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A time-domain numerical model is established based on the higher-order boundary element
method (HOBEM) to simulate wave diffraction problem in a two-layer fluid of finite depth. There
are two possible incident wave modes (surface-wave mode and internal-wave mode) exist in
the incident wave for a prescribed frequency in a two-layer fluid. For surface-wave mode, the
hydrodynamic characters of fluid particles are similar to single-layer fluid. For the internal-wave
mode, through the definition of a new function respected to velocity potentials of upper and lower
fluid on the interface by using matching condition, a single set of linear equations is set up to
compute the time histories of wave forces and wave profiles by using a fourth-order Runge-Kutta
method. An artificial damping layer is adopted both on the free surface and interface to avoid the
wave reflection. Examinations of the accuracy of this time-domain algorithm are carried out for a
truncated cylinder and a rectangular barge, and the results demonstrate the effectiveness of this
method.

1. Introduction

In the classical view of ocean hydrodynamics, the fluid under consideration is usually
assumed to be of constant density. In the real ocean, however, density of sea water changes
due to the variations in temperature and salinity in the water depth direction. In the ocean
with density stratification, we usually simplify this complex case as a two-layer fluid model.
In this model there is a thin layer called the pycnocline, the density of fluid above and below
this pycnocline is approximately constant. In this paper we also focus on this two-layer fluid.

The internal waves will be generated on the interface between the two fluid layers with
different types such as incident solitary wave and periodic wave. For internal solitary wave,
the wave length is much longer than the characteristic length of structure. So the internal



2 Journal of Applied Mathematics

solitary wave forces acting on structures can be simulated only by the Morison formula [1, 2].
For the other typical harmonic internal waves, the wave length is over a wide range. The
diffraction/radiation theory should be adopted when the characteristic length of structure is
relative large.

Lamb [3] and Landau and Lifshitz [4] discussed some of the types of linear wave
motion in a two-layer fluid. It was shown that incident waves in a two-layer fluid can
propagate with two different wave numbers for a given frequency, corresponding to the
surface-wave mode and internal-wave mode, respectively. Yeung and Nguyen [5] derived
the Green functions in a two-layer fluid of finite depth for 3D problems. Ten and Kashiwagi
[6] and Kashiwagi et al. [7] studied a two-dimensional radiation\diffraction problem for a
general body floating in a two-layer fluid of finite depth by means of a boundary integral-
equation method. Linton and McIver [8] studied the horizontal cylinders interacted with
waves in two-layer fluids by multipole expansion method. By using the same method,
Sturova [9] solved the problem of wave motions of a heavy fluid driven by the oscillations
of a cylinder (radiation problem) and the scattering of an internal wave by a fixed cylinder
(diffraction problem). Das and Mandal [10] also used this method to study the problems of
radiation of water waves by a submerged sphere in deep water as well as in finite depth water
with an ice-cover. You et al. [11] calculated the radiation and diffraction of water waves by a
floating circular cylinder in a two-layer fluid of finite depth by using analytical method, the
wave exciting forces for a floating circular cylinder due to incident waves of both surface-
and internal-wave modes were presented.

To authors knowledge, most of the studies of the interaction between internal waves
and structures are based on analytic method or frequency-domain approach based on the use
of wave Green function. Because of the limitation of analytic method, it couldnot be used in
practical engineering. For the wave Green function approach whether in frequency-domain
or in time-domain approach, the complex wave Green function in two-layer fluid should be
calculated. Therefore, developing a time-domain approach easy to implement to study the
wave interactions between internal waves and structures has important significance.

In this present work, a time-domain higher-order boundary element method
(THOBEM) was developed for internal wave diffraction from a 3D body located in the upper
layer fluid. Integral equations in the upper and lower fluid domains are derived by applying
the Green’s second identity to simple Green function and velocity potential in each layer,
respectively. By the construction of a function on the interface, a single set of linear equations
is set up to compute the time histories of wave forces and wave profiles by using a fourth-
order Runge-Kutta method. An artificial damping layer is adopted to dissipate the scattering
waves on both free surface and interface. The internal wave force and moment on a floating
body are calculated and compared with published frequency-domain solution and analytic
method, and a relatively good agreement was found.

2. Numerical Simulations

A fixed Cartesian coordinate system Oxyz is adopted with the origin O located at the
undisturbed free surface, where the z-axis is positive upwards and the body is located in
the upper layer fluid, as shown in Figure 1. Denote the densities and depths of the upper and
lower fluid layers by ρ1, h1 and ρ2, h2, respectively. The ratio between the upper and lower
layer density can be defined as γ = ρ1/ρ2 and the total water depth is h = h1 + h2.
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Figure 1: The coordinate system.

2.1. Incident Wave Potential and Dispersion Relation

The expressions of incident wave velocity potential of upper and lower domain in a two-
layer fluid had been listed by some researchers [5, 6], and the detail of the present derivative
process is listed below.

The fluid in each layer is assumed to be inviscid and incompressible, and the flow
irrotational. The velocity potentials Φ(1)(x, y, z, t) and Φ(2)(x, y, z, t) in the fluid domain Ω1

and Ω2 satisfy Laplace equation:

∇2Φ(m) = 0, (2.1)

where m = 1, 2 denote the upper and lower fluid domains. The linearized boundary
conditions for free surface and interface are described as:

Φ(1)
tt + gΦ(1)

z = 0, z = 0,

Φ(1)
z = Φ(2)

z, z = −h1,

γ
(
Φ(1)

tt + gΦ(1)
z

)
= Φ(2)

tt + gΦ(2)
z, z = −h1.

(2.2)

A rigid sea bottom satisfies the no-penetration condition in the lower domain is given as:

Φ(2)
z = 0, z = −h1 − h2. (2.3)

The velocity potential is defined as the following equation:

Φ(m)(x, y, z, t) = Re
[
φ(m)(x, y, z)e−iωt

]
. (2.4)
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Inserting (2.4) into boundary conditions of (2.2)∼(2.3):

∂φ(1)(x, y, z)

∂z
=

ω2

g
φ(1)(x, z) = k0φ

(1)(x, y, z), z = 0, (2.5)

∂φ(1)(x, z)
∂z

=
∂φ(2)(x, z)

∂z
, z = −h1, (2.6)

γ

(
∂φ(1)(x, y, z)

∂z
− k0φ

(1)(x, y, z)
)

=

(
∂φ(2)(x, y, z)

∂z
− k0φ

(2)(x, y, z)
)
, z = −h1, (2.7)

∂φ
(2)
z (x, z)
∂z

= 0, z = −h1 − h2, (2.8)

where k0 = ω2/g. The solutions of (2.5), (2.6), and (2.8) can be written as the following forms:

φ(1)(x, y, z) = Z1(z)eik(x cos β+y sin β), Z1(z) = a1
cosh k(z + h)

cosh kh
+ b1

sinh kz

sinh kh1

φ(2)(x, y, z) = Z2(z)eik(x cos β+y sin β), Z2(z) = a2
cosh k(z + h)

cosh kh
,

(2.9)

where k denotes the wave number, a1, b1, and a2 are the unknown coefficients. Inserting the
expression of φ(m)(x, y, z) into the free surface boundary conditions (2.5), (2.6), and (2.8), we
can get

Z1(z) = a1

[
cosh k(z + h)

cosh kh
+
(
k0

k
− tanh kh

)
sinh kz

]

Z2(z) = a1

[
1 +

(
k0

k
− tanh kh

)
cosh kh1 cosh kh

sinh kh2

]
cosh k(z + h)

cosh kh
.

(2.10)

The wave elevations η(1) and η(2) have the relations as following:

Φ(1)
t = −gη(1), z = 0, (2.11)

Φ(2)
z = η

(2)
t , z = −h1. (2.12)

Assuming that η(2) = Aei(kx cos β+ky sin β−ωt), the coefficients a1 can be obtained based on (2.12):

a1 =
−iwA cosh kh

k sinh kh2[1 + (k0/k − tanh kh)(cosh kh1 cosh kh/ sinh kh2)]
, (2.13)
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we can then obtain the incident wave potentials and wave elevations as follows:

Φ(1)
i =

ωA((k0/k) sinh kz + cosh kz)
k0 cosh kh1 − k sinh kh1

sin
(
kx cos β + y sin β −ωt

)
in the upper domain

Φ(2)
i =

ωA cosh k(z + h)
k sinh kh2

sin
(
kx cos β + y sin β −ωt

)
in the lower domain

η
(1)
i =

A

cosh kh1[1 − (k/k0) tanh kh1]
cos

(
k
(
x cos β + y sin β

) −ωt
)
.

η
(2)
i = A cos

(
k
(
x cos β + y sin β

) −ωt
)
,

(2.14)

where A denotes the incident wave amplitude on the interface.
By inserting the expressions of φ(m)(x, y, z) into (2.7), the dispersion equation in two-

layer fluid is obtained as

[(
γ + 1

)
tanh kh1 tanh kh2

]
k2 + [k0(tanh kh1 tanh kh2)]k0 − k2

0
(
γ + 1

)
tanh kh1 tanh kh2 = 0.

(2.15)

It can be seen that three are two possible roots of (2.15), that is, traveling waves with
a prescribed frequency ω in a two-layer fluid can propagate with two possible different
wavenumbers k1 and k2. In order to find the physical significance of k1 and k2 more explicitly,
on the assumption that the depth of each layer fluid goes to infinite, (2.15) can be simplified
to the following version:

(
k

k0

)2(
1 − γ

) − 2
k

k0
+
(
γ + 1

)
= 0. (2.16)

The two roots of (2.16) are

k

k0
= 1,

k

k0
=

(
1 + γ

)
(
1 − γ

) . (2.17)

It can be seen obviously that the former root is corresponding to the surface wave mode,
and the other is corresponding to the internal wave mode. In this paper we only concern the
internal wave mode.

2.2. Diffraction Problem

Under the assumptions of linear water wave theory, the total velocity potential in upper
and lower fluid domain can be divided into a known incident potential and an unknown
diffractive potential, while the wave elevation on the free surface and interface can be divided
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into a known incident wave elevation and an unknown diffractive wave elevation as the
following:

Φ(1) = Φ(1)
i + Φ(1)

d , Φ(2) = Φ(2)
i + Φ(2)

d ,

η(1) = η
(1)
i + η

(1)
d
, η(2) = η

(2)
i + η

(2)
d
.

(2.18)

For the diffraction potential, it must satisfy the following governing equations and the
boundary conditions:

∇2Φd
(m) = 0, m = 1, 2

∂Φ(1)
dz

∂n
= −∂Φ

(1)
iz

∂n
onSB

Φ(2)
dz = 0 on z = −h1 − h2,

(2.19)

η
(1)
dt = Φ(1)

dz (a)
on z = 0,

Φ(1)
dt = −gη(1)

d (b)
(2.20)

η
(2)
dt = Φ(2)

dz (c)

Φ(1)
dz

= Φ(2)
dz (d) on z = −h1

γ
(
Φ(1)

dt
+ gη

(2)
d

)
= Φ(2)

dt
+ gη

(2)
d (e)

. (2.21)

For simplicity, we define a function ϕ = γΦ(1)
d −Φ(2)

d on z = −h1, then the boundary condition
(e) of (2.21) can be rewritten as:

ϕt =
(
1 − γ

)
gη

(2)
d on z = −h1. (2.22)

The velocity potential on interface is discontinuous, but the construction of this function ϕ
makes it easier to solve this boundary value problem. The details are introduced in the next
subsection.

In order to avoid the reflection of scatter waves on the outer computational boundary,
we introduce an artificial damping layer to absorb the scattered wave energy. On the outer
part of the free surface and interface, a damping term is added to the free surface boundary
conditions

∂η
(m)
d

∂t
=

∂φ
(m)
d

∂z
− ν(r)η(m)

d
, m = 1, 2,

∂Φ(m)
d

∂t
= −gη(m)

d
− ν(r)Φ(m)

d
, m = 1,

∂ϕ

∂t
=
(
1 − γ

)
gη

(m)
d − ν(r)ϕ, m = 2,

(2.23)
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where m = 1, 2, and ν(r) denotes the damping coefficient is given by

v(r) =

⎧
⎪⎨
⎪⎩
Cω

(
r − r0

βλ

)2 (
r0 ≤ r ≤ r0 + βλ

)

0 (r < r0),
(2.24)

where C is the damping coefficient, β is the beach breadth coefficient, and λ is the
characteristic wave length. r0 and r0 +βλ represent the inner and outer radius of the damping
layer, respectively. In this paper values of α and β are equal to 1.0.

A ramping function is utilized when the simulation started. Its aim is to make the
numerical simulation more stable and reach steady state faster. In this present simulation, a
ramp function is applied to the first two waves by the following forms:

Rm(t) =

⎧
⎨
⎩

1
2

(
1 − cos

(
πt

2T

))
t ≤ 2T

1 t ≥ 2T,
(2.25)

where T is the wave period.

2.3. Integral Equation and Its Solution by Time-Domain Method

Based on Green’s theorem, the boundary integral equations in the upper and lower layer
fluid can be obtained to solve the above boundary value problems. The integral equation
in the upper fluid includes the integration over the body surface, the free surface, and the
interface:

αφ1
d−

∫∫

SB

φ1
d

∂G1

∂n
ds +

∫∫

SF

G1
∂φ1

d

∂n
ds +

∫∫

SI

G1
∂φ1

d

∂n
ds

= −
∫∫

SB

G1
∂φ1

d

∂n
ds +

∫∫

SF

φ1
d

∂G1

∂n
ds +

∫∫

SI

φ1
d

∂G1

∂n
ds,

(2.26)

where Green’s function G1 = −1/4πr is the Rankine source. In our case the body located in
the upper layer is considered, thus the integral equation in the lower fluid only includes the
integration over the interface. The integral equation in the lower layer domain has the forms
as

∫∫

SI

G2
∂φ2

d

∂n
ds =

∫∫

SI

φ2
d

∂G2

∂n
ds − αφ2

d, (2.27)

where G2 = −1/4πr − 1/4πr2 includes its images about the seabed.ris the distance between
the field and the source point, and r2 is the distance between the field point and the image of
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the source point about the sea bed. α is the so-called solid angle coefficient and satisfies the
following forms:

α =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
(
source point within the domain

)

0
(
source point outside the domain

)

1 − solid angle
4π

(
source point on the boundary

)
.

(2.28)

In this paper the direct method is used to calculate the solid angle [12].
Compared with constant panel method the higher-order boundary element method

[13] is more accurate and efficient. In this numerical method, quadratic isoparametric
elements are used to discretize the surface over which the integral is performed. Curved
quadrilateral and triangular elements are placed by eight and six nodes, respectively.

Through the discretization of (2.26) and (2.27), two sets of linear equations can be
obtained as:

⎡
⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SF{
Φ(1)

d

}
SB

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SI

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎣
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Φ(1)

d

}
SF

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SB{
Φ(1)

d

}
SI

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.29)

[b]

⎧
⎨
⎩

∂Φ(2)
d

∂n

⎫
⎬
⎭

SI

= [t]
{
Φ(2)

d

}
SI

. (2.30)

It is worth noting that the normal velocities of the upper and lower domains on the interface
are in the opposite direction. It means that the normal derivatives of the potentials at the
interface have the following relation:

∂Φ(1)
d

∂n
= −∂Φ

(2)
d

∂n
. (2.31)
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Applying the above relation to (2.30) and taking advantage of the function ϕ constructed in
(2.22), we can combine (2.29) and (2.30) to get a single set of linear equations as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 +
1
γ
s13[t]−1[b]

a21 a22 a23 +
1
γ
s23[t]−1[b]

a31 a32 a33 +
1
γ
s33[t]−1[b]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SF{
Φ(1)

d

}
SB

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SI

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12
1
γ
s13

s21 s22
1
γ
s23

s31 s32
1
γ
s33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Φ(1)

d

}
SF

⎧
⎨
⎩

∂Φ(1)
d

∂n

⎫
⎬
⎭

SB

{
ϕ
}
SI

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.32)

All the coefficient matrices [a], [s], [t], and [b] are constant at all time steps due to the time-
independent integral boundary.

A time-stepping integration method is employed to obtain the values of wave
elevations, the velocity potentials over the body surface, and the derivative of interface. The
initial conditions as

Φ(1)
d

∣∣∣
SF

= 0, η
(1)
d = 0,

Φ(2)
d

∣∣∣
SI

= 0, η
(2)
d

= 0,

ϕ
∣∣
SI

= 0.

(2.33)

After solving the boundary value problem and obtaining the fluid velocity on the free surface
and interface at each time step, the general forms of the dynamic and kinematic boundary
conditions (2.23) are used as ordinary differential equations to be marched in time and can
be rewritten as

δηm
d

δt
= f

(
Φm

d , η
m
d , t

)
m = 1, 2

δΦ1
d

δt
= g

(
Φ1

d, η
1
d, t

) δϕ2
d

δt
= h

(
ϕ2
d, η

2
d, t

)
. (2.34)

A 4th-order Runge-Kutta method is adopted for integrating (2.34) with time.
When the unknown velocity potentials over body surface are obtained, the pressure

can be derived from the Bernoulli equation, the forces and moments acting on the body can
be calculated by integrating the pressure over the mean body surface.

3. Numerical Validation of the Time-Domain Method

3.1. A Truncated Cylinder in a Two-Layer Fluid of Finite Depth

The water depths of the upper and the lower layers are h1/h = 0.7, h2/h = 0.3. The densities
of the fluids in the upper and the lower layers are ρ1 = 998.2 kg/m3 and ρ2 = 1027.2 kg/m3.
That means γ = 0.97. The cylinder has a radius of a/h = 0.5, and a draft of T/h = 0.5.
The truncated cylinder is located in the upper fluid, as shown in Figure 2. In the following
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Figure 2: Definition of sketch for a truncated cylinder.
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Figure 3: Time histories of horizontal wave force.

calculations, the surge and heave exciting forces have been nondimensionalized by ρ1gahA,
while the dimensionless factor for pitch exciting moment about y-axis is ρ1gah

2A.
The structural meshes are used to discretize the body surface, the free surface, and the

interface. If the mesh size or the time step is too large, the convergence will be difficult to
achieve. Conversely, it will take too much computation time if a large number of meshes are
used. The numerical convergence tests are desired to ensure the mesh size, and the time step
is suitable. Based on the numerical convergence tests, the radius of the free surface should
be two to three times of the wave length. The mesh size on the free surface and interface
should be about ten percent of the wave length, and the sizes of elements should be uniformly
distributed. The time step for time marching is taken as Δt = T/100 (T is the wave period).

The time histories of the wave forces and the wave moments on the cylinder due to
internal wave mode at the dimensionless wave number kh = 4.0 are plotted in Figures 3, 4,
and 5. It can be seen that very steady time-history results can be obtained by this time-domain
method.

To examine the accuracy of the present model, the calculation of horizontal wave
force, vertical wave force and y-axis wave moment is carried out by the present time-domain
method and the analytic solutions of results of You et al. [11] are also shown to compare. The



Journal of Applied Mathematics 11

0 40 80 120 160 200

0.004

0.008

0.012

−0.004

−0.008

−0.012

0

F
z
/
(ρ

1g
a
h
A
)

t/(h/g)1/2
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results are shown in Figures 6, 7, and 8. The dimensionless wave frequency varied from 0.1
to 0.4.

From these figures, it is can be seen that the present results are in close agreement with
the results obtained by the analytical solutions. The magnitudes of the horizontal and vertical
wave forces decrease as dimensionless wave frequency decreases within the calculated range.
The y-axis wave moment is the combination of two components: due to horizontal wave force
and vertical force, so the trend is different.

3.2. A Rectangular Box in a Two-Layer Fluid of Finite Depth

To further validate the present method, the wave diffraction of a rectangular box is
considered. In order to make a comparison with the numerical results of Nguyen and Yeung
[14] by the frequency-domain method, the same box is studied which the length L, width B,
and draft D are 90 m, 90 m, and 40 m, respectively. The box is also located in the upper fluid
with no forward speed. The water depths of the upper and the lower layers are h1 = 48 m and
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Figure 6: Horizontal wave force on cylinder.
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Figure 7: Vertical wave force on cylinder.
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Figure 8: Pitch moment on cylinder.
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Figure 9: Horizontal wave force on box.
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Figure 10: Vertical wave force on box.

h2 = 16 m. The dimensionless factor for wave forces are ρ1gLD, and for moment is ρ1gL
2D.

The results are shown in Figures 9, 10, and 11.
Three types of density ratio γ = 0.9, 0.7, and 0.1 are adopted. From the comparisons,

we can find that the present results by time-domain method also have a good agreement
with the frequency-domain method. From these figures, it is clear to see that the density
ratio has obvious effects on the hydrodynamic forces of internal-wave mode. As the density
ratio decrease, for a given frequencies, the magnitudes of the horizontal and vertical forces
increase. As we have mentioned before, the trends of the magnitude of the wave moment is
different.
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Figure 11: Pitch moment on box.

4. Conclusions

A time-domain higher-order boundary element method is developed and it can be used
to simulate the wave diffraction problem in a two-layer fluid. Through the construction of
a function on the interface, the two integral equations in the upper and lower layers are
combined, and a single set of linear equations are set up. The wave diffraction problem are
solved with a fourth-order Runge-Kutta method for time marching.

In order to verify the validity of the present approach, a truncated cylinder and
a rectangular box are taken as examples. Compared with the analytic solution and the
numerical results by frequency-domain approach, the computation in the present time-
domain approach agrees well with them. So the present time-domain approach can be used
to study the wave diffraction problem in two-layer fluid and it can be extend to simulate the
interaction between internal wave and floating structure.

In the present study, we find that the density ratio has obvious effects on the
hydrodynamic forces of internal-wave mode. As the density ratio decrease, for a given
frequencies, the magnitudes of the horizontal and vertical forces increase. The y-axis wave
moment is the combination of two components: horizontal wave force and vertical force, so
the trend is different.
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