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The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a
porous medium is numerically analyzed. The problem was studied under the effects of chemical
reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental
conservation equations of mass, momentum, angular momentum, energy, and concentration
are converted into a system of nonlinear ordinary differential equations by means of similarity
transformation. The resulting system of coupled nonlinear ordinary differential equations is the
then solved using a fairly new technique known as the successive linearization method together
with the Chebyshev collocation method. A parametric study illustrating the influence of the
magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability
on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and
concentration was carried out.

1. Introduction

Eringen [1] proposed the theory of micropolar fluids, which shows microrotation effects
as well as microinertia, as these flow properties cannot be described by the classical
Navier-Stokes theory. Since the pioneering work by Eringen, the theory of micropolar
fluid has generated a lot of interest. Extension has been done, to include studies of
magneto-micropolar fluid with Hall current and ion-slip currents with heat transfer due to
vast possible engineering applications in areas like power generators, MHD accelerators,
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refrigeration coils, electric transformers, and heating elements. MHD flows of a viscous
and incompressible fluid have been extensively studied with the effect of Hall current by
Chamkha [2], Seddeek [3], Takhar et al. [4], Shateyi et al. [5, 6], Salem and Abd El-aziz [7],
among others.

The momentum, heat, and mass transport on stretching sheet has several applications
in polymer processing as well as in electrochemistry. The heat transfer problem associated
with the boundary layer micropolar fluid under different physical conditions has been
studied by several authors. Takhar et al. [8] considered diffusion of a chemical reactive
species from a stretching sheet. Muthucumaraswamy and Ganesan [9] studied diffusion
and first-order chemical reaction on impulsively started infinite vertical plate with variable
temperature. Shateyi [10] investigated thermal radiation and buoyancy effects on heat and
mass transfer over a semi-infinite stretching sheet with suction and blowing. Shateyi and
Motsa [11] numerically investigated the unsteady heat, mass, and fluid transfer over a
horizontal stretching sheet.

The porous media heat and mass transfer problems have several practical engineering
applications such as geothermal systems, crude oil extraction, and ground-water pollution.
The study of chemical reaction heat transfer in porous medium has important applications
such as in tabular reactors, oxidation of solid materials, and synthesis of ceramic materials.
Elgazery [12] numerically analyzed the effects of chemical reaction, Hall, ion-slip currents,
variable viscosity and variable thermal diffusivity on the problem of magnetomicropolar
fluid flow, heat and mass transfer with suction and blowing through a porous medium.
Srinivasacharya and RamReddy [13] presented natural convection heat and mass transfer
along a vertical plate embedded in a doubly stratified micropolar fluid saturated non-Darcy
porous medium. Ishak et al. [14] investigated the unsteady boundary layer flow over a
stretching permeable surface.

Elshehawey et al. [15] applied the Chebyshev finite-difference method to investigate
the effects of Hall and ion-slip currents on magneto-hydrodynamic flow with variable
thermal conductivity. Seddeek and Salama [16]. studied effects of chemical reaction and
variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz
flow through porous media with radiation. Shateyi and Motsa [17] analyzed numerically
the problem of magnetohydrodynamic flow and heat transfer of a viscous, incompressible
and electrically conducting fluid past a semi-infinite unsteady stretching sheet with Hall
currents, variable viscosity and thermal diffusivity. Mahmoud and Waheed [18] performed
a theoretical analysis to study heat transfer characteristics of magnetohydrodynamic mixed
convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface
and heat generation/absorption.

The aim of this work is to analyze the effects of chemical reaction, Hall and ion-
slip currents on the MHD flow of a micropolar fluid through a porous medium using the
successive linearization method (SLM). The SLM is based on a novel idea of iteratively
linearizing the underlying governing nonlinear equations, which are written in similarity
form, and solving the resulting equations using spectral methods. This approach has been
successfully applied to different flow problem (see, e.g., Makukula et al. [19–22]; Shateyi and
Motsa [17]; Motsa and Shateyi [23, 24]). The influences of the governing parameters on the
flow characteristics are illustrated graphically and using tables.

2. Problem Formulation
We consider a steady, incompressible, magneto-micropolar and electrically conducting
viscous fluid flowing over a horizontal plate in the x-direction under the influence of mass
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Figure 1: The physical configuration and coordinate system for the boundary layer flow.

transfer with chemical reaction through a porous medium. We let the reaction of a species,
say A with B be the first order homogeneous chemical reaction with a constant rate, κ. We
also assume that the concentration of dissolved A is small enough and physical properties
ρ and D are virtually constant throughout the fluid. The flow under consideration is also
subjected to a strong transverse magnetic field B0 with a constant intensity along the y-axis
(see Figure 1).

Generally, an electrically conducting fluid is affected by Hall and ion-slip currents in
the presence of a magnetic field. The effect of Hall current gives rise to a force in the z-
direction, which induces a cross-flow in the z-direction and hence the flow becomes three-
dimensional.

Following Elgazery [12], the generalized Ohms law including Hall currents is given
by

J =
σ

1 + (ω/νe)
2

(
E + (V + B) − 1

ene

)
, (2.1)

where σ is the electrical conductivity, J = (Jx, Jy, Jz) is the electric current vector, V is the
velocity vector, E is the intensity of the electric field, B is the magnetic induction vector, 1/ene

is the Hall factor, ω/νe is the Hall parameter, ne is the density number of the electrons, e is
the charge of electron, νe is the electron-atom collision frequency and ω exceeds the collision
frequency. The electric magnetic field can force both the ions and electrons to produce a
relative drift between them and neutral particles, when the ratio, ω/νe becomes very large.
The drift is called “ion-slip” and is however negligible for highly ionized gases.

We assume that all the fluid properties are isotropic and constant. The velocity
component u on a stretching sheet is proportional to its distance from the slit. Under the
usual boundary layer and Boussinesq approximations, the governing equation in (x, y, z)-
coordinate for the problem under consideration can be written as follows:

∂u

∂x
+
∂v

∂y
= 0, (2.2)
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u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
K

ρ

∂N

∂y
− σB2

0

ρ
(
α2
e + β2e

)(αeu + βew
) − μ

ρk∗u, (2.3)

u
∂w

∂x
+ v

∂w

∂y
= ν

∂2w

∂y2
+

σB2
0

ρ
(
α2
e + β2e

)(βeu − αew
) − μ

ρk∗w, (2.4)

G1

K

∂2N

∂y2
− 2N − ∂u

∂y
= 0, (2.5)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α
∂T

∂y

)
+

μ

ρcp

[(
∂u

∂y

)2

+
(
∂w

∂y

)2
]
+

1
ρcp

σB2
0(

α2
e + β2e

)(u2 +w2
)
, (2.6)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k(C − C∞). (2.7)

The boundary conditions are

u(x, 0) = Us = bx, v(x, 0) = −Vw, w(x, 0) = 0, T(x, 0) = Tw, C(x, 0) = Cw,

u(x,∞) = 0, w(x,∞) = 0, T(x,∞) = T∞, C(x,∞) = C∞.
(2.8)

Here (u, v,w) are the fluid velocity components in the (x, y, z)-directions, respectively. ρ
is the fluid density, μ is the dynamic viscosity, cp the specific heat at constant pressure, βt
the coefficient of thermal expansion, βc the coefficient of concentration expansion, U∞, T∞
and C∞ the fluid free stream velocity, temperature, and concentration, respectively, N is the
component of microrotation of the fluid, K is the vortex viscosity, G1 is the spin gradient
viscosity. and k∗ permeability of the porous medium. βe and βi are respectively, the Hall
parameter and the ion-slip parameter, where αe = 1 + βiβe. b is a constant with dimension
(time)−1. Us is the surface velocity and Vw is suction/injection velocity, ν is the kinematic
viscosity,D is the chemical molecular diffusivity, α is the thermal diffusivity, k is the chemical
reaction, and B0 is the magnetic field of constant strength.

The governing differential equations (2.2)–(2.7) together with the boundary condi-
tions (2.8) are non-dimensionalised using the following similarity transformations:

η =
(
b

ν

)1/2

y, u = bxf ′(η), v = −
√
bνf
(
η
)
, w =

√
bνg
(
η
)
,

N =

√
b3

ν
xh
(
η
)
, θ =

T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

,

(2.9)

where f(η), g(η), h(η), θ and φ(η) are the dimensionless stream function and microrotation
functions, temperature, and concentration distributions functions, respectively. η is the
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similarity variable. The variation of thermal diffusivity with the dimensionless temperature
is written in the form:

α = α0
(
1 + β2θ

)
, (2.10)

where β2 is parameter depending on the nature of the fluid, and α0 is the thermal diffusivity
of the fluid at temperature Tw. Then introducing the relations (2.9) into the equations (2.3)–
(2.7) respectively, we obtain the following local similarity equations:

f ′′′ + ff ′′ − (f ′)2 +N1h
′ − M

α2
e + β2e

(
αef

′ +
βe√
Re

g

)
− 1
kp

f ′ = 0, (2.11)

g ′′ + fg ′ +
M

α2
e + β2e

(
βe
√
Ref ′ − αeg

)
− 1
kp

g = 0, (2.12)

Gh′′ − 2h − f ′′ = 0, (2.13)

θ′′ +
β2(

1 + β2θ
)(θ′)2 + PrEc(

1 + β2θ
)
[(

f ′′)2 +
(
g ′)2
Re

+
M

α2
e + β2e

((
f ′)2 + g2

Re

)]
+

Pr(
1 + β2θ

)fθ′ = 0,

(2.14)

1
Sc

φ′′ + fφ′ − γ Reφ = 0, (2.15)

where the primes denote differentiation with respect to η. M = σB2
0/ρb is the magnetic

parameter, N1 = K/ρν is the coupling constant parameter, G = G1b/Kν is the microrotation
parameter, Pr = ν/α is the Prandtl number, Sc = ν/D is the Schmidt number, Ec =
U2

s/cp(Tw−T∞) is the Eckert number, kp = k∗b/μ0 is the permeability parameter, Re = xUs/ν0,
is the Reynolds number, γ = κν/U2

s is the nondimensional chemical reaction parameter. In
view of the similarity transformations, the boundary conditions transform into:

f(0) = fw, f ′(0) = 1, g(0) = 0, h(0) = 0, θ(0) = 1, φ(0) = 1,

f ′(∞) = 0, g(∞) = 0, h(∞) = 0, T(∞) = 0, C(∞) = 0,
(2.16)

where fw = Vw/
√
bν is the mass transfer coefficient such that fw > 0 indicates suction and

fw < 0 indicates blowing at the surface.
For practical applications, quantities of interest include the velocity components u and

w, temperature and concentration, the local skin friction coefficients Cfx = τw/ρbx
√
bν and

Cfz = τz/ρbx
√
bν, the local Nusselt number Nu = −(∂T/∂y)y=0/(Tw−T∞)

√
b/ν, and the local

Sherwood number Sh = (∂C/∂y)y=0/(Cw−C∞)
√
b/ν, where τw = [(μ +K)(∂u/∂y) +KN]y=0
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and τz = [(μ +K)(∂w/∂y)]y=0 are the shear stress at the wall. By using (2.9), these quantities
can be expressed as:

Cfx = (1 +N1)f ′′(0),

Cfz = (1 +N1)g ′(0),

Nu = −θ′(0),

Sh = −φ′(0).

(2.17)

3. Generalization of the Successive Linearisation Method (SLM)

In this section we describe the basic idea behind the proposed method of successive
linearisation method (SLM) and we derive formulas that can be used to implement the
generalized SLM in any system of nonlinear boundary value problems. We consider a general
n-order nonlinear system of ordinary differential equations which is represented by the
nonlinear boundary value problem of the form

L
[
Y (x), Y ′(x), Y ′′(x), . . . , Y (n)(x)

]
+N
[
Y (x), Y ′(x), Y ′′(x), . . . , Y (n)(x)

]
= 0, (3.1)

where Y (x) is a vector of unknown functions, x is an independent variable, and the primes
denote ordinary differentiation with respect to x. The functions L and N are vector functions
which represent the linear and nonlinear components of the governing system of equations,
respectively, defined by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k
; . . . ;y(n)

1 , y
(n)
2 , . . . , y

(n)
k

)

L2

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k
; . . . ;y(n)

1 , y
(n)
2 , . . . , y

(n)
k

)
...

Lk

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k
; . . . ;y(n)

1 , y
(n)
2 , . . . , y

(n)
k

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k
; . . . ;y(n)

1 , y
(n)
2 , . . . , y

(n)
k

)

N2

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k
; . . . ;y(n)

1 , y
(n)
2 , . . . , y

(n)
k

)
...

Nk

(
y1, y2, . . . , yk;y′

1, y
′
2, . . . , y

′
k; . . . ;y

(n)
1 , y

(n)
2 , . . . , y

(n)
k

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1(x)

y2(x)

...

yk(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(3.2)
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a b

z1, 1

y1 =
y1, 0

(x)

y1 = y1 (x)

Figure 2: Geometric representation of the function z1,1(x).

where y1, y2, . . . , yk are the unknown functions. We define an initial guess Y0(x) of the
solution of (3.1) as

Y0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1,0(x)

y2,0(x)

...

yk,0(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.3)

For illustrative purposes, we assume that (3.1) is to be solved for x ∈ [a, b] subject to the
boundary conditions

Y (a) = Ya, Y (b) = Yb, (3.4)

where Ya and Yb are given constants. In previous implementation of the SLM (see, e.g., [19–
25]) an appropriate initial guess was considered to be functions that satisfy the governing
boundary conditions of (3.1). The general approach proposed in this study assumes that the
initial approximation is a solution of the equation

L
[
Y0(x), Y ′

0(x), Y
′′
0 (x), . . . , Y

(n)
0 (x)

]
= 0, (3.5)

which is solved subject to the underlying problem’s boundary conditions.
Define a functionZ1(x) to represent the vertical difference between Y (x) and the initial

guess Y0(x), that is,

Z1(x) = Y (x) − Y0(x), or Y (x) = Y0(x) + Z1(x). (3.6)

For example, the vertical displacement between the variable y1(x) and its corresponding
initial guess y1,0(x) is z1,1 = y1(x) − y1,0(x). This is shown in Figure 2.
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Substituting (3.6) in (3.1) gives

L
[
Z1, Z

′
1, Z

′′
1 , . . . , Z

(n)
1

]
+N
[
Y0 + Z1, Y

′
0 + Z′

1, Y
′′
0 + Z′′

1 , . . . , Y
(n)
0 + Z

(n)
1

]
= −L
[
Y0, Y

′
0, Y

′′
0 , . . . , Y

(n)
0

]
.

(3.7)

Since Y0(x) is an known function, solving (3.7) would yield an exact solution for Z1(x).
However, since the equation is nonlinear, it may not be possible to find an exact solution.
We therefore look for an approximate solution which is obtained by solving the linear part
of the equation assuming that Z1 and its derivatives are small. This assumption enables us
to use the Taylor series method to linearise the equation. If Z1(x) is the solution of the full
equation (3.7) we let Y1(x) denote the solution of the linearised version of (3.7). Expanding
(3.7) using Taylor series (assuming Z1(x) ≈ Y1(x)) and neglecting higher order terms gives

L
[
Y1, Y

′
1, Y

′′
1 , . . . , Y

(n)
1

]
+
[
∂N
∂Y1

]
(Y0,Y

′
0,Y

′′
0 ,...,Y

(n)
0 )

Y1 +

[
∂N
∂Y ′

1

]
(Y0,Y

′
0,Y

′′
0 ,...,Y

(n)
0 )

Y ′
1

+

[
∂N
∂Y ′′

1

]
(Y0,Y

′
0,Y

′′
0 ,...,Y

(n)
0 )

Y ′′
1 + · · · +

[
∂N

∂Y
(n)
1

]

(Y0,Y
′
0,Y

′′
0 ,...,Y

(n)
0 )

Y
(n)
1

= −L
[
Y0, Y

′
0, Y

′′
0 , . . . , Y

(n)
0

]
−N
[
Y0, Y

′
0, Y

′′
0 , . . . , Y

(n)
0

]
.

(3.8)

The partial derivatives inside square brackets in (3.8) represent Jacobian matrices of size k×k,
defined as

[
∂N
∂Yi

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂y1,i

∂N1

∂y2,i
· · · ∂N1

∂yk,i

∂N2

∂y1,i

∂N2

∂y2,i
· · · ∂N2

∂yk,i

...
...

...

∂Nk

∂y1,i

∂Nk

∂y2,i
· · · ∂Nk

∂yk,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎣ ∂N

∂Y
(p)
i

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂y
(p)
1,i

∂N1

∂y
(p)
2,i

· · · ∂N1

∂y
(p)
k,i

∂N2

∂y
(p)
1,i

∂N2

∂y
(p)
2,i

· · · ∂N2

∂y
(p)
k,i

...
...

...

∂Nk

∂y
(p)
1,i

∂Nk

∂y
(p)
2,i

· · · ∂Nk

∂y
(p)
k,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.9)

where i = 1 and p is the order of the derivatives.
Since the right hand side of (3.8) is known and the left hand side is linear, the equation

can be solved for Y1(x). Assuming that the solution of the linear part (3.8) is close to the
solution of (3.7), that is, Z1(x) ≈ Y1(x), the current estimate (1st order) of the solution Y (x) is

Y (x) ≈ Y0(x) + Y1(x). (3.10)
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y1
= y1, 0

(x)

y1 = y1 (x)

y1, 1

z2, 1

Figure 3: Geometric representation of the functions z2,1.

To improve on this solution, we define a slack function, Z2(x), which when added to Y1(x)
gives Z1(x) (see, e.g., Figure 3), that is

Z1(x) = Z2(x) + Y1(x). (3.11)

Since Y1(x) is now known (as a solution of (3.8) ), we substitute (3.11) in (3.7) to obtain

L
[
Z2, Z

′
2, Z

′′
2 , . . . , Z

(n)
2

]
+N
[
Y0 + Y1 + Z2 + Y ′

0 + Y ′
1 + Z′

2, . . . , Y
(n)
0 + Y

(n)
1 + Z

(n)
2

]

= −L
[
Y0 + Y1, Y

′
0 + Y ′

1, Y
′′
0 + Y ′′

1 , . . . , Y
(n)
0 + Y

(n)
1

]
.

(3.12)

Solving (3.12)would result in an exact solution for Z2(x). But since the equation is nonlinear,
it may not be possible to find an exact solution. We therefore linearise the equation using
Taylor series expansion and solve the resulting linear equation. We denote the solution of
the linear version of (3.12) by Y2(x), such that Z2(x) ≈ Y2(x). Setting Z2(x) = Y2(x) and
expanding (3.12), for small Y2(x) and its derivatives gives

L
[
Y2, Y

′
2, . . . , Y

(n)
2

]
+
[
∂N
∂Y2

]
(Y0+Y1,Y

′
0+Y

′
1,...,Y

(n)
0 +Y (n)

1 )
Y2 +

[
∂N

∂Y ′
2

]
(Y0+Y1,Y

′
0+Y

′
1,...,Y

(n)
0 +Y (n)

1 )

Y ′
2

+

[
∂N

∂Y ′′
2

]
(Y0+Y1,Y

′
0+Y

′
1,...,Y

(n)
0 +Y (n)

1 )

Y ′′
2 + · · · +

[
∂N

∂Y
(n)
2

]

(Y0+Y1,Y
′
0+Y

′
1,...,Y

(n)
0 +Y (n)

1 )

Y
(n)
1

= −L
[
Y0 + Y1, Y

′
0 + Y ′

1, . . . , Y
(n)
0 + Y

(n)
1

]
−N
[
Y0 + Y1, Y

′
0 + Y ′

1, . . . , Y
(n)
0 + Y

(n)
1

]
,

(3.13)

where the partial derivatives inside square brackets in (3.13) represent Jacobian matrices
defined as in (3.9)with i = 2.

After solving (3.13), the current (2nd-order) estimate of the solution Y (x) is

Y (x) ≈ Y0(x) + Y1(x) + Y2(x). (3.14)
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z3, 1

y1 =
y1, 0

(x)

y1 = y1 (x)

y1, 1

y2, 1

Figure 4: Geometric representation of the functions z3,1.

Next we define Z3(x) (see Figure 4) such that

Z2(x) = Z3(x) + Y2(x). (3.15)

Equation (3.15) is substituted in the nonlinear (3.12) and the linearisation process described
above is repeated. This process is repeated form = 3, 4, 5, . . . , i. In general, we have

Zi(x) = Zi+1(x) + Yi(x). (3.16)

Thus, Y (x) is obtained as

Y (x) = Z1(x) + Y0(x),

= Z2(x) + Y1(x) + Y0(x),

= Z3(x) + Y2(x) + Y1(x) + Y0(x),

...

= Zi+1(x) + Yi(x) + · · · + Y3(x) + Y2(x) + Y1(x) + Y0(x),

= Zi+1(x) +
i∑

m=0

Ym(x).

(3.17)

The procedure for obtaining each Zi(x) is illustrated in Figures 2, 3, and 4, respectively, for
i = 1, 2, 3.

We note that when i becomes large, Zi+1 becomes increasingly smaller. Thus, for large
i, we can approximate the ith-order solution of Y (x) by

Y (x) =
i∑

m=0

Ym(x) = Yi(x) +
i−1∑
m=0

Ym(x). (3.18)
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Starting from a known initial guess Y0(x), the solutions for Yi(x) can be obtained by
successively linearising the governing equation (3.1) and solving the resulting linear equation
for Yi(x) given that the previous guess Yi−1(x) is known. The general form of the linearised
equation that is successively solved for Yi(x) is given by

L
[
Yi, Y

′
i , Y

′′
i , . . . , Y

(n)
i

]
+ a0,i−1Y

(n)
i + a1,i−1Y

(n−1)
i + · · · + an−1,i−1Y ′

i + an,i−1Yi = Ri−1(x), (3.19)

where

a0,i−1(x) =

[
∂N

∂Y
(n)
i

](
i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)
,

a1,i−1(x) =

[
∂N

∂Y
(n−1)
i

](
i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)
,

an−1,i−1(x) =

[
∂N
∂Y ′

i

](
i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)
,

an,i−1(x) =
[
∂N
∂Yi

]( i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)
,

Ri−1(x) = −L
(

i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)

−N

(
i−1∑
m=0

Ym,
i−1∑
m=0

Y ′
m,

i−1∑
m=0

Y ′′
m, . . . ,

i−1∑
m=0

Y
(n)
m

)
.

(3.20)

4. Numerical Solution

In this section we solve the governing (2.11)–(2.15) using the SLM method described in
the last section. We note that (2.11)–(2.13) can be solved independently of equations (2.14)–
(2.15). We begin by using the SLM approach to solve for f, g and h. We write the governing
equations (2.11)–(2.13) as a sum of the linear and nonlinear components as

−L[f, f ′, f ′′, f ′′′, g, g ′, g ′′, h, h′, h′′] +N
[
f, f ′, f ′′, f ′′′, g, g ′, g ′′, h, h′, h′′] = 0, (4.1)
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where the primes denote differentiation with respect to η and

L =

⎡
⎢⎢⎣
L1

L2

L3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f ′′′ +N1h
′ − M

α2
e + β2e

(
αef

′ +
βe√
Re

g

)
− 1
kp

f ′

g ′′ +
M

α2
e + β2e

(
βe
√
Ref ′ − αeg

)
− 1
kp

g

Gh′′ − 2h − f ′′

⎤
⎥⎥⎥⎥⎥⎥⎦
,

N =

⎡
⎢⎢⎣
N1

N2

N3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ff ′′ − (f ′)2

fg ′

0

⎤
⎥⎥⎦.

(4.2)

Using (3.19), the general equation to be solved for Yi, where

Yi =

⎡
⎢⎢⎣
f

g

h

⎤
⎥⎥⎦, (4.3)

is

L
[
Yi, Y

′
i , Y

′′
i , Y

′′′
i

]
+ a0,i−1Y ′′′

i + a1,i−1Y ′′
i + a2,i−1Y ′

i + a3,i−1Yi = Ri−1
(
η
)
, (4.4)

subject to the boundary conditions

fi(0) = f ′
i(0) = gi(0) = hi(0) = f ′

i(∞) = gi(∞) = hi(∞) = 0, (4.5)

where

a0,i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂f ′′′
∂N1

∂g ′′′
∂N1

∂h′′′

∂N2

∂f ′′′
∂N2

∂g ′′′
∂N2

∂h′′′

∂N3

∂f ′′′
∂N3

∂g ′′′
∂N3

∂h′′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦,

a1,i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂f ′′
∂N1

∂g ′′
∂N1

∂h′′

∂N2

∂f ′′
∂N2

∂g ′′
∂N2

∂h′′

∂N3

∂f ′′
∂N3

∂g ′′
∂N3

∂h′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

∑
fm 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦,
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a2,i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂f ′
∂N1

∂g ′
∂N1

∂h′

∂N2

∂f ′
∂N2

∂g ′
∂N2

∂h′

∂N3

∂f ′
∂N3

∂g ′
∂N3

∂h′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
−2
∑

f ′
m 0 0

0
∑

fm 0

0 0 0

⎤
⎥⎥⎦,

a3,i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂f

∂N1

∂g

∂N1

∂h

∂N2

∂f

∂N2

∂g

∂N2

∂h

∂N3

∂f

∂N3

∂g

∂N3

∂h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∑
f ′′
m 0 0∑

g ′
m 0 0

0 0 0

⎤
⎥⎥⎥⎦,

Ri−1 =

⎡
⎢⎢⎣
r1,i−1

r2,i−1

r3,i−1

⎤
⎥⎥⎦,

r1,i−1 = −
[∑

f ′′′
m +
∑

fm
∑

f ′′
m +N1

∑
h′
m − M

α2
e + β2e

(
αe

∑
f ′
m +

βe√
Re

∑
gm

)
− 1
kp

∑
f ′
m

]
,

r2,i−1 = −
[∑

g ′′
m +
∑

fm
∑

g ′
m +

M

α2
e + β2e

(
βe
√
Re
∑

f ′
m − αe

∑
gm
)
− 1
kp

∑
gm

]
,

r3,i−1 = −
[
G
∑

h′′
m − 2

∑
hm −

∑
f ′′
m

]

(4.6)

and the sums in (4.6) denote
∑

=
∑i−1

m=0. Once each solution for fi, gi, hi (i ≥ 1) has been found
from iteratively solving equations (4.4)–(4.5), the approximate solutions for f(η), g(η), and
h(η) are obtained as

f
(
η
) ≈ i∑

m=0

fm
(
η
)
, g

(
η
) ≈ i∑

m=0

gm
(
η
)
, h

(
η
) ≈ i∑

m=0

hm

(
η
)
, (4.7)

where i is the order of SLM approximation. Since the coefficient parameters and the right
hand side of (4.4), for i = 1, 2, 3, . . ., are known (from previous iterations). The equation
system is solved using the Chebyshev spectral collocation method. This method is based on
approximating the unknown functions by the Chebyshev interpolating polynomials in such
a way that they are collocated at the Gauss-Lobatto points defined as

ξj = cos
πj

N
, j = 0, 1, . . . ,N, (4.8)

whereN+1 is the number of collocation points used (see, e.g., [26–28]). In order to implement
the method, the physical region [0,∞) is transformed into the region [−1, 1] using the domain
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truncation technique in which the problem is solved on the interval [0, L] instead of [0,∞).
This leads to the mapping

η

L
=

ξ + 1
2

, −1 ≤ ξ ≤ 1, (4.9)

where L is the scaling parameter used to invoke the boundary condition at infinity. The
unknown functions fi, θi and φi are approximated at the collocation points by

fi(ξ) ≈
N∑
k=0

fi(ξk)Tk
(
ξj
)
, gi(ξ) ≈

N∑
k=0

gi(ξk)Tk
(
ξj
)
, hi(ξ) ≈

N∑
k=0

hi(ξk)Tk
(
ξj
)
,

j = 0, 1, . . . ,N,

(4.10)

where Tk is the kth Chebyshev polynomial defined as

Tk(ξ) = cos
[
kcos−1(ξ)

]
. (4.11)

The derivatives of the variables at the collocation points are represented as

dafi
dηa

=
N∑
k=0

Da
kjfi(ξk),

dagi
dηa

=
N∑
k=0

Da
kjgi(ξk),

dahi

dηa
=

N∑
k=0

Da
kjhi(ξk), j = 0, 1, . . . ,N,

(4.12)

where a is the order of differentiation and D = (2/L)D with D being the Chebyshev spectral
differentiation matrix (see, e.g., [26, 28]). Substituting (4.9)–(4.12) in (4.4)–(4.5) leads to the
matrix equation given as

Mi−1Yi = Ri−1, (4.13)

subject to the boundary conditions

fi(ξN) =
N∑
k=0

D0kfi(ξk) =
N∑
k=0

DNkfi(ξk) = gi(ξN) = gi(ξ0) = hi(ξN) = hi(ξ0) = 0, (4.14)

where

Mi−1 = A + a1,i−1D
2
+ a2,i−1D + a3,i−1, (4.15)
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D3 −
(

Mαe

α2
e + β2e

+
1
kp

)
D − M(

α2
e + β2e

)√
Re

I N1D

Mβe
√
Re

α2
e + β2e

D D2 −
(

Mαe

α2
e + β2e

+
1
kp

)
O

−D2 O GD2 − 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)

D =

⎡
⎢⎢⎣
D O O

O D O

O O D

⎤
⎥⎥⎦, (4.17)

and Yi and Ri−1 are (3N + 1) × 1 column vectors defined by

Yi =

⎡
⎢⎢⎣
Fi

Gi

Hi

⎤
⎥⎥⎦, Ri−1 =

⎡
⎢⎢⎣
r1,i−1

r2,i−1

r3,i−1

⎤
⎥⎥⎦, (4.18)

where

Fi =
[
fi(ξ0), fi(ξ1), . . . , fi(ξN−1), fi(ξN)

]T
,

Gi =
[
gi(ξ0), gi(ξ1), . . . , gi(ξN−1), gi(ξN)

]T
,

Hi = [hi(ξ0), hi(ξ1), . . . , hi(ξN−1), hi(ξN)]T ,

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), . . . , r1,i−1(ξN−1), r1,i−1(ξN)]T ,

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), . . . , r2,i−1(ξN−1), r2,i−1(ξN)]T ,

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), . . . , r3,i−1(ξN−1), r3,i−1(ξN)]T .

(4.19)

In the above definitions, ak,i−1, (k = 1, 2, 3) are now diagonal matrices of size 3(N+1)×3(N+1)
and the superscript T is the transpose.

To impose the boundary conditions (4.14) on (4.13) we begin by splitting the matrix
M in (4.13) into 9 blocks each of size (N + 1) × (N + 1) in such a way that M takes the form

Mi−1 =

⎡
⎢⎢⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎦. (4.20)
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We then modify the first and last rows of Mmn (m,n = 1, 2, 3) and rm,i−1 and the N − 1th row
ofM1,1,M1,2,M1,3 in such a way that the modified matrices Mi−1 and Ri−1 take the form

Mi−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0,0 D0,1 · · · D0,N−1 D0,N 0 0 · · · 0 0 0 0 · · · 0 0

M11 M12 M13

DN,0 DN,1 · · · DN,N−1 DN,N 0 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0 1 0 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0 0 0 · · · 0 0

M21 M22 M23

0 0 · · · 0 0 0 0 · · · 0 1 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 0 1 0 · · · 0 0

M31 M32 M33

0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ri−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

r1,i−1(ξ1)

...

r1,i−1(ξN−2)

0

0

0

r2,i−1(ξ1)

...

r2,i−1(ξN−2)

r2,i−1(ξN−1)

0

0

r3,i−1(ξ1)

...

r3,i−1(ξN−2)

r3,i−1(ξN−1)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.21)
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After modifying the matrix system (4.13) to incorporate boundary conditions, the solution is
obtained as

Yi = M−1
i−1Ri−1. (4.22)

We use (3.5) to solve solve for the initial approximation Y0. If we use the Chebyshev spectral
method to solve for Y0, we arrive at the following:

AY0 = 0, (4.23)

subject to the boundary conditions

N∑
k=0

DNkf0(ξk) = 1, f0(ξN) =
N∑
k=0

D0kf0(ξk) = g0(ξN) = g0(ξ0) = h0(ξN) = hi(ξ0) = 0,

(4.24)

where A is as defined in (4.16) and Y0 are (3N + 1) × 1 column vectors defined by

Y0 =

⎡
⎢⎢⎣
F0

G0

H0

⎤
⎥⎥⎦, (4.25)

where

F0 =
[
f0(ξ0), f0(ξ1), . . . , f0(ξN−1), f0(ξN)

]T
,

G0 =
[
g0(ξ0), g0(ξ1), . . . , g0(ξN−1), g0(ξN)

]T
,

H0 = [h0(ξ0), h0(ξ1), . . . , h0(ξN−1), h0(ξN)]T .

(4.26)

To impose the boundary conditions (4.24) on the system (4.23) we begin by splitting the
matrix A into 9 blocks each of size (N + 1) × (N + 1) in such a way that A takes the form

A =

⎡
⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎦. (4.27)
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We then modify the first and last rows of Amn (m,n = 1, 2, 3) and the N − 1th row of
A1,1, A1,2, A1,3 in such a way that the modified matrix A takes the form;

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0,0 D0,1 · · · D0,N−1 D0,N 0 0 · · · 0 0 0 0 · · · 0 0

A11 A12 A13

DN,0 DN,1 · · · DN,N−1 DN,N 0 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0 1 0 0 · · · 0 0 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0 0 0 · · · 0 0

A21 A22 A23

0 0 · · · 0 0 0 0 · · · 0 1 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 0 1 0 · · · 0 0

A31 A32 A33

0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.28)

We introduce a matrix R0 on the right hand side of (4.23) such that

AY0 = R0, (4.29)

where

R0 =
(
0 0 · · · 0 1 0|0 0 · · · 0 0 0|0 0 · · · 0 0 0

)T
. (4.30)

The solution Y0 is obtained as

Y0 = A−1R0. (4.31)

Thus, starting from Y0, the solutions for Yi are then obtained iteratively from solving equation
(4.22). Once the solution for f and g and h have been obtained, the solutions for θ and φ can
be found using the same procedure as described above.

5. Results and Discussion

In this section, we present the results obtained using both the successive linearization method
and Chebyshev spectral collocation numerical method. The number of collocation points
employed in this investigation isN = 50. The results are also validated against those obtained
using the Matlab built-in solver bvp4c as well as reported by Elgazery [12]. Table 1 represents
comparison between the SLM, Chebyshev pseudospectral method [12], and the bvp4c results
of the local Nusselt number −θ′(0). We note from this table that the SLM and the bvp4c results
match exactly but the results reported by Elgazery [12] are slightly different from the current
results. This is an interesting observation, since Elgazery [12] also applied the pseudospectral
method, this substantiate the claim that the SLM technique improves the accuracy of the
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Table 1: Comparison of the present results (4th-order) for the local Nusselt number −θ′(0) against the
bvp4c results and the results of [12] for various values of βe, βi and M at Pr = 0.72, β2 = 0.5, fw = 0.1,
kp = 2, Re = 1, G = 2, N1 = 0.2, and Ec = 0.02.

M βe βi [12] Present bvp4c
0 5 0.4 0.327498 0.32749528 0.32749528
0.5 0.324844 0.32484164 0.32484164
1 0.321912 0.32190912 0.32190912
1.5 0.318772 0.31876809 0.31876809
0.3 0 0.311234 0.31122885 0.31122885

1 0.319297 0.31929392 0.31929392
2 0.323083 0.32308061 0.32308061

0.3 5 0 0.326696 0.32669328 0.32669328
0.2 0.326225 0.32622274 0.32622274
0.5 0.325865 0.32586231 0.32586231

Table 2: The wall shear stresses Cfx = (1 + N1)f ′′(0) for various values of kp, N1, βe, and βi at M = 0.3,
Pr = 0.72, fw = 0.1, Re = 1, G = 2, and Ec = 0.02.

kp N1 βe βi 2nd-Order 3rd-Order 4th-Order 6th-Order
0.1 1 5 0.4 −6.65334091 −6.65334091 −6.65334091 −6.65334091
0.5 1 5 0.4 −3.46988916 −3.46989224 −3.46989224 −3.46989224
1 1 5 0.4 −2.83779413 −2.83787814 −2.83787815 −2.83787815
2 1 5 0.4 −2.46510143 −2.46622986 −2.4662317 −2.4662317
2 0.1 5 0.4 −1.40914015 −1.40961763 −1.40961811 −1.40961811
2 0.5 5 0.4 −1.88961638 −1.89034144 −1.89034233 −1.89034233
2 1 5 0.4 −2.46510143 −2.46622986 −2.4662317 −2.4662317
2 2 5 0.4 −3.52816005 −3.53067494 −3.53068356 −3.53068356
2 0.5 0 0.4 −2.04791788 −2.04807626 −2.04807629 −2.04807629
2 0.5 2 0.4 −1.91920286 −1.91972357 −1.91972398 −1.91972398
2 0.5 4 0.4 −1.89445825 −1.89514419 −1.89514497 −1.89514497
2 0.5 6 0.4 −1.88649265 −1.88724415 −1.88724512 −1.88724512
2 0.5 5 0 −1.88077116 −1.88155788 −1.88155895 −1.88155895
2 0.5 5 2 −1.88698782 −1.88774243 −1.88774341 −1.88774341
2 0.5 5 4 −1.8814535 −1.88225343 −1.88225455 −1.88225455
2 0.5 5 6 −1.8789626 −1.87978367 −1.87978486 −1.87978486

Chebyshev method. We also note in this table that the absolute values of the Nusselt number
decrease with increasing values of magnetic parameter and the ion-slip parameter. However,
it increases with increasing values of the Hall parameter.

Table 2 gives the results of the wall stresses (Cfx) for various values of kp,N1, βe, and
βi when other parameters are fixed. For fixed values of N1, we observe that the absolute
values of the local-skin friction decrease with the increasing values of the permeability
parameter (kp). The local shear stress (Cfx) increases in absolute values as the coupling
parameter increases. The local wall shear stress (Cfx) increases in absolute values when the
Hall parameter or ion-slip parameter increases.

The values of the wall shear stresses (Cfx, Cfz), the local Nusselt number −θ′(0) and
the local Sherwood number −φ′(0) for different Hartman numberM, Hall parameter βe, ion-
slip parameter βi, and coupling parameter N1 are presented in Table 3. It is observed in this
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Table 3: The local Nusselt number −θ′(0), Sherwood number −φ′(0), and the wall shear stresses Cfx =
(1 +N1)f ′′(0) and Cfz = (1 +N1)g ′(0) for various values of βe, βi, M and N1 at Pr = 0.72, fw = 0.1, kp = 2,
Re = 1, G = 2 and Ec = 0.02.

M βe βi N1 Cfx Cfz −θ′(0) −φ′(0)
1 5 0.4 0.2 −1.56322914 0.08599136 0.32190912 0.48724548
2 5 0.4 0.2 −1.61077402 0.16422572 0.31547847 0.48232094
3 5 0.4 0.2 −1.65972336 0.23554336 0.30864336 0.47715106
4 5 0.4 0.2 −1.70922564 0.3008927 0.30169844 0.47195166
5 5 0.4 0.2 −1.75872895 0.3611565 0.29482895 0.4668536
0.3 0 0.4 0.2 −1.65812419 0 0.31122885 0.47941184
0.3 2 0.4 0.2 −1.55508122 0.04885996 0.32308061 0.48818323
0.3 4 0.4 0.2 −1.53530214 0.03171899 0.32547247 0.49001302
0.3 6 0.4 0.2 −1.52894206 0.02291991 0.32624205 0.49060833
0.3 5 0 0.2 −1.52437745 0.03510497 0.32669328 0.49098971
0.3 5 0.5 0.2 −1.53222519 0.02430318 0.32586231 0.49030887
0.3 5 1 0.2 −1.53273738 0.01483309 0.32583913 0.49027923
0.3 5 1.5 0.2 −1.53110355 0.00931987 0.32603778 0.49043266
0.3 5 0.5 0 −1.28738139 0.02038592 0.32757864 0.49138014
0.3 5 0.5 0.2 −1.53222519 0.02430318 0.32586231 0.49030887
0.3 5 0.5 0.5 −1.89132586 0.03006273 0.32307538 0.48858611
0.3 5 0.5 1 −2.46753529 0.03931368 0.31775592 0.48535366

table that the local skin-friction coefficients f ′′(0) and g ′(0) increase with increasing values of
M and N1 but g ′(0) decreases as values of βe and βi increase. Both the local Nusselt number
and the Sherwood number are found to be decreasing with increasing values of the Hartman
number M and they also slightly decrease with increasing values of the ion-slip parameter
and the coupling parameter. The local Nusselt number and the Sherwood number increases
as Hall currents increase.

Graphical representation of the numerical results are illustrated in Figure 5 through
Figure 13 to depict the influence of different parameters on the flow characteristics. Figure 5
depicts the effects of the Hall current parameter βe on the velocity components f ′(η) and g(η).
We see that the stream velocity profiles f ′(η) increases as βe increases. We also observe in this
figure that velocity distribution across the stretching sheet g(η) increases with increasing
values of βe when βe ≤ 1 but decreases with increasing values of βe greater than unity.

Figure 6 depicts the effects of the Hall current parameter βe on the angular velocity
h(η), temperature and concentration distributions. We observe that the angular velocity
steeply rises up to maximum peaks as the Hall parameter increases. In the same figure we
see that both the temperature and concentration profiles approach their classical values when
the Hall parameter βe becomes large. They both decrease with increasing values of βe.

The influence of the Hartman number on the stream velocity and the velocity across
the plate is depicted in Figure 7. It is observed that the stream velocity of the fluid decreases
with the increase of the magnetic field parameter values. The decrease in this velocity
component as the Hartman number (M) increases is because the presence of a magnetic
field in an electrically conducting fluid introduces a force called the Lorentz force, which acts
against the flow if the magnetic field is applied in the normal direction, as in the present
study. This resistive force slows down the fluid velocity component as shown in Figure 7. In
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Figure 7 we have the influence of the magnetic field parameter on the lateral velocity. It can
be seen that as the values of this parameter increase, the lateral velocity increases.

Figure 8 shows the effects of the magnetic parameter M on the angular velocity h(η),
temperature and concentration profiles. As expected, the angular velocity steeply increases
with every value of the magnetic value until attaining a peak and thereafter the angular
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Figure 6

velocity decreases monotonically with increasing values ofM. In this figure, we also observe
that both the temperature and concentration boundary layers become thick as values of the
magnetic parameter increase. The effects of a transverse give rise to a resistive-type force
called the Lorentz force. This force has the tendency to slow down the motion of the fluid and
increase its thermal and concentration boundary layers hence increasing the temperature and
concentration fields of the flow.

Figures 9 and 10 give the effects of the permeability parameter kp on the velocity
components, temperature and concentration distributions. As shown in these figures, all the
velocity components are increasing with increasing values of the permeability parameter,
whereas the temperature and concentration decrease as the permeability parameter kp



Journal of Applied Mathematics 23

f
′ (
η
)

η

M = 1
M = 5
M = 10

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

g
(η
)

η

M = 1
M = 5
M = 10

0 1 2 3 4 5 6 7
0

0.05

0.1

(b)

Figure 7

increases. Physically, this means that the porous medium impact on the boundary layer
growth is significant due to the increase in the thickness of the thermal and concentration
boundary layers. It is expected that, an increase in the permeability of porous medium lead
to a rise in the flow of the fluid through it, since when the holes of the porousmedium become
large, the resistance of the mediummay be neglected. Figure 11 depicts the effects of coupling
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Figure 8

constant or material parameter on the velocity components. The stream velocity is slightly
affected by the coupling constant. As we move away from the stretching sheet surface, η > 1,
the stream velocity decreases as N1 increases. We observe also in Figure 11 that the velocity
across the plate monotonically decreases as N1 increases. We observe in Figure 11 that for
values of η less than two, the angular velocity increases whenN1 increases, and thereafter we
have a cross-flow angular velocity when increasing values of N1 cause the angular velocity
to decrease.

Figure 12 shows the effects of the Eckert number Ec and the variable thermal
diffusivity parameter β2 on the temperature. The temperature distribution θ(η) increases as
Ec and β2 increase as shown in Figure 12.
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Figure 9

Finally, Figure 13 shows the effects of the ion-slip parameter βi on the velocity across
the plate g(η) and those of the chemical reaction on the concentration distribution φ(η).
We observe in this figure that the ion-slip parameter has a significant effect on the induced
velocity in the z-direction. The velocity component decreases with increases in the parameter
βi. We also observe in this study (not shown for brevity) that f ′(η), h(η), and θ(η) profiles
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increase as the ion-slip parameter increases. From Figure 13 we also observe that the effects
of chemical reaction parameter is to reduce the concentration distribution φ(η) when γ
increases.

6. Conclusions

In this study, the effects of Hall and ion-slip currents, chemical reaction and variable thermal
diffusivity on magnetomicropolar fluid flow through a porous medium past a stretching
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sheet in the presence of heat and mass transfer have been numerically analyzed using
the successive linearization method together with Chebyshevcollocation method. Results
for the wall stresses, local Nusselt and Sherwood numbers as well as the details of the
velocities, temperature and concentration distributions are presented in tabular and/or
graphical forms for the governing parameters. The successive linearization method was
found to be a very efficient and accurate method which we hope to apply to different
problems in fluid mechanics and related fields. The study observed that higher values of
the coupling parameter results in lower stream velocity and velocity across the plate but
have little effects on the angular velocity. The porous medium impact on the boundary layer
growth is significant due to the increase in the thickness of the hydrodynamic boundary layer
and the decrease in the thickness of the thermal and concentration boundary layers. All the
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velocity components increase with increasing values of the Hall current. The ion-slip current
causes the induced velocity in the z-direction to decrease but has opposing effects on the
stream velocity, angular velocity, as well as temperature profiles.
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