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We consider and study a new class of variational inequality, which is called the general mixed
quasivariational inequality. We use the auxiliary principle technique to study the existence of a
solution of the general mixed quasivariational inequality. Several special cases are also discussed.
Results proved in this paper may stimulate further research in this area.

1. Introduction

Variational inequalities theory, which was introduced and studied in the 1960’s has seen
a dramatic increase in its application in various branches of pure and applied sciences.
Variational inequalities have been extended and generalized in various directions using
novel and innovative ideas. A useful and important generalization is called the mixed
quasi variational inequality involving the bifunction. It has been shown that a wide class of
problems which arise in the elasticity with nonlocal friction laws, fluid flow thorough porous
media and structural analysis can be studied in the unified framework of the mixed quasi
variational inequalities, see [1–12].

In recent years, Noor [13] has shown that the optimality conditions of the differen-
tiable nonconvex functions involving one arbitrary functions can be characterized by a class
of variational inequalities, which is called the general variational inequalities. We would like
to mention that one can show that the minimum of the sum of differentiable nonconvex
(g-convex) function and a nondifferentiable g-convex bifunction can be characterized by a
class of variational inequality. Motivated by this result, we introduce a new class of mixed
variational inequalities, which is called general mixed quasi variational inequality involving the
bifunction and three different operators. Due to the presence of the bifunction, projection
and resolvent operator techniques, and their variation forms cannot be extended for solving
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the general mixed quasi variational inequalities. Thanks to the auxiliary principle technique,
one can overcome this drawback. This technique is mainly due to Glowinski et al. [3]. This
technique is more flexible and has been used to develop several numerical methods for
solving the variational inequalities and the equilibrium problems. Noor [10, 14] has used
this technique to study the existence of the general mixed quasi variational inequalities.
This technique deals with considering an auxiliary problem and proving that the solution
of the auxiliary problem is the solution of the original problem using the fixed point theory.
This technique does not involve projection and resolvent of the operator. We again use the
auxiliary principle technique to study the existence of a solution of the general mixed quasi
variational inequalities, which is the main result (Theorem 3.1). We use this technique to
suggest and analyze an iterative method for solving the general mixed quasi variational
inequalities. Since the general mixed quasi variational inequalities include various classes
of variational inequalities and complementarity problems as special cases, results proved in
this paper continue to hold for these problems. Results proved in this paper may be viewed
as important and significant improvement of the previously known results. It is interesting
to explore the applications of these general variational inequalities in mathematical and
engineering sciences with new and novel aspects. This may lead to new research in this field.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. LetK be a nonempty closed and convex set inH. Let ϕ(·, ·) : H× → R ∪ {∞} be
a continuous bifunction.

For given nonlinear operators T, g, h : H → H, consider the problem of finding u ∈ H
such that

〈
Tu, g(v) − u

〉
+ ϕ

(
g(v), u

) − ϕ(u, u) ≥ 0, ∀v ∈ H : g(v) ∈ H. (2.1)

Inequality of type (2.1) is called the general mixed quasi variational inequality.
One can show that the minimum of sum of differentiable nonconvex (g-convex)

function and a class of nondifferentiable nonconvex (g-convex) function on the g-convex
set K in H can be characterized by general mixed quasi variational inequality (2.1). For this
purpose, we recall the following well-known concepts, see [10, 13, 15–18].

Definition 2.1. LetK be any set inH. The setK is said to be g-convex if there exists a function
g : H → H such that

u + t
(
g(v) − u

) ∈ K, ∀u, v ∈ H : u, g(v) ∈ K, t ∈ [0, 1]. (2.2)

Note that every convex set is g-convex, but the converse is not true, see [15].

Definition 2.2. The function F : K → H is said to be g-convex on the g-convex set K if there
exists a function g such that

F
(
u + t

(
g(v) − u

)) ≤ (1 − t)F(u) + tF
(
g(v)

)
, ∀u, v ∈ H : u, g(v) ∈ K, t ∈ [0, 1]. (2.3)
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Clearly every convex function is g-convex, but the converse is not true

I[v] = F(v) + ϕ(v, v), ∀v ∈ H. (2.4)

Using the technique of Noor [12, 18, 19], one can easily show the minimum of a
differentiable g-convex function, and nondifferentiable nonconvex bifunction on a g-convex
set K inH can be characterized by the general mixed quasi variational inequality (2.1).

Lemma 2.3. Let F : K → H be a differentiable g-convex function on the g-convex set K. Then
u ∈ K is the minimum of the functional I[v] defined by (2.4) on the g-convex set K if and only if
u ∈ K satisfies the inequality

〈
F ′(u), g(v) − u

〉
+ ϕ

(
g(v), u

) − ϕ(u, u) ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.5)

where F ′(u) is the differential of F at u ∈ K.

Lemma 2.3 implies that g-convex programming problem can be studied via the
general mixed variational inequality (2.1)with Tu = F ′(u).

We now list some special cases of the general mixed quasi variational inequality (2.1).

(I) For g = I, the identity operator, the general mixed quasi variational inequality (2.1)
is equivalent to finding u ∈ H such that

〈Tu, v − u〉 + ϕ(u, u) − ϕ(u, u) ≥ 0, ∀v ∈ H : g(v) ∈ H, (2.6)

which is also called the mixed quasi variational inequality, see [1–3, 8, 9, 11, 12].

(II) If the bifunction ϕ(·, ·) is the indicator function of a closed convex-valued set K(u)
inH, that is,

ϕ(u, u) = K(u)(u) =

⎧
⎨

⎩

0, u ∈ K(u),

+∞, otherwise,
(2.7)

then problem (2.1) is equivalent to finding u ∈ K(u) such that

〈
Tu, g(v) − u

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K(u). (2.8)

Problems of type (2.8) are called general quasi variational inequalities.

(III) If K(u) ≡ K, the convex set, then problem (2.8) is equivalent to finding u ∈ K such
that

〈
Tu, g(v) − u

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.9)

which is called the general variational inequality, introduced and studied by Noor
[13].
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(IV) If g = I, the identity operator, then, problem (2.5) is equivalent to finding u ∈ K(u)
such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K(u), (2.10)

which is called the quasi variational inequality.

(V) IfK(u) = K, the convex set, then problem (2.10) is equivalent to finding u ∈ K such
that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.11)

which is called the classical variational inequality, introduced and studied by
Stampacchia [20]. For the applications, formulations, generalizations, numerical
method and other aspects of the variational inequalities, see [1–30] and the
references therein.

We would like to mention that one can obtain several known and new classes of
variational inequalities as special cases of the problem (2.1). From the above discussion,
it is clear that the general mixed quasi variational inequalities (2.1) is most general and
includes several previously known classes of variational inequalities and related optimization
problems as special cases. These variational inequalities have important applications in
mathematical programming and engineering sciences.

We also need the following concepts and results.

Definition 2.4. For all u, v ∈ H, an operator T : H → H is said to be

(i) strongly monotone, if there exists a constant α > 0 such that

〈Tu − Tv, u − v〉 ≥ α‖u − v‖2, (2.12)

(ii) Lipschitz continuous, if there exists a constant β > 0 such that

‖Tu − Tv‖ ≤ β‖u − v‖. (2.13)

From (i) and (ii), it follows that α ≤ β.

Definition 2.5. The bifunction ϕ(·, ·) is said to be skew symmetric, if

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) ≥ 0, ∀u, v ∈ H. (2.14)

Clearly, if the bifunction ϕ(·, ·) is linear in both arguments, then

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) ≥ 0, ∀u, v ∈ H, (2.15)

which shows that the bifunction ϕ(·, ·) is nonnegative.
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Remark 2.6. It is worthmentioning that the points (u, u), (u, v), (v, u), and (v, v)make up a set
of the four vertices of the square. In fact, the skew-symmetric bifunction ϕ(·, ·) can be written
in the form

1
2
ϕ(u, u) +

1
2
ϕ(v, v) ≥ 1

2
ϕ(u, v) +

1
2
ϕ(v, u), ∀u, v ∈ H. (2.16)

This shows that the arithmetic average value of the skew-symmetric bifunction calculated at
the north-east and south-west vertices of the square is greater than or equal to the arithmetic
average value of the skew-symmetric bifunction computed at the north-west and south-west
vertices of the same square. The skew-symmetric bifunction has the properties which can be
considered an analogs of monotonicity of gradient and nonnegativity of a second derivative
for the convex functions.

3. Main Results

In this Section, we use the auxiliary principle technique of Glowinski et al. [3] to study the
existence of a solution of the general mixed quasi variational inequality (2.1).

Theorem 3.1. Let T be a strongly monotone with constant α > 0 and Lipschitz continuous with
constant β > 0. Let g be a strongly monotone and Lipschitz continuous operator with constants σ > 0
and δ > 0, respectively. Let the bifunction ϕ(·, ·) be skew symmetric. If there exists a constant ρ > 0
such that

∣∣∣∣ρ − α

β2

∣∣∣∣ <

√
α2 − β2k(2 − k)

β2
, α > β

√
k(2 − k), k < 1, (3.1)

where

θ = k +
√
1 − 2ρα + ρ2β2, (3.2)

k =
√
1 − 2σ + δ2. (3.3)

then the general mixed quasi variational inequality (2.1) has a unique solution.

Proof. We use the auxiliary principle technique to prove the existence of a solution of (2.1).
For a given u ∈ K satisfying the general mixed quasi variational inequality (2.1), we consider
the problem of finding a solution w ∈ K such that

〈
ρTu +w − g(u), g(v) −w

〉
+ ρϕ

(
g(v), w

) − ρϕ(w,w) ≥ 0, ∀v ∈ H : g(v) ∈ K, (3.4)

where ρ > 0 is a constant. The inequality of type (3.4) is called the auxiliary general mixed
quasi variational inequality associated with the problem (2.1). It is clear that the relation
(3.4) defines a mapping u → w. It is enough to show that the mapping u → w defined
by the relation (3.4) has a unique fixed point belonging to H satisfying the general mixed
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quasi variational inequality (2.1). Let w1 /=w2 be two solutions of (3.4) related to u1, u2 ∈ H,
respectively. It is sufficient to show that for a well chosen ρ > 0,

‖w1 −w2‖ ≤ θ‖u1 − u2‖, (3.5)

with 0 < θ < 1, where θ is independent of u1 and u2. Taking g(v) = w2 (respectively w1) in
(3.4) related to u1 (respectively u2), adding the resultant and using the skew-symmetry of the
bifunction ϕ(·, ·), we have

〈w1 −w2, w1 −w2〉 ≤ 〈g(u1) − g(u2) − ρ(Tu1 − Tu2), w1 −w2〉, (3.6)

from which we have

‖w1 −w2‖ ≤ ∥∥g(u1) − g(u2) − ρ(Tu1 − Tu2)
∥∥

≤ ∥∥u1 − u2 −
(
g(u1) − g(u2)

)∥∥ +
∥∥u1 − u2 − ρ(Tu1 − Tu2)

∥∥.
(3.7)

Since T is both strongly monotone and Lipschitz continuous operator with constants α > 0
and β > 0 respectively, it follows that

∥∥u1 − u2 − ρ(Tu1 − Tu2)
∥∥2 ≤ ‖u2 − u2‖2 − 2ρ〈u1 − u2, Tu1 − Tu2〉 + ρ2‖Tu1 − Tu2‖2

≤
(
1 − 2ρα + ρ2β2

)
‖u1 − u2‖2.

(3.8)

In a similar way, using the stronglymonotonicity with constant σ > 0 and Lipschitz continuity
with constant δ > 0, we have

∥∥u1 − u2 −
(
g(u1) − g(u2)

)∥∥ ≤
√
1 − 2σ + δ2‖u1 − u2‖. (3.9)

From (3.7), (3.8), and (3.9) and using the fact that the operator h is firmly expanding, we have

‖w1 −w2‖ ≤
{
k +

√
1 − 2ρα + ρ2β2

}
‖u1 − u2‖

= θ‖u1 − u2‖.
(3.10)

From (3.1) and (3.2), it follows that θ < 1 showing that the mapping defined by
(3.4) has a fixed point belonging to K, which is the solution of (2.1), the required
result.

We note that if w = u, then w is a solution of the general mixed quasi variational
inequality (2.1). This observation enables us to suggest and analyze the following iterative
method for solving the general mixed quasi variational inequality (2.1), and this is one of the
main motivation of this paper.
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Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

〈
ρTun + un+1 − g(un), g(v) − un+1

〉
+ ρϕ

(
g(v), un+1

) − ρϕ(un+1, un+1) ≥ 0, ∀v ∈ H,
(3.11)

where ρ > 0 is a constant. Algorithm 3.2 is called the explicit iterative method. For different
and suitable choice of the operators and spaces, one can obtain various iterative methods
for solving the quasi variational inequalities and its variant forms. One can consider the
convergence analysis of Algorithm 3.2 using the technique of Noor [24]. We leave this to
the interested readers.

4. Conclusion

In this paper, we have introduced and studied a new class of variational inequalities, which is
called the general mixed quasi variational inequality. We have shown that this class is related
the optimality conditions of the nonconvex differentiable functions. One can easily obtain
various classes of variational inequalities as special cases of this new class. We have used the
auxiliary principle technique to study the existence of a solution of the general mixed quasi
variational inequalities under some suitable conditions. Our technique does not involve the
projection or resolvent operator. We have also suggested an iterative method for solving the
general mixed quasi variational inequality. We expect that the results proved in this paper
may stimulate further research in this field. The interested readers are encouraged to find
the novel and new applications of the general mixed quasi variational inequalities in various
branches of pure and applied sciences.
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