11 0.22 3.41 0.09 0.00
0.50 219503.10 2.96 2.53 0.08 2.04 0.04 0.00
0.75 302354.90 2.31 2.41 0.06 0.92 0.03 0.00

Average 5.68 5.12 0.46 1.96 0.26 0.02

10

100
0.25 22601.90 15.88 15.55 3.43 3.93 1.56 0.23
0.50 45659.10 10.41 10.72 1.84 2.09 0.79 0.11
0.75 59555.60 6.07 5.67 1.06 1.06 0.48 0.02

250
0.25 58993.90 11.73 10.53 1.07 3.21 0.51 0.02
0.50 108706.40 6.83 5.92 0.57 2.14 0.25 0.01
0.75 151330.40 4.42 3.77 0.33 1.01 0.15 0.00

500
0.25 118565.50 8.81 7.90 0.52 3.67 0.24 0.00
0.50 217274.60 5.71 4.14 0.22 2.50 0.11 0.00
0.75 302556.00 3.62 2.93 0.14 1.17 0.07 0.00

Average 8.16 7.46 1.02 2.31 0.46 0.04

30

100
0.25 21654.60 17.39 17.21 9.02 4.94 2.91 0.53
0.50 41431.30 11.82 10.19 3.51 2.62 1.34 0.28
0.75 59199.10 6.58 5.92 2.03 1.29 0.83 0.06

250
0.25 56875.90 13.54 12.41 3.70 3.60 1.19 0.24
0.50 106673.70 8.64 7.12 1.53 2.25 0.53 0.05
0.75 150443.50 4.49 3.91 0.84 0.96 0.31 0.01

500
0.25 115473.50 9.84 9.62 1.89 3.75 0.61 0.05
0.50 216156.90 7.10 5.71 0.73 2.30 0.26 0.00
0.75 302353.40 3.72 3.51 0.48 1.07 0.17 0.00

Average 9.24 8.40 2.64 2.53 0.91 0.14
Average 7.69 6.99 1.37 2.27 0.54 0.07

of the MKPs that are compiled in [48]. For each algorithm, the entries report the average PD
computed over 10 problem instances with 30 runs each, which is 300 runs. For each category
of m, the final line gives the average PD over all values of n. The final line of Table 11 gives the
overall average PD over all categories of m. The results acquired by the FGA show that the
FGA is very effective for the three categories of standard, large size, and difficult MKPs. The
reported PDs are a measure of how close the heuristic solution is to the linear programming
optimum; therefore, much smaller values are expected if compared to the integer optimum.
This can be partially verified by comparing the average percentage deviation columns given
in Table 11. Finally, the ability of the FGA to generate optimal solutions is demonstrated in
the last column, in which the FGA is able to find optimal values for many instances.

Table 11 obviously indicates the transcendent of our proposed FGA over other
heuristics and local search algorithms in terms of the quality of the solutions obtained.
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Figure 9: Average percentage deviation of FGA with heuristics and local search algorithms.

The average PDs between our best solution and the best-known solution of benchmark is
between 0.00% and 0.14% whereas for other heuristics and local search algorithms are 0.26%
and 0.91%. On the other hand, if we consider the average PDs for the three categories of
standard, large size, and difficult MKPs together, the best average PDs for heuristics and
local search algorithms is 0.543%, whereas this number for FGA is 0.068%.

From another point of view, as can be seen in Figure 9, the M&O and V&Z have the
highest average PDs whereas the average PDs for SA, MKHEUR, and GACB algorithms
are better than that of the M&O and V&Z algorithms with GACB being the best algorithm
between them. However, Figure 9 shows the proposed FGA generates solutions that have
much smaller average PDs than other algorithms in all cases. All the algorithms find problems
of m = 30 to be the most challenging. With other things (n and α) being equal, when
we increase the value of m, then PD will increase. Note that for all the algorithms, fewer
generations are executed within the time limit as the number of knapsacks or constraints
become larger.

5. Conclusion

This paper proposed some techniques for the measurement of the population diversity
based on the phenotype and genotype properties. The contributions of this study are the
sexual selection, the crossover and mutation operators, and probabilities selection techniques
based on the population diversity using fuzzy logic controllers. The proposed fuzzy genetic
algorithm is compared to other heuristic and local search algorithms for solving the
multidimensional 0/1 knapsack problems. Extensive computational experiments are carried
out to assess the effectiveness of the proposed algorithms compared to other metaheuristic
proposed in the literature. The computational results showed that the proposed sexual
selection and FGAs are competitive and capable of generating near optimal solutions.
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