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We consider the Hyers-Ulam stability problems for the Jensen-type functional equations in general
restricted domains. The main purpose of this paper is to find the restricted domains for which the
functional inequality satisfied in those domains extends to the inequality for whole domain. As
consequences of the results we obtain asymptotic behavior of the equations.

1. Introduction

The Hyers-Ulam stability problems of functional equations was originated by Ulam in 1960
when he proposed the following question [1].

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such that

d
(
f
(
xy

)
, f(x)f

(
y
)) ≤ ε. (1.1)

Then does there exist a group homomorphism h and δε > 0 such that

d
(
f(x), h(x)

) ≤ δε (1.2)

for all x ∈ G1?
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One of the first assertions to be obtained is the following result, essentially due to
Hyers [2], that gives an answer for the question of Ulam.

Theorem 1.1. Suppose that S is an additive semigroup, Y is a Banach space, ε ≥ 0, and f : S → Y
satisfies the inequality

∥
∥f

(
x + y

) − f(x) − f
(
y
)∥∥ ≤ ε (1.3)

for all x, y ∈ S. Then there exists a unique function A : S → Y satisfying

A
(
x + y

)
= A(x) +A

(
y
)

(1.4)

for which

∥∥f(x) −A(x)
∥∥ ≤ ε (1.5)

for all x ∈ S.

We call the functions satisfying (1.4) additive functions. Perhaps Aoki in 1950 was the
first author treating the generalized version of Hyers’ theorem [3]. Generalizing Hyers’ result
he proved that if a mapping f : X → Y between two Banach spaces satisfies

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ Φ

(
x, y

)
for x, y ∈ X (1.6)

with Φ(x, y) = ε(‖x‖p + ‖y‖p) (ε ≥ 0, 0 ≤ p < 1), then there exists a unique additive function
A : X → Y such that ‖f(x)−A(x)‖ ≤ 2ε‖x‖p/(2−2p) for all x ∈ X. In 1951 Bourgin [4, 5] stated
that if Φ is symmetric in ‖x‖ and ‖y‖with

∑∞
j=1 Φ(2jx, 2jx)/2j < ∞ for each x ∈ X, then there

exists a unique additive functionA : X → Y such that ‖f(x)−A(x)‖ ≤ ∑∞
j=1 Φ(2jx, 2jx)/2j for

all x ∈ X. Unfortunately, there was no use of these results until 1978 when Rassias [6] dealt
with the inequality of Aoki [3]. Following Rassias’ result, a great number of papers on the
subject have been published concerning numerous functional equations in various directions
[6–15]. Among the results, stability problem in a restricted domain was investigated by Skof,
who proved the stability problem of inequality (1.3) in a restricted domain [16, 17]. Develop-
ing this result, Jung, Rassias, and M. J. Rassias considered the stability problems in restricted
domains for some functional equations including the Jensen functional equation [9] and
Jensen-type functional equations [13]. We also refer the reader to [18–27] for some related
results on Hyers-Ulam stabilities in restricted conditions. The results can be summarized as
follows. Let X and Y be a real normed space and a real Banach space, respectively. For fix-
ed d ≥ 0, if f : X → Y satisfies the functional inequalities (such as that of Cauchy, quadratic,
Jensen, and Jensen type) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d (which is the case where the
inequalities are given by two indeterminate variables x and y), the inequalities hold for all
x, y ∈ X. Following the approach in [28] we consider the Jensen-type equation in various
restricted domains in an Abelian group. As applications, we obtain the stability problems for
the above equations in more general restricted domains than that of the form {(x, y) ∈ X :
‖x‖+‖y‖ ≥ d}, which generalizes and refines the stability theorems in [13]. As an application
we obtain asymptotic behaviors of the equations.
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2. Stability of Jensen-Type Functional Equations

Throughout this section, we denote by G, X, and Y , an Abelian group, a real normed space,
and a Banach space, respectively. In this section we consider the Hyers-Ulam stability of the
Jensen and Jensen-type functional inequalities for the functions f : G → Y

∥
∥f

(
x + y

)
+ f

(
x − y

) − 2f(x)
∥
∥ ≤ ε, (2.1)

∥
∥f

(
x + y

) − f
(
x − y

) − 2f
(
y
)∥∥ ≤ ε (2.2)

in restricted domains U ⊂ G ×G.
Inequalities (2.1) and (2.2) were previously treated by J. M. Rassias and M. J. Rassias

[13], who proved the Hyers-Ulam stability of the inequalities in the restricted domain U =
{(x, y) : ‖x‖ + ‖y‖ ≥ d}, d ≥ 0, for the functions f : X → Y :

Theorem 2.1. Let d ≥ 0 and ε > 0 be fixed. Suppose that f : X → Y satisfies the inequality

∥∥f
(
x + y

)
+ f

(
x − y

) − 2f(x)
∥∥ ≤ ε (2.3)

for all x, y ∈ X, with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive function A : X → Y such
that

∥∥f(x) −A(x) − f(0)
∥∥ ≤ 5

2
ε (2.4)

for all x ∈ X.

Theorem 2.2. Let d ≥ 0 and ε > 0 be fixed. Suppose that f : X → Y satisfies the inequality

∥∥f
(
x + y

) − f
(
x − y

) − 2f
(
y
)∥∥ ≤ ε (2.5)

for all x, y ∈ X, with ‖x‖ + ‖y‖ ≥ d and

∥∥f(x) + f(−x)∥∥ ≤ 3ε (2.6)

for all x ∈ X, with ‖x‖ ≥ d. Then there exists a unique additive function A : X → Y such that

∥∥f(x) −A(x)
∥∥ ≤ 33

2
ε (2.7)

for all x ∈ X.

We use the following usual notations. We denote by G × G = {(a1, a2) : a1, a2 ∈ G}
the product group; that is, for a = (a1, a2), b = (b1, b2) ∈ G × G, we define a + b = (a1 + b1,
a2 + b2), a − b = (a1 − b1, a2 − b2). For a subset H of G × G and a, b ∈ G × G, we define
a +H = {a + h : h ∈ H}.
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For given x, y ∈ Gwe denote by Px,y, Qx,y the subsets of points of the forms (not nec-
essarily distinct) in G ×G, respectively,

Px,y =
{
(0, 0), (x,−x), (y, y), (x + y,−x + y

)}
,

Qx,y =
{
(−x, x), (y, y), (−x + y, x + y

)}
.

(2.8)

The set Px,y can be viewed as the vertices of rectangles in G ×G, and Qx,y can be viewed as a
subset of the vertices of rectangles in G ×G.

Definition 2.3. LetU ⊂ G ×G. One introduces the following conditions (J1) and (J2) onU. For any
x, y ∈ G, there exists a z ∈ G such that

(J1) (0, z) + Px,y =
{
(0, z), (x,−x + z),

(
y, y + z

)
,
(
x + y,−x + y + z

)} ⊂ U,

(J2) (z, 0) +Qx,y =
{
(−x + z, x),

(
y + z, y

)
,
(−x + y + z, x + y

)} ⊂ U,
(2.9)

respectively.

The sets (0, z)+Px,y, (z, 0)+Qx,y can be understood as the translations of Px,y andQx,y

by (0, z) and (z, 0), respectively.
There are many interesting examples of the sets U satisfying some of the conditions

(J1) and (J2). We start with some trivial examples.

Example 2.4. Let G be a real normed space. For d ≥ 0, x0, y0 ∈ G, let

U =
{(

x, y
) ∈ G ×G : k‖x‖ + s

∥∥y
∥∥ ≥ d

}
,

V =
{(

x, y
) ∈ G ×G :

∥∥kx + sy
∥∥ ≥ d

}
.

(2.10)

Then U satisfies (J1) if s > 0, (J2) if k > 0 and V satisfies (J1) if s /= 0, (J2) if k /= 0.

Example 2.5. Let G be a real inner product space. For d ≥ 0, x0, y0 ∈ G

U =
{(

x, y
) ∈ G ×G : 〈x0, x〉 +

〈
y0, y

〉 ≥ d
}
. (2.11)

Then U satisfies (J1) if y0 /= 0, (J2) if x0 /= 0.

Example 2.6. Let G be the group of nonsingular square matrices with the operation of matrix
multiplication. For k, s ∈ R, δ, d ≥ 0, let

U =
{
(P1, P2) ∈ G ×G : |detP1|k|detP2|s ≤ δ

}
,

V =
{
(P1, P2) ∈ G ×G : |detP1|k|detP2|s ≥ d

}
.

(2.12)

Then both U and V satisfy (J1) if s /= 0, (J2) if k /= 0.
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In the following one can see that if Px,y and Qx,y are replaced by arbitrary subsets of
four points (not necessarily distinct) inG×G, respectively, then the conditions become strong-
er; that is, there are subsetsU1 andU2 which satisfy the conditions (J1) and (J2), respectively,
but U1 and U2 fail to fulfill the following conditions (2.13) and (2.14), respectively. For any
subset {X1, X2, X3, X4} of points (not necessarily distinct) in G × G, there exists a z ∈ G such
that

(0, z) + {X1, X2, X3, X4} ⊂ U1, (2.13)

(z, 0) + {X1, X2, X3, X4} ⊂ U2, (2.14)

respectively.
Now we give examples ofU1 andU2 which satisfy (J1) and (J2), respectively, but not

(2.13) and (2.14), respectively.

Example 2.7. Let G = Z be the group of integers. Enumerate

Z × Z = {(a1, b1), (a2, b2), . . . , (an, bn), . . .} ⊂ R
2 (2.15)

such that

|a1| + |b1| ≤ |a2| + |b2| ≤ · · · ≤ |an| + |bn| ≤ · · · , (2.16)

and let Pn = {(0, 0), (an,−an), (bn, bn), (an + bn,−an + bn)}, n = 1, 2, . . .. Then it is easy to see
that U =

⋃∞
n=1((0, 2

n) + Pn) satisfies the condition (J1). Now let P = {(p1, q1), (p2, q2)} ⊂ Z × Z

with |q2 − q1| ≤ |p2 − p1|, p1p2 > 0. Then (0, z) + P is not contained in U for all z ∈ Z. Indeed,
for any choices of (xn, yn) ∈ Pn + (0, 2n), n = 1, 2, . . ., we have ym −yn > |xm −xn| for allm > n,

m, n = 1, 2, . . .. Thus, if (0, z)+P ⊂ U for some z ∈ Z, then P+(0, z) ⊂ (0, 2n)+Pn for some n ∈ N.
Thus, it follows from the condition q2−q1 ≤ |p2−p1| that the line segment joining the points of
P + (−z, z) intersects the line x = 0 in R

2, which contradicts the condition p1p2 > 0. Similarly,
letQn = {(−an, an), (bn, bn), (−an+bn, an+bn)}. Then it is easy to see thatU =

⋃∞
n=1((2

n, 0)+Qn)
satisfies the condition (J2) but not (2.14).

Theorem 2.8. LetU ⊂ G×G satisfy the condition (J1) and ε ≥ 0. Suppose that f : G → Y satisfies
(2.1) for all (x, y) ∈ U. Then there exists an additive function A : G → Y such that

∥∥f(x) −A(x) − f(0)
∥∥ ≤ 2ε (2.17)

for all x ∈ G.

Proof. For given x, y ∈ G, choose a z ∈ G such that (0, z) + Px,y ⊂ U. Replacing x by x + y, y
by −x + y + z; x by x, y by −x + z; x by y, y by y + z; x by 0, y by z in (2.1), respectively, we
have

∥∥f
(
2y + z

)
+ f(2x − z) − 2f

(
x + y

)∥∥ ≤ ε,

∥∥f(z) + f(2x − z) − 2f(x)
∥∥ ≤ ε,
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∥
∥f

(
2y + z

)
+ f(−z) − 2f

(
y
)∥∥ ≤ ε,

∥
∥f(z) + f(−z) − 2f(0)

∥
∥ ≤ ε.

(2.18)

From (2.18), using the triangle inequality and dividing the result by 2, we have

∣
∣f
(
x + y

) − f(x) − f
(
y
)
+ f(0)

∣
∣ ≤ 2ε (2.19)

for all x, y ∈ G. From (2.19), using Theorem 1.1, we get the result.

Let d ≥ 0, s ∈ R, and let U = {(x, y) : ‖x‖ + s‖y‖ ≥ d}. Then U satisfies the condition
(J1). Thus, as a direct consequence of Theorem 2.8, we obtain the following (cf. Theorem 2.1).

Corollary 2.9. Let d ≥ 0, s ∈ R. Suppose that f : X → Y satisfies inequality (2.1) for all x, y ∈ X,
with ‖x‖ + s‖y‖ ≥ d. Then there exists a unique additive function A : X → Y such that

∥∥f(x) −A(x) − f(0)
∥∥ ≤ 2ε (2.20)

for all x ∈ X.

Theorem 2.10. LetU ⊂ G×G satisfy the condition (J2) and ε ≥ 0. Suppose that f : G → Y satisfies
(2.2) for all (x, y) ∈ U. Then there exists a unique additive function A : G → Y such that

∥∥f(x) −A(x)
∥∥ ≤ 3

2
ε (2.21)

for all x ∈ G.

Proof. For given x, y ∈ G, choose z ∈ G such that (z, 0)+Qx,y ⊂ U. Replacing x by −x+y+z, y
by x + y; x by −x + z, y by x; x by y + z, y by y in (2.2), respectively, we have

∥∥f
(
2y + z

) − f(−2x + z) − 2f
(
x + y

)∥∥ ≤ ε,
∥∥f(z) − f(−2x + z) − 2f(x)

∥∥ ≤ ε,
∥∥f

(
2y + z

) − f(z) − 2f
(
y
)∥∥ ≤ ε.

(2.22)

From (2.22), using the triangle inequality and dividing the result by 2, we have

∣∣f
(
x + y

) − f(x) − f
(
y
)∣∣ ≤ 3

2
ε. (2.23)

Now by Theorem 1.1, we get the result.

Let d ≥ 0, k ∈ R, and let U = {(x, y) : k‖x‖ + ‖y‖ ≥ d}. Then U satisfies the condition
(J2). Thus, as a direct consequence of Theorem 2.10, we generalize and refine Theorem 2.2 as
follows.
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Corollary 2.11. Let d ≥ 0, k ∈ R. Suppose that f : X → Y satisfies inequality (2.2) for all x, y,
with k‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive function A : X → Y such that

∥
∥f(x) −A(x)

∥
∥ ≤ 3

2
ε (2.24)

for all x ∈ X.

Remark 2.12. Corollary 2.11 refines Theorem 2.2 in both the bounds and the condition (2.6).

Now we discuss other possible restricted domains. We assume that G is a 2-divisible
Abelian group. For given x, y ∈ G, we denote by Rx,y, Sx,y ⊂ G ×G,

Rx,y =
{
(x, x),

(
x, y

)
,

(
x − y

2
,
x − y

2

)
,

(
x − y

2
,
−x + y

2

)}
,

Sx,y =
{
(x, x),

(
y, x

)
,

(
x − y

2
,
x − y

2

)
,

(−x + y

2
,
x − y

2

)}
.

(2.25)

One can see that Rx,y and Sx,y consist of the vertices of parallelograms in G ×G, respectively.

Definition 2.13. Let U ⊂ G × G. One introduces the following conditions (J3), (J4) on U. For any
x, y ∈ G, there exists a z ∈ G such that

(J3) (z,−z) + Rx,y =
{
(x + z, x − z),

(
x + z, y − z

)
,

(
x − y

2
+ z,

x − y

2
− z

)
,

(
x − y

2
+ z,

−x + y

2
− z

)}
⊂ U,

(J4) (z,−z) + Sx,y =
{
(x + z, x − z),

(
y + z, x − z

)
,

(
x − y

2
+ z,

x − y

2
− z

)
,

(−x + y

2
+ z,

x − y

2
− z

)}
⊂ U,

(2.26)

respectively.

Example 2.14. Let G be a real normed space. For k, s, d ∈ R, let

U =
{(

x, y
) ∈ G ×G : k‖x‖ + s

∥∥y
∥∥ ≥ d

}
,

V =
{(

x, y
) ∈ G ×G :

∥∥kx + sy
∥∥ ≥ d

}
.

(2.27)

Then U satisfies (J3) and (J4) if k + s > 0, and V satisfies (J3) and (J4) if k /= s.

Example 2.15. Let G be a real inner product space. For d ≥ 0, x0, y0 ∈ G,

U =
{(

x, y
) ∈ G ×G : 〈x0, x〉 +

〈
y0, y

〉 ≥ d
}
. (2.28)

Then U satisfies (J3), (J4) if x0 /=y0.
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Example 2.16. Let G be the group of nonsingular square matrices with the operation of matrix
multiplication. For k, s ∈ R, δ, d ≥ 0, let

U =
{
(P1, P2) ∈ G ×G : |detP1|k|detP2|s ≤ δ

}
,

V =
{
(P1, P2) ∈ G ×G : |detP1|k|detP2|s ≥ d

}
.

(2.29)

Then U and V satisfy both (J3) and (J4) if k /= s.

From now on, we assume that G is a 2-divisible Abelian group.

Theorem 2.17. LetU ⊂ G×G satisfy the condition (J3) and ε ≥ 0. Suppose that f : G → Y satisfies
(2.1) for all (x, y) ∈ U. Then there exists a unique additive function A : G → Y such that

∥∥f(x) −A(x) − f(0)
∥∥ ≤ 4ε (2.30)

for all x ∈ G.

Proof. For given x, y ∈ G, choose a z ∈ G such that (z,−z) + Rx,y ⊂ U. Replacing x by x + z, y
by x − z; x by x + z, y by y − z; x by (x − y)/2 + z, y by (x − y)/2 − z; x by (x − y)/2 + z, y by
(−x + y)/2 − z in (2.1), respectively, we have

∥∥f(2x) + f(2z) − 2f(x + z)
∥∥ ≤ ε,

∥∥f
(
x + y

)
+ f

(
x − y + 2z

) − 2f(x + z)
∥∥ ≤ ε,

∥∥∥∥f
(
x − y

)
+ f(2z) − 2f

(
x − y

2
+ z

)∥∥∥∥ ≤ ε,

∥∥∥∥f(0) + f
(
x − y + 2z

) − 2f
(
x − y

2
+ z

)∥∥∥∥ ≤ ε.

(2.31)

From (2.31), using the triangle inequality, we have

∣∣f(2x) − f
(
x + y

) − f
(
x − y

)
+ f(0)

∣∣ ≤ 4ε (2.32)

for all x, y ∈ G. Replacing x by (x + y/2), y by (x − y/2) in (2.32), we have

∣∣f
(
x + y

) − f(x) − f
(
y
)
+ f(0)

∣
∣ ≤ 4ε (2.33)

for all x, y ∈ G. From (2.33), using Theorem 1.1, we get the result.

Let d ≥ 0, k, s ∈ R with k + s > 0, and let U = {(x, y) : k‖x‖ + s‖y‖ ≥ d}. Then U sat-
isfies the conditions (J3) and (J4). Thus, as a direct consequence of Theorem 2.17 we gener-
alize Theorem 2.1 as follows.
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Corollary 2.18. Let d ≥ 0, k, s ∈ R with k + s > 0. Suppose that f : X → Y satisfies the inequality
(2.1) for all x, y, with k‖x‖ + s‖y‖ ≥ d. Then there exists a unique additive function A : X → Y
such that

∥
∥f(x) −A(x) − f(0)

∥
∥ ≤ 4ε (2.34)

for all x ∈ X.

Theorem 2.19. LetU ⊂ G×G satisfy the condition (J4) and ε ≥ 0. Suppose that f : G → Y satisfies
(2.2) for all (x, y) ∈ U. Then there exists a unique additive function A : G → Y such that

∥
∥f(x) −A(x)

∥
∥ ≤ 4ε (2.35)

for all x ∈ G.

Proof. For given x, y ∈ G, choose z ∈ G such that (z,−z) + Sx,y ⊂ U. Replacing x by x + z, y
by x − z; x by y + z, y by x − z; x by (x − y)/2 + z, y by (x − y)/2 − z; x by (−x + y)/2 + z, y
by (x − y)/2 − z in (2.2), respectively, we have

∥∥f(2x) − f(2z) − 2f(x − z)
∥∥ ≤ ε,

∥∥f
(
x + y

) − f
(−x + y + 2z

) − 2f(x − z)
∥∥ ≤ ε,

∥∥∥∥f
(
x − y

) − f(2z) − 2f
(
x − y

2
+ z

)∥∥∥∥ ≤ ε,
∥∥∥∥f(0) − f

(−x + y + 2z
) − 2f

(
x − y

2
+ z

)∥∥∥∥ ≤ ε.

(2.36)

From (2.36), using the triangle inequality, we have

∣
∣f(2x) − f

(
x + y

) − f
(
x − y

)
+ f(0)

∣∣ ≤ 4ε (2.37)

for all x, y ∈ G. Replacing x by (x + y)/2, y by (x − y)/2 in (2.37) and using Theorem 1.1, we
get the result.

As a direct consequence of Theorem 2.19, we have the following.

Corollary 2.20. Let d ≥ 0, k, s ∈ R with k + s > 0. Suppose that f : X → Y satisfies the inequality
(2.2) for all x, y, with k‖x‖ + s‖y‖ ≥ d. Then there exists a unique additive function A : X → Y
such that

∥∥f(x) −A(x)
∥∥ ≤ 4ε (2.38)

for all x ∈ X.
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3. Asymptotic Behavior of the Equations

In this section we discuss asymptotic behaviors of the equations which gives refined versions
of the results in [13].

Using Theorems 2.8 and 2.17, we have the following (cf. [13]).

Theorem 3.1. LetU satisfy (J1) or (J3). Suppose that f : X → Y satisfies the asymptotic condition

∥
∥f

(
x + y

)
+ f

(
x − y

) − 2f(x)
∥
∥ −→ 0 (3.1)

as ‖x‖ + ‖y‖ → ∞, (x, y) ∈ U. Then there exists a unique additive function A : X → Y such that

f(x) = A(x) + f(0) (3.2)

for all x ∈ X.

Proof. By the condition (3.1), for each n ∈ N, there exists dn > 0 such that

∥∥f
(
x + y

)
+ f

(
x − y

) − 2f(x)
∥∥ ≤ 1

n
(3.3)

for all (x, y) ∈ Uwith ‖x‖+‖y‖ ≥ dn. LetU0 = U∩{(x, y) : ‖x‖+‖y‖ ≥ dn}. ThenU0 satisfies
both the conditions (J1) and (J3). By Theorems 2.8 and 2.17, there exists a unique additive
function An : X → Y such that

∥∥f(x) −An(x) − f(0)
∥∥ ≤ 2

n
or

4
n

(3.4)

for all x ∈ X. Putting n = m in (3.4) and using the triangle inequality, we have

‖An(x) −Am(x)‖ ≤ 8 (3.5)

for all x ∈ X. Using the additivity of An, Am, we have An = Am for all n,m ∈ N. Letting
n → ∞ in (3.4), we get the result.

Corollary 3.2. Let k, s ∈ R satisfy one of the conditions: s > 0, k + s > 0. Suppose that f : X → Y
satisfies the condition

∥∥f
(
x + y

)
+ f

(
x − y

) − 2f(x)
∥∥ −→ 0 (3.6)

as k‖x‖ + s‖y‖ → ∞. Then there exists a unique additive function A : X → Y such that

f(x) = A(x) + f(0) (3.7)

for all x ∈ X.

Using Theorems 2.10 and 2.19, we have the following (cf. [13]).
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Theorem 3.3. LetU satisfy (J2) or (J4). Suppose that f : X → Y satisfies the condition

∥
∥f

(
x + y

) − f
(
x − y

) − 2f
(
y
)∥∥ −→ 0 (3.8)

as ‖x‖ + ‖y‖ → ∞, (x, y) ∈ U. Then f is an additive function.

Corollary 3.4. Let k, s ∈ R satisfy one of the conditions: k > 0, k + s > 0. Suppose that f : X → Y
satisfies the condition

∥
∥f

(
x + y

) − f
(
x − y

) − 2f
(
y
)∥∥ −→ 0 (3.9)

as k‖x‖ + s‖y‖ → ∞. Then f is an additive function.
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