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The optimal boundary control problem for (n×n) infinite order distributed parabolic systems with
multiple time delays given in the integral form both in the state equations and in the Neumann
boundary conditions is considered. Constraints on controls are imposed. Necessary and suffacient
optimality conditions for the Neumann problem with the quadratic performance functional are
derived.

1. Introduction

Distributed parameters systems with delays can be used to describe many phenomena in
the real world. As is well known, heat conduction, properties of elastic-plastic material, fluid
dynamics, diffusion-reaction processes, the transmission of the signals at a certain distance by
using electric long lines, and so forth, all lie within this area. The object that we are studying
(temperature, displacement, concentration, velocity, etc.) is usually referred to as the state.

During the last twenty years, equations with deviating argument have been applied
not only in applied mathematics, physics, and automatic control, but also in some problems
of economy and biology. Currently, the theory of equations with deviating arguments
constitutes a very important subfield of mathematical control theory.

Consequently, equations with deviating arguments are widely applied in optimal
control problems of distributed parameter system with time delays [1].

The optimal control problems of distributed parabolic systems with time-delayed
boundary conditions have been widely discussed in many papers and monographs. A
fundamental study of such problems is given by [2] and was next developed by [3, 4]. It was



2 Journal of Applied Mathematics

also intensively investigated by [1, 5–16] in which linear quadratic problem for parabolic
systems with time delays given in the different form (constant, time delays, time-varying
delays, time delays given in the integral form, etc.)was presented.

The necessary and sufficient conditions of optimality for systems consist of only one
equation and for (n × n) systems governed by different types of partial differential equations
defined on spaces of functions of infinitely many variables and also for infinite order systems
are discussed for example in [9, 11, 15–18] in which the argument of [19, 20]was used.

Making use of the Dubovitskii-Milyutin Theorem in [13, 21–28] the necessary and
sufficient conditions of optimality for similar systems governed by second order operator
with an infinite number of variables and also for infinite order systems were investigated.
The interest in the study of this class of operators is stimulated by problems in quantum field
theory.

In particular, the papers of [1, 8] present necessary and sufficient optimality conditions
for the Neumann problem with quadratic performance functionals, applied to a single one
equation of second-order parabolic system with fixed time delay and with multiple time
delays given in the integral form both in the state equations and in the Neumann boundary
conditions, respectively. Such systems constitute a more complex case of distributed
parameter systems with time delays given in the integral form.

Also in [9, 11] time-optimal boundary control for a single one equation distributed
infinite order parabolic and hyperbolic systems in which constant time lags appear in the
integral form both in the state equation and in the Neumann boundary condition is present.
Some specific properties of the optimal control are discussed.

In this paper we recall the problem in a more general formulation. A distributed
parameter for infinite order parabolic (n × n) systems with multiple time delays given in
the integral form both in the state equations and in the Neumann boundary conditions is
considered. Such an infinite order parabolic system can be treated as a generalization of the
mathematical model for a plasma control process. The quadratic performance functionals
defined over a fixed time horizon are taken and some constraints are imposed on the initial
state and the boundary control. Such a system may be viewed as a linear representation of
many diffusion processes, in which time-delayed signals are introduced at a spatial boundary,
and there is a freedom in choosing the controlled process initial state. Following a line of
the Lions scheme, necessary and sufficient optimality conditions for the Neumann problem
applied to the above systemwere derived. The optimal control is characterized by the adjoint
equations.

This paper is organized as follows. In Section 1, we introduce spaces of functions of
infinite order. In Section 2, we formulate the mixed Neumann problem for infinite order
parabolic operator with multiple time delays given in the integral form. In Section 3, the
boundary optimal control problem for this case is formulated, then we give the necessary
and sufficient conditions for the control to be an optimal. In Section 4, we generalized the
discussion to two cases, the first case: the optimal control for (2 × 2) coupled infinite order
parabolic systems is studied. The second case: the optimal control for (n× n) coupled infinite
order parabolic systems was to be formulated.

2. Sobolev Spaces with Infinite Order

The object of this section is to give the definition of some function spaces of infinite order and
the chains of the constructed spaces which will be used later.
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LetΩ be a bounded open set of R
n with a smooth boundary Γ, which is a C∞ manifold

of dimension (n−1). Locally,Ω is totally on one side of Γ. We define the infinite order Sobolev
space W∞{aα, 2}(Ω) of infinite order of periodic functions φ(x) defined on Ω [29–31] as
follows:

W∞{aα, 2}(Ω) =

⎧
⎨

⎩
φ(x) ∈ C∞(Ω) :

∞∑

|α|=0
aα

∥
∥Dαφ

∥
∥2
2 <∞

⎫
⎬

⎭
, (2.1)

whereC∞(Ω) is the space of infinitely differentiable functions, aα ≥ 0 is a numerical sequence,
and ‖ · ‖2 is the canonical norm in the space L2(Ω), and

Dα =
∂|α|

(∂x1)
α1 · · · (∂xn)αn

, (2.2)

α = (α1, . . . , αn) being a multi-index for differentiation, |α| = ∑n
i=1 αi.

The space W−∞{aα, 2}(Ω) is defined as the formal conjugate space to the space
W∞{aα, 2}(Ω), namely:

W−∞{aα, 2}(Ω) =

⎧
⎨

⎩
ψ(x) : ψ(x) =

∞∑

|α|=0
(−1)|α|aαDαψα(x)

⎫
⎬

⎭
, (2.3)

where ψα ∈ L2(Ω) and
∑∞

|α|=0 aα‖ψα‖22 <∞.
The duality pairing of the spacesW∞{aα, 2} (Ω) andW−∞{aα, 2}(Ω) is postulated by

the formula:

(
φ, ψ

)
=

∞∑

|α|=0
aα

∫

Ω
ψα(x)Dαφ(x)dx, (2.4)

where

φ ∈W∞{aα, 2}(Ω), ψ ∈W−∞{aα, 2}(Ω). (2.5)

From above,W∞{aα, 2}(Ω) is everywhere dense in L2(Ω) with topological inclusions
andW−∞{aα, 2}(Ω) denotes the topological dual space with respect to L2(Ω), so we have the
following chain of inclusions:

W∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆W−∞{aα, 2}(Ω). (2.6)
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We now introduce L2(0, T ;L2(Ω)) which we will denoted by L2(Q), where Q = Ω×]0, T[
denotes the space of measurable functions t → φ(t) such that

∥
∥φ

∥
∥
L2(Q) =

(∫T

0

∥
∥φ(t)

∥
∥2
2dt

)1/2

<∞, (2.7)

endowed with the scalar product (f, g) =
∫T
0 (f(t), g(t))L2(Ω)dt, L

2(Q) is a Hilbert space.
In the same manner we define the spaces L2(0, T ;W∞{aα, 2}(Ω)), and L2(0, T ;

W−∞{aα, 2}(Ω)), as its formal conjugate.
Also, we have the following chain of inclusions:

L2(0, T ;W∞{aα, 2}(Ω)) ⊆ L2(Q) ⊆ L2(0, T ;W−∞{aα, 2}(Ω)
)
. (2.8)

The construction of the Cartesian product of n-times to the above Hilbert spaces can
be constructed, for example

(W∞{aα, 2}(Ω))n =W∞{aα, 2}(Ω) ×W∞{aα, 2}(Ω) × · · · ×W∞{aα, 2}(Ω)
︸ ︷︷ ︸

n-times

=
n∏

i=1

(W∞{aα, 2}(Ω))i,

(2.9)

with norm defined by:

∥
∥φ

∥
∥
(W∞{aα,2}(Ω))n =

n∑

i=1

∥
∥φi

∥
∥
W∞{aα,2}(Ω), (2.10)

where φ = (φ1, φ2, . . . , φn) = (φi)
n
i=1 is a vector function and φi ∈W∞{aα, 2}(Ω).

Finally, we have the following chain of inclusions:

(
L2(0, T ;W∞{aα, 2}(Ω))

)n ⊆
(
L2(Q)

)n ⊆
(
L2(0, T ;W−∞{aα, 2}(Ω)

))n
, (2.11)

where (L2(0, T ;W−∞{aα, 2}(Ω)))n are the dual spaces of (L2(0, T ;W∞{aα, 2}(Ω)))n. The
spaces considered in this paper are assumed to be real.
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3. Mixed Neumann Problem for Infinite Order Parabolic
System with Multiple Time Lags

The object of this section is to formulate the followingmixed initial boundary value Neumann
problem for infinite order parabolic system with multiple time delays which defines the state
of the system model [1, 5–11, 18, 24, 26].

∂y

∂t
+A(t)y(x, t) +

m∑

i=1

∫bi

ai

bi(x, t)y(x, t − hi)dhi = u,

(x, t) ∈ Ω × (0, T), hi ∈ (ai, bi),

(3.1)

y
(
x, t′

)
= Φ0

(
x, t′

)
,

(
x, t′

) ∈ Ω × (−Δ, 0), (3.2)

y(x, 0) = y0(x), x ∈ Ω, (3.3)

∂y

∂νA
(x, t) =

l∑

s=1

∫ds

cs

cs(x, t)y(x, t − ks)dks + v, (x, t) ∈ Γ × (0, T), ks ∈ (cs, ds), (3.4)

y
(
x, t′

)
= Ψ0

(
x, t′

)
,

(
x, t′

) ∈ Γ × (−Δ, 0), (3.5)

where Ω ⊂ Rn has the same properties as in Section 1. We have

y ≡ y(x, t;u), y(0) ≡ y(x, 0;u), y(T) ≡ y(x, T ;u), u ≡ u(x, t), v ≡ v(x, t),

Q = Ω × (0, T), Q = Ω × [0, T], Q0 = Ω × [−Δ, 0), Σ = Γ × (0, T), Σ0 = Γ × [−Δ, 0),
(3.6)

(i) T is a specified positive number representing a finite time horizon,

(ii) hi, ks are time delays, such that hi ∈ (ai, bi) and ks ∈ (cs, ds) where 0 < a1 < a2 <
· · · < am, 0 < b1 < b2 < · · · < bm, for i = 1, 2, . . . , m and 0 < c1 < c2 < · · · < cl,
0 < d1 < d2 < · · · < dl, for s = 1, 2, . . . , l,

(iii) bi(t), i = 1, 2, . . . , m are given real C∞ functions defined on Q,

(iv) cs(x, t), s = 1, 2, . . . , l are given real C∞ functions defined on Σ,

(v) Δ = max{bm, dl},
(vi) y is a function defined on Q such that Ω × (0, T) � (x, t) → y(x, t) ∈ R,
(vii) u, v are functions defined on Q and Σ such that Ω × (0, T) � (x, t) → u(x, t) ∈ R

and Γ × (0, T) � (x, t) → v(x, t) ∈ R,
(viii) Φ0,Ψ0 are initial functions defined onQ0 andΣ0, respectively, such thatΩ×[−Δ, 0) �

(x, t′) → Φ0(x, t′) ∈ R. Γ × [−Δ, 0) � (x, t′) → Ψ0(x, t′) ∈ R.
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The parabolic operator (∂/∂t) + A(t) in the state equation (3.1) is an infinite order
parabolic operator and A(t) [17, 21, 29–31] is given by:

Ay =
∞∑

|α|=0
(−1)|α|aαD2αy(x, t),

A =
∞∑

|α|=0
(−1)|α|aαD2α

(3.7)

is an infinite order self-adjoint elliptic partial differential operator maps W∞{aα, 2}(Ω) onto
W−∞{aα, 2}(Ω).

For this operator we define the bilinear form as follows.

Definition 3.1. For each t ∈ (0, T), we define a family of bilinear forms onW∞{aα, 2}(Ω) by:

π
(
t;y, φ

)
=

(A(t)y, φ
)

L2(Ω), y, φ ∈W∞{aα, 2}(Ω), (3.8)

where A(t)mapsW∞{aα, 2}(Ω) ontoW−∞{aα, 2}(Ω) and takes the above form. Then

π
(
t;y, φ

)
=

(A(t)y, φ
)

L2(Ω)

=

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2αy(x, t), φ(x)

⎞

⎠

L2(Ω)

=
∫

Ω

∞∑

|α|=0
aαD

αy(x)Dαφ(x)dx.

(3.9)

Lemma 3.2. The bilinear form π(t;y, φ) is coercive onW∞{aα, 2}(Ω), that is,

π
(
t;y, y

) ≥ λ ∥
∥y

∥
∥2
W∞{aα,2}(Ω), λ > 0. (3.10)

Proof. It is well known that the ellipticity ofA(t) is sufficient for the coerciveness of π(t;y, φ)
onW∞{aα, 2}(Ω):

π
(
t;φ, ψ

)
=

∫

Ω

∞∑

|α|=0
aαD

αφDαψ dx. (3.11)
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Then

π
(
t;y, y

)
=

∫

Ω

∞∑

|α|=0
aαD

αyDαy dx

≥
∞∑

|α|=0
aα

∥
∥
∥D2αy(x)

∥
∥
∥
2

L2(Ω)

≥ λ
∥
∥y

∥
∥2
W∞{aα,2}(Ω), λ > 0.

(3.12)

Also we have

∀y, φ ∈W∞{aα, 2}(Ω) the function t −→ π
(
t;y, φ

)

is continuously differentiable in (0, T) and π
(
t;y, φ

)
= π

(
t;φ, y

)
.

(3.13)

Equations (3.1)–(3.5) constitute a Neumann problem. Then the left-hand side of the
boundary condition (3.4)may be written in the following form:

∂y(x, t)
∂νA

=
∞∑

|ω|=0

(
Dωy(x, t)

)
cos(n, xk) = q(x, t), x ∈ Γ, t ∈ (0, T), (3.14)

where ∂/∂νA is a normal derivative at Γ, directed towards the exterior of Ω, and cos(n, xk) is
the kth direction cosine of n, with n being the normal at Γ exterior to Ω.

Then (3.4) can be written as:

q(x, t) =
l∑

s=1

∫ds

cs

cs(x, t)y(x, t − ks)dks + v(x, t), x ∈ Γ, t ∈ (0, T). (3.15)

Remark 3.3. We will apply the indication q(x, t) appearing in (3.14) to prove the existence of
a unique solution for (3.1)–(3.5).

We will formulate sufficient conditions for the existence of a unique solution of the
mixed boundary value problem (3.1)–(3.5) for the cases where the boundary control v ∈
L2(Σ).

For this purpose, we introduce the Sobolev spaceW∞,1(Q) [20, Vol. 2, page 6] defined
by:

W∞,1(Q) = L2(0, T ;W∞{aα, 2}(Ω)) ∩W1
(
0, T ;L2(Ω)

)
, (3.16)
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which is a Hilbert space normed by

∥
∥y

∥
∥
W∞,1(Q) =

[∫T

0

∫
∥
∥y

∥
∥2
W∞{aα,2}(Ω)dt +

∥
∥y

∥
∥2
W1(0,T ;L2(Ω))

]1/2

=

⎡

⎣

∫

Q

⎛

⎝
∞∑

|α|=0
aα

∣
∣Dαy

∣
∣2 +

∣
∣
∣
∣
∂y

∂t

∣
∣
∣
∣

2
⎞

⎠dx dt

⎤

⎦

1/2

=

⎡

⎣

∫

Q

⎛

⎝a0
∣
∣y

∣
∣2 +

∞∑

|α|=1
aα

∣
∣Dαy

∣
∣2 +

∣
∣
∣
∣
∂y

∂t

∣
∣
∣
∣

2
⎞

⎠dx dt

⎤

⎦

1/2

, a0 > 0,

(3.17)

where the spaceW1(0, T ;L2(Ω)) denotes the Sobolev space of order 1 of functions defined on
(0, T) and taking values in L2(Ω) [20, Vol. 1].

The existence of a unique solution for the mixed initial-boundary value problem
(3.1)–(3.5) on the cylinder Q can be proved using a constructive method, that is, solving
at first equations (3.1)–(3.5) on the subcylinder Q1 and in turn on Q2 and so forth, until
the procedure covers the whole cylinder Q. In this way, the solution in the previous step
determines the next one.

For simplicity, we introduce the following notation:

Ej =̂
((
j − 1

)
λ, jλ

)
, Qj = Ω × Ej, Σj = Γ × Ej for j = 1, . . . , K, λ = min{a1, c1}. (3.18)

Making use of the results of [7, 20]we can prove that the following result holds.

Theorem 3.4. Let y0, Φ0, Ψ0, v and u be given with y0 ∈ W∞{aα, 2}(Ω), Φ0 ∈ W∞,1(Q0), Ψ0 ∈
L2(Σ0), v ∈ L2(Σ) and u ∈ W−∞,−1(Q). Then, there exists a unique solution y ∈ W∞,1(Q) for
the mixed initial-boundary value problem (3.1)–(3.5). Moreover, y(·, jλ) ∈ W∞{aα, 2}(Ω) for j =
1, . . . , K.

4. Problem Formulation-Optimization Theorems

Now, we formulate the optimal control problem for (3.1)–(3.5) in the context of the
Theorem 3.4, that is v ∈ L2(Σ).

Let us denote by U = L2(Σ) the space of controls. The time horizon T is fixed in our
problem.

The performance functional is given by

I(v) = λ1

∫

Q

[
y(x, t;v) − zd

]2
dx dt + λ2

∫

Σ
(Nv)v dΓdt, (4.1)

where λi ≥ 0, and λ1 + λ2 > 0, zd is a given element in L2(Q); N is a positive linear operator
on L2(Σ) into L2(Σ).
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Control Contraints

We define the set of admissible controlsUad such that

Uad is closed, convex subset of U = L2(Σ). (4.2)

Let y(x, t;v) denote the solution of the mixed initial-boundary value problem (3.1)–
(3.5) at (x, t) corresponding to a given control v ∈ Uad. We note from Theorem 3.4 that for
any v ∈ Uad the performance functional (4.1) is well-defined since (v) ∈W∞,1(Q) ⊂ L2(Q).

Making use of the Loins’s scheme we will derive the necessary and sufficient
conditions of optimality for the optimization problem (3.1)–(3.5), (4.1), (4.2). The solving
of the formulated optimal control problem is equivalent to seeking a v∗ ∈ Uad such that

I(v∗) ≤ I(v), ∀v ∈ Uad. (4.3)

From the Lion’s scheme [19, Theorem 1.3, page 10], it follows that for λ2 > 0 a unique
optimal control v∗ exists. Moreover, v∗ is characterized by the following condition:

I ′(v∗)(v − v∗) ≥ 0, ∀v ∈ Uad. (4.4)

For the performance functional of form (4.1) the relation (4.4) can be expressed as

λ1

∫

Q

(
y(v∗) − zd

)[
y(v) − y(v∗)

]
dx dt + λ2

∫

Σ
Nv∗(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.5)

In order to simplify (4.5), we introduce the adjoint equation, and for every v ∈ Uad,
we define the adjoint variable p = p(v) ≡ p(x, t;v) as the solution of the equations:

−∂p(v)
∂t

+A∗(t)p(v) +
m∑

i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v)dhi = λ1
(
y(v) − zd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

(4.6)

−∂p(v)
∂t

+A∗(t)p(v) = λ1
(
y(v) − zd

)
, (x, t) ∈ Ω × (T −Δ, T), (4.7)

p(x, T ;v) = 0, x ∈ Ω, (4.8)

p(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T), (4.9)

∂p(v)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

(4.10)

∂p(v)
∂νA∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ(T), T), (4.11)
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where

∂p(v)
∂νA∗

(x, t) =
∞∑

|ω|=0

(
Dωp(v)

)
cos(n, xω)(x, t),

A∗(t)p(v) =
∞∑

|α|=0
(−1)|α|aαD2αp(x, t).

(4.12)

As in the above section with change of variables, that is, with reversed sense of time.
that is, t′ = T − t, for given zd ∈ L2(Q) and any v ∈ L2(Σ), there exists a unique solution
p(v) ∈W∞,1(Q) for problem (4.6)–(4.11).

The existence of a unique solution for the problem (4.6)–(4.11) on the cylinder Ω ×
(0, T) can be proved using a constructive method. It is easy to notice that for given zd and
u, the problem (4.6)–(4.11) can be solved backwards in time starting from t = T , that is,
first solving (4.6)–(4.11) on the subcylinder QK and in turn on QK−1, and so forth until the
procedure covers the whole cylinderΩ × (0, T). For this purpose, wemay apply Theorem 3.4
(with an obvious change of variables).

Hence, using Theorem 3.4, the following result can be proved.

Lemma 4.1. Let the hypothesis of Theorem 3.4 be satisfied. Then for given zd ∈ L2(Ω, R∞) and any
v ∈ L2(Σ), there exists a unique solution p(v) ∈W∞,1(Q) for the adjoint problem (4.6)–(4.11).

We simplify (4.5) using the adjoint equation (4.6)–(4.11). For this purpose denoting by
p(0) ≡ p(x, 0;v) and p(T) ≡ p(x, T ;v), respectively, setting v = v∗ in (4.6)–(4.11), multiplying
both sides of (4.6) and (4.7) by y(v)− y(v∗), then integrating overΩ× (0, T −Δ) andΩ× (T −
Δ, T), respectively and then adding both sides of (4.6), (4.11), we get

λ1

∫

Q

(
y(v∗) − zd

)[
y(v) − y(v∗)

]
dx dt

=
∫

Q

(

−∂p(v
∗)

∂t
+A∗(t)p(v∗)

)

× [
y(v) − y(v∗)

]
dx dt

+
∫T−Δ

0

∫

Ω

(
m∑

i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v∗)dhi

)

× [
y(x, t;v) − y(x, t;v∗)

]
dx dt

=
∫T

0

∫

Ω
p(v∗)

∂

∂t

[
y(v) − y(v∗)

]
dx dt

+
∫T

0

∫

Ω
A∗(t)p(v∗)

[
y(v) − y(v∗)

]
dx dt

+
m∑

i=1

∫bi

ai

∫

Ω

∫T−Δ

0

(
bi(x, t + hi)p(x, t + hi;v∗)

) × [
y(x, t;v) − y(x, t;v∗)

]
dx dt dhi.

(4.13)
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Using (3.1), the first integral on the right-hand side of (4.13) can be written as:

∫T

0

∫

Ω
p(v∗)

∂

∂t

[
y(v) − y(v∗)

]
dx dt

= −
∫

Q

p(v∗)A(t)
(
y(v) − y(v∗)

)
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫T

0
p(x, t;v∗)bi(x, t) ×

[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi

= −
∫

Q

p(v∗)A(t)
(
y(v) − y(v∗)

)
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫T−hi

−hi
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dx dhi

= −
∫

Ω
p(v∗)A(t)

(
y(v) − y(v∗)

)
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫0

−hi
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dx dhi

−
m∑

i=1

∫bi

ai

∫

Ω

∫T−Δ

0
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dxd hi

−
m∑

i=1

∫bi

ai

∫

Ω

∫T−hi

T−Δ
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dx dhi

= −
∫

Q

p(v∗)A(t)
(
y(v) − y(v∗)

)
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫0

−hi
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dx dhi

−
m∑

i=1

∫bi

ai

∫

Ω

∫T−Δ

0
p
(
x, t′ + hi;v∗)bi

(
x, t′ + hi

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dx dhi

−
m∑

i=1

∫bi

ai

∫

Ω

∫T

T−Δ+hi
p(x, t;v∗)bi(x, t) ×

[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi.

(4.14)

Using Green’s formula, the second integral on the right-hand side of (4.13) can be written as:

∫T

0

∫

Ω
A∗(t)p(v∗)

[
y(v) − y(v∗)

]
dx dt

=
∫T

0

∫

Ω
p(v∗)A(t)

[
y(v) − y(v∗)

]
dx dt
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+
∫T

0

∫

Γ
p(v∗)

(
∂y(v)
∂νA

− ∂y(v∗)
∂νA

)

dΓdt

−
∫T

0

∫

Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)

]
dΓdt.

(4.15)

Using the boundary condition (3.2), one can transform the second integral on the right-hand
side of (4.15) into the form:

∫T

0

∫

Γ
p(v∗)

(
∂y(v)
∂νA

− ∂y(v∗)
∂νA

)

dΓdt

=
l∑

s=1

∫ds

cs

∫

Γ

∫T

0
p(x, t;v∗)cs(x, t) ×

[
y(x, t − ks;v) − y(x, t − ks;v∗)

]
dΓdt dks

+
∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫

Γ

∫T−ks

−ks
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks

+
∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫

Γ

∫0

−ks
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫

Γ

∫T−Δ

0
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫

Γ

∫T−ks

T−Δ
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks

+
∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt

=
l∑

s=1

∫ds

cs

∫

Γ

∫0

−ks
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks

+
l∑

s=1

∫ds

cs

∫

Γ

∫T−Δ

0
p
(
x, t′ + ks;v∗)cs

(
x, t′ + ks

) × [
y
(
x, t′;v

) − y(x, t′;v∗)]dt′ dΓdks
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+
l∑

s=1

∫ds

cs

∫

Γ

∫T

T−Δ+ks
p(x, t;v∗)cs(x, t) ×

[
y(x, t − ks;v) − y(x, t − ks;v∗)

]
dt dΓdks

+
∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt.

(4.16)

The last component in (4.15) can be rewritten as

∫T

0

∫

Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)

]
dΓdt

=
∫T−Δ

0

∫

Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)

]
dΓdt +

∫T

T−Δ

∫

Γ

∂p(v∗)
∂νA∗

[
y(v) − y(v∗)

]
dΓdt.

(4.17)

Substituting (4.16) and (4.17) into (4.15) and then the results into (4.13), we obtain

λ1

∫

Q

(
y(v∗) − zd

)[
y(v) − y(v∗)

]
dx dt

=
∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt −

∫

Q

p(v∗)A(t)
[
y(v) − y(v∗)

]
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫0

−hi
bi(x, t + hi)p(x, t + hi;v∗) × [

y(x, t;v) − y(x, t;v∗)
]
dt dx dhi

−
m∑

i=1

∫bi

ai

∫

Ω

∫T−Δ

0
bi(x, t + hi)p(x, t + hi;v∗) × [

y(x, t;v) − y(x, t;v∗)
]
dt dx dhi

+
∫

Q

p(v∗)A(t)
[
y(v) − y(v∗)

]
dx dt

−
m∑

i=1

∫bi

ai

∫

Ω

∫T

T−Δ+hi
p(x, t;v∗)bi(x, t) ×

[
y(x, t − hi;v) − y(x, t − hi;v∗)

]
dt dx dhi

+
l∑

s=1

∫ds

cs

∫

Γ

∫0

−ks
cs(x, t + ks)p(x, t + ks;v∗) × [

y(x, t;v) − y(x, t;v∗)
]
dt dΓdks

−
l∑

s=1

∫ds

cs

∫

Γ

∫T−Δ

0
cs(x, t + ks)p(x, t + ks;v∗) × [

y(x, t;v) − y(x, t;v∗)
]
dt dΓdks

−
l∑

s=1

∫ds

cs

∫

Γ

∫T

T−Δ+ks
cs(x, t)p(x, t;v∗) × [

y(x, t − ks;v) − y(x, t − ks;v∗)
]
dt dΓdks
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−
∫

Γ

∫T−Δ

0

∂p(v∗)
∂νA∗

× [
y(x, t;v) − y(x, t;v∗)

]
dt dΓ

−
∫

Γ

∫T

T−Δ

∂p(v∗)
∂νA∗

× [
y(x, t;v) − y(x, t;v∗)

]
dt dΓ

+
m∑

i=1

∫bi

ai

∫

Ω

∫T−Δ

0
bi(x, t + hi)p(x, t + hi;v∗) × [

y(x, t;v) − y(x, t;v∗)
]
dt dx dhi.

(4.18)

Afterwards, using the facts that y(x, t, v) = y(x, t, v∗) = Φ0(x, t) for x ∈ Ω and t ∈
[−Δ, 0) and y(x, t, v) = y(x, t, v∗) = Ψ0(x, t) for x ∈ Γ and t ∈ [−Δ, 0), p|Ω(x, t;v∗) = 0 and
consequently p|Γ(x, t;v∗) = 0 for t ∈ [T −Δ + λ, T), we obtain

λ1

∫

Q

[
y(v∗) − zd

] × (
y(v) − y(v∗)

)
dx dt =

∫T

0

∫

Γ
p(v∗)(v − v∗)dΓdt. (4.19)

Substituting (4.19) into (4.5) gives

∫T

0

∫

Γ

(
p(v∗) + λ2Nv∗)(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.20)

The foregoing result is now summarized.

Theorem 4.2. For the problem (3.1)–(3.5), with the performance functional (4.1) with zd ∈ L2(Q)
and λ2 > 0 and with constraints on controls (4.2), there exists a unique optimal control v∗ which
satisfies the maximum condition (4.20).

4.1. Mathematical Examples

Example 4.3. Consider now the particular case where Uad = U = L2(Σ) (no constraints case).
Thus the maximum condition (4.20) is satisfied when

v∗ = −λ2N−1p(v∗). (4.21)

IfN is the identity operator on L2(Σ), then from Lemma 4.1 it follows that v∗ ∈W∞,1(Q).

Example 4.4. We can also consider an analogous optimal control problem where the
performance functional is given by:

I(v) = λ1

∫

Σ

[
y(x, t;v)|Σ − zd

]2
dΓdt + λ2

∫

Σ
(Nv)vdΓdt, (4.22)

where zd ∈ L2(Σ).
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From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each v ∈ L2(Σ), there
exists a unique solution y(v) ∈ W∞,1(Q) with y|Σ ∈ L2(Σ). Thus, I(v) is well defined. Then,
the optimal control v∗ is characterized by:

λ1

∫

Σ

(
y(v∗)|Σ − zd

)[
y(v)|Σ − y(v∗)|Σ

]
dΓdt + λ2

∫

Σ
Nv∗(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad.

(4.23)

We define the adjoint variable p = p(v∗) = p(x, t;v∗) as the solution of the equations:

− ∂p(v∗)
∂t

+A∗(t)p(v∗) +
m∑

i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;v∗)dhi = 0,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

−∂p(v∗)
∂t

+A∗(t)p(v∗) = 0, (x, t) ∈ Ω × (T −Δ, T),

p(x, T ;v∗) = 0, x ∈ Ω,

p(x, t;v∗) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p(v∗)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;v∗)dks + λ1
(
yv∗|Σ − zΣd

)
,

(x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

∂p(v∗)
∂νA∗

(x, t) = λ1
(
y(v∗)|Σ − zΣd

)
, (x, t) ∈ Γ × (T −Δ(T), T).

(4.24)

As in the above section, we have the following result.

Lemma 4.5. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zΣd ∈ L2(Σ) and any
v ∈ L2(Σ), there exists a unique solution p(v∗) ∈W∞,1(Q) to the adjoint problem (4.24).

Using the adjoint equations (4.24)in this case, the condition (4.23) can also be written
in the following form:

∫T

0

∫

Γ

(
p(v∗) + λ2Nv∗)(v − v∗)dΓdt ≥ 0, ∀v ∈ Uad. (4.25)

The following result is now summarized.

Theorem 4.6. For the problem (3.1)–(3.5) with the performance function (4.22) with zΣd ∈ L2(Σ)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal
control v∗ which satisfies the maximum condition (4.25).
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Example 4.7 (u ∈ L2(Q)). We can also consider an analogous optimal control problem where
the performance functional is given by:

I(u) = λ1

∫

Q

[
y(x, t;u) − zd

]2
dx dt + λ2

∫

Q

(Nu)udx dt, (4.26)

where zd ∈ L2(Q).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each u ∈ L2(Q), there
exists a unique solution y(u) ∈ W∞,1(Q). Thus, I is well defined. Then, the optimal control
u∗ is characterized by:

λ1

∫

Q

(
y(u∗) − zd

)[
y(u) − y(u∗)]dx dt + λ2

∫

Q

Nu∗(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.27)

We define the adjoint variable p = p(u∗) = p(x, t;u∗) as the solution of the equations:

− ∂p(u∗)
∂t

+A∗(t)p(u∗) +
m∑

i=1

∫bi

ai

bi(x, t + hi)p(x, t + hi;u∗)dhi = λ1
(
y(u∗) − zd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

−∂p(u
∗)

∂t
+A∗(t)p(u∗) = λ1

(
y(u∗) − zd

)
, (x, t) ∈ Ω × (T −Δ, T),

p(x, T ;u∗) = 0, x ∈ Ω,

p(x, t;u∗) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p(u∗)
∂νA∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)p(x, t + ks;u∗)dks,

(x, t) ∈ Γ × (0, T −Δ(T)), ks ∈ (cs, ds),

∂p(u∗)
∂νA∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ(T), T).

(4.28)

As in the above section, we have the following result.

Lemma 4.8. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zd ∈ L2(Q) and any
u ∈ L2(Q), there exists a unique solution p(u∗) ∈W∞,1(Q) to the adjoint problem (4.28).

Using the adjoint equations (4.28) in this case, the condition (4.27) can also be written in the
following form:

∫

Q

(
p(u∗) + λ2Nu∗

)
(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.29)

The following result is now summarized.
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Theorem 4.9. For the problem (3.1)–(3.5) with the performance function (4.26) with zd ∈ L2(Q)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.28), there exists a unique optimal
control u∗ which satisfies the maximum condition (4.29).

Example 4.10. We can also consider an analogous optimal control problem where the
performance functional is given by:

I(u) = λ1

∫

Σ

[
y|Σ(x, t;u) − zΣd

]2
dΓdt + λ2

∫

Q

(Nu)udx dt, (4.30)

where zΣd ∈ L2(Σ).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each u ∈ L2(Q), there
exists a unique solution y(u) ∈ W∞,1(Q) with y|Σ ∈ L2(Σ). Thus, I is well defined. Then, the
optimal control u∗ is characterized by:

λ1

∫

Σ

(
y(u∗) − zΣd

)[
y(u) − y(u∗)]dΓdt + λ2

∫

Q

Nu∗(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.31)

The above inequality can be simplified by introducing an adjoint equation, the form
of which is identical to (4.24). Then using Theorem 3.4 we can establish the existence of a
unique solution p = p(u∗) = p(x, t;u∗) ∈W∞,1(Q) for (4.24).

As in the above section, we have the following result.

Lemma 4.11. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given zΣd ∈ L2(Σ) and any
u ∈ L2(Q), there exists a unique solution p(u∗) ∈W∞,1(Q) to the adjoint problem (4.24)–(37).

Using the adjoint equations (4.24)–(37) in this case, the condition (4.31) can also be written
in the following form:

∫

Q

(
p(u∗) + λ2Nu∗

)
(u − u∗)dx dt ≥ 0, ∀u ∈ Uad. (4.32)

The following result is now summarized.

Theorem 4.12. For the problem (3.1)–(3.5) with the performance function (4.30) with zΣd ∈ L2(Σ)
and λ2 > 0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal
control u∗ which satisfies the maximum condition (4.32).

5. Generalization

The optimal control problems presented here can be extended to certain different two cases.
Case 1: optimal control for 2 × 2 coupled infinite order parabolic systems with multiple time
delays. Case 2: optimal control for n×n coupled infinite order parabolic systemswithmultiple
time delays. Such extension can be applied to solving many control problems in mechanical
engineering.
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Case 1 (optimal control for 2 × 2 coupled infinite order parabolic systems with multiple time
delays). We can extend the discussions to study the optimal control for 2 × 2 coupled infinite
order parabolic systems with multiple time delays. We consider the case where v = (v1, v2) ∈
L2(Σ) × L2(Σ), the performance functional is given by [15, 16]:

I(v) = I1(v) + I2(v) =
2∑

i=1

(

λ1

∫

Q

[
yi(x, t;v) − zid

]2
dx dt + λ2

∫

Σ
(Nivi)vidx dt

)

, (5.1)

where zd = (z1d, z2d) ∈ (L2(Q))2.

The following results can now be proved.

Theorem 5.1. Let y0, Φ0,Ψ0, v, and u be given with y0 = (y0,1, y0,2) ∈ (W∞{αα, 2}(Ω))2, Ψ0 =
(Ψ0,1,Ψ0,2) ∈ (L2(Σ0))

2
,Φ0 = (Φ0,1,Φ0,2) ∈ (W∞,1(Q0))

2
, v = (v1, v2) ∈ (L2(Σ))2, and u =

(u1, u2) ∈ (W−∞,−1(Q))2. Then, there exists a unique solution y = (y1, y2) ∈ (W−∞,1(Q))2 for the
following mixed initial-boundary value problem:

∂y1
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠ y1 +
m∑

i=1

∫bi

ai

bi(x, t)y1(x, t − hi)dhi − y2 = u1,

in Q,hi ∈ (ai, bi),

∂y2
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠y2 +
m∑

i=1

∫bi

ai

bi(x, t)y2(x, t − hi)dhi + y1 = u2,

in Q,hi ∈ (ai, bi),

y1
(
x, t′;u

)
= Φ0,1

(
x, t′

)
,

(
x, t′

) ∈ Ω × [−Δ, 0),
y2

(
x, t′;u

)
= Φ0,2

(
x, t′

)
,

(
x, t′

) ∈ Ω × [−Δ, 0),
y1(x, 0;u) = y0,1, x ∈ Ω,

y2(x, 0;u) = y0,2, x ∈ Ω,

∂y1
∂νA

(x, t) =
l∑

s=1

∫ds

cs

cs1(x, t)y1(x, t − ks)dks + v1, on Σ, ks ∈ (cs, ds),

∂y2
∂νA

=
l∑

s=1

∫ds

cs

cs2(x, t)y2(x, t − ks)dks + v2, on Σ, ks ∈ (cs, ds),

y1
(
x, t′;u

)
= Ψ0,1

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),
y2

(
x, t′;u

)
= Ψ0,2

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),

(5.2)
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where

y ≡ y(x, t;u) = (
y1(x, t;u), y2(x, t;u)

) ∈
(
W∞,1(Q)

)2
,

u ≡ u(x, t) = (u1(x, t), u2(x, t)) ∈
((

W∞,1(Q)
)′)2

,

v ≡ v(x, t) = (v1(x, t), v2(x, t)) ∈
(
L2(Σ)

)2
.

(5.3)

Lemma 5.2. Let the hypothesis of Theorem 5.1 be satisfied. Then for given zd = (z1d, z2d) ∈ (L2(Q))2

and any v = (v1, v2) ∈ (L2(Σ))2, there exists a unique solution p(v) = (p1(v), p2(v)) ∈ (W∞,1(Q))2

for the adjoint problem:

− ∂p1(v)
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠p1(v) +
m∑

i=1

∫bi

ai

bi(x, t + hi)p1(x, t + hi;v)dhi + p2(v)

= λ1
(
y1(v) − z1d

)
, (x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

− ∂p2(v)
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠p2(v) +
m∑

i=1

∫bi

ai

bi(x, t + hi)p2(x, t + hi;v)dhi − p1(v)

= λ1
(
y2(v) − z2d

)
, (x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

∂p1(v)
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠p1(v) = λ1
(
y1(v) − z1d

)
, (x, t) ∈ Ω × (T −Δ, T),

∂p2(v)
∂t

+

⎛

⎝
∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎠p2(v) = λ1
(
y2(v) − z2d

)
, (x, t) ∈ Ω × (T −Δ, T),

p1(x, T ;v) = 0, p2(x, T ;v) = 0, x ∈ Ω,

p1(x, t;v) = 0, p2(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂p1(x, t;v)
∂νA∗

=
l∑

s=1

∫ds

cs

cs1(x, t + ks)p1(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂p2(x, t;v)
∂νA∗

=
l∑

s=1

∫ds

cs

cs2(x, t + ks)p2(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂p1(x, t)
∂νA∗

= 0,
∂p2(x, t)
∂νA∗

= 0, (x, t) ∈ Γ × (T −Δ(T), T).

(5.4)
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Theorem 5.3. The optimal control v∗ ≡ v∗(x, t) = (v∗
1(x, t), v

∗
2(x, t)) ∈ (L2(Σ))2 is characterized by

the following maximum condition:

∫T

0

∫

Γ

([
p1(v∗) + λ2N1v

∗
1

](
v1 − v∗

1

)
+

[
p2(v∗) + λ2N2v

∗
2
](
v2 − v∗

2
))
dΓdt ≥ 0,

∀v = (v1, v2) ∈
(
L2(Σ)

)2
,

(5.5)

where p ≡ p(x, t;v) = (p1(x, t;v), p2(x, t;v)) ∈ (W∞,1(Q))2 is the adjoint state.

The foregoing result is now summarized.

Theorem 5.4. For the problem (5.2) with the performance function (5.1) with zd = (z1d, z2d) ∈
(L2(Q))2 and λ2 > 0, and with constraint: Uad is closed, convex subset of (L2(Σ))2, and with
adjoint problem (5.4), then there exists a unique optimal control v∗ ≡ v∗(x, t) = (v∗

1(x, t), v
∗
2(x, t)) ∈

(L2(Σ))2 which satisfies the maximum condition (5.5).

Case 2 (optimal control for (n×n) coupled infinite order parabolic systems with multiple time
delays). We will extend the discussion to (n×n) coupled infinite order parabolic systems. We
consider the case where v = (v1, v2, . . . , vn) ∈ ((L2(Σ))n, the performance functional is given
by [15, 16]:

I(v) =
n∑

j=1

(

λ1

∫

Q

[
yj(x, t;v) − zjd

]2
dx dt + λ2

∫

Σ

(
Njvj

)
vjdx dt

)

, (5.6)

where zd = (z1d, z2d, . . . , znd) ∈ (L2(Q))n.

The following results can now be proved.

Theorem 5.5. Let y0,Φ0,Ψ0, v, and u be given with yp = (yp,1, yp,2, . . . , yp,n) ∈ (W∞{aα, 2}(Ω))n,
Φ0 = (Φ0,1,Φ0,2, . . . ,Φ0,n) ∈ (W∞,1(Q0))

n, Ψ0 = (Ψ0,1,Ψ0,2, . . . ,Ψ0,n) ∈ (L2(Σ0))
n, v =

(v1, v2, . . . , vn) ∈ (L2(Σ0))
n, and u = (u1, u2, . . . , un) ∈ (W−∞,−1(Q))n. Then, there exists a unique

solution y = (y1, y2, . . . , yn) ∈ (W∞,1(Q0))
n for the following mixed initial-boundary value problem:

for all j, j = 1, 2, . . . , n one has

∂yj

∂t
+ S(t)yj(x, t) +

m∑

i=1

∫bi

ai

bi(x, t)yj(x, t − hi)dhi = uj,

(x, t) ∈ Ω × (0, T), hi ∈ (ai, bi),

yj
(
x, t′

)
= Φ0,j

(
x, t′

) (
x, t′

) ∈ Ω × [−Δ, 0),
yj(x, 0) = y0,j(x), x ∈ Ω,
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∂yj

∂νS
(x, t) =

l∑

S=1

∫ds

cs

cs(x, t)yj(x, t − ks)dks + vj ,

(x, t) ∈ Γ × (0, T), ks ∈ (cs, ds),

yj
(
x, t′

)
= Ψ0,j

(
x, t′

)
,

(
x, t′

) ∈ Γ × [−Δ, 0),
(5.7)

where

y ≡ y(x, t;u) = (
y1(x, t;u), y2(x, t;u), . . . , yn(x, t;u)

) ∈
(
W∞,1(Q)

)n
,

u ≡ u(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)) ∈
(
W−∞,−1(Q)

)n
,

v ≡ v(x, t) = (v1(x, t), v2(x, t), . . . , vn(x, t)) ∈
(
L2(Σ)

)n
.

(5.8)

The operator S(t) is an n × n matrix takes the form [15, 16, 18, 22]:

S(t)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞∑

|α|=0
(−1)|α|aαD2α + 1 −1 · · −1

1
∞∑

|α|=0
(−1)|α|aαD2α + 1 · · −1

· · · · ·
· · · · ·
1 1 · ·

∞∑

|α|=0
(−1)|α|aαD2α + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×n

,
(5.9)

that is

S(t)yj(x) =
∞∑

|α|=0
(−1)|α|aαD2αyj(x) +

n∑

r=1

Bjryj(x), ∀j, j = 1, 2, . . . , n, (5.10)

where

Bjr =

{
1, if j ≥ r,
−1, if j < r.

(5.11)

Lemma 5.6. Let the hypothesis of Theorem 5.5 be satisfied. Then for given zd = (z1d, z2d, . . . , znd) ∈
(L2(Q))n and any v(x, t) = (v1(x, t), v2(x, t), . . . , vn(x, t)) ∈ (L2(Σ))n, there exists a unique
solution

p(v) ≡ p(x, t;v) = (
p1(x, t;v), p1(x, t;v), . . . , pn(x, t;v)

) ∈
(
W∞,1(Q)

)n
, (5.12)



22 Journal of Applied Mathematics

for the adjoint problem: for all j, j = 1, 2, . . . , n, one has

−∂pj(v)
∂t

+ S∗(t)pj(v) +
m∑

i=1

∫bi

ai

bi(x, t + hi)pj(x, t + hi;v)dhi = λ1
(
yj(v) − zjd

)
,

(x, t) ∈ Ω × (0, T −Δ), hi ∈ (ai, bi),

∂pj(v)
∂t

+ S∗(t)pj(v) = λj
(
yj(v) − zjd

)
, (x, t) ∈ Ω × (T −Δ, T),

pj(x, T, v) = 0, x ∈ Ω,

p(x, t;v) = 0, (x, t) ∈ Ω × [T −Δ + λ, T),

∂pj(v)
∂νS∗

(x, t) =
l∑

s=1

∫ds

cs

cs(x, t + ks)pj(x, t + ks;v)dks, (x, t) ∈ Γ × (0, T −Δ), ks ∈ (cs, ds),

∂pj(v)
∂νS∗

(x, t) = 0, (x, t) ∈ Γ × (T −Δ, T),

(5.13)

where

S∗(t)pj(x) =
∞∑

|α|=0
(−1)|α|aαD2αpj(x) +

n∑

r=1

Brjpj(x), ∀j, j = 1, 2, . . . , n, (5.14)

Brj are the transpose of Bjr .

Theorem 5.7. The optimal control v∗ ≡ v∗(x, t) = (v∗
1(x, t), v

∗
2(x, t), . . . , v

∗
n(x, t)) ∈ (L2(Σ))n is

characterized by the following maximum condition:

n∑

j=1

∫

Σ

[
pj(v∗) + λ2Njv

∗
j

](
vj − v∗

j

)
dΓdt ≥ 0, ∀v = (v1, v2, . . . , vn) ∈ (Uad)n, (5.15)

where

p(v∗) ≡ p(x, t;v∗) =
(
p1(x, t;v∗), p1(x, t;v∗), . . . , pn(x, t;v∗)

) ∈
(
W∞,1(Q)

)n
(5.16)

is the adjoint state.

The foregoing result is now summarized.

Theorem 5.8. For the problem (5.7) with the performance function (5.6) with zd =
(z1d, z2d, . . . , znd) ∈ (L2(Q))n and λ2 > 0, and with constraint: Uad is closed, convex subset of
(L2(Σ))n, and with adjoint equations (5.13), then there exists a unique optimal control v∗ ≡ v∗(x, t) =
(v∗

1(x, t), v
∗
2(x, t), . . . , v

∗
n(x, t)) ∈ (L2(Σ))n which satisfies the maximum condition (5.15).
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In the case of performance functionals (4.1), (4.22), (4.26), (4.30), (5.1), and (5.6) with
λ1 > 0 and λ2 = 0, the optimal control problem reduces to minimization of the functional on
a closed and convex subset in a Hilbert space. Then, the optimization problem is equivalent
to a quadratic programming one, which can be solved by the use of the well-known Gilbert
algorithm.

6. Conclusions

The optimization problem presented in the paper constitutes a generalization of the optimal
boundary control problem for second-order parabolic systems with Neumann boundary
condition involving constant time lag appearing in the state and in the boundary conditions
considered in [1, 5–9, 14–16, 18, 21, 32].

Moreover, the results obtained in this paper (Theorems 4.2, 4.6, 5.4, and 5.8) can be
treated as a generalization of the optimization theorems proved by [8–10]. Also the main
result of the paper contains necessary and sufficient conditions of optimality for (n × n)
infinite order parabolic systems with multiple time delays given in integral form both in the
state equation and in the Neumann boundary condition that give characterization of optimal
control (Theorem 5.8). But it is easily seen that obtaining analytical formulas for optimal
control are very difficult. This results from the fact that state equations (5.7), adjoint equations
(5.13), and maximum condition (5.15) are mutually connected that cause that the usage of
derived conditions is difficult. Therefore we must resign from the exact determination of the
optimal control and therefore we are forced to use approximation methods.

Also it is evident that by modifying:

(i) the boundary conditions, (Dirichlet, Neumann, mixed, etc.),

(ii) the nature of the control (distributed, boundary, etc.),

(iii) the nature of the observation (distributed, boundary, etc.),

(iv) the initial differential system,

(v) the time delays (constant time delays, time-varying delays, multiple time-varying
delays, time delays given in the integral form, etc.),

(vi) the number of variables (finite number of variables, infinite number of variables
systems, etc.),

(vii) the type of equation (elliptic, parabolic, hyperbolic, etc.),

(viii) the order of equation (second order, Schrödinger, infinite order, etc.),

(ix) the type of control ( optimal control problem, time-optimal control problem, etc.),

an infinity of variations on the above problems are possible to study with the
help of [19] and Dubovitskii-Milyutin formalisms [22–27]. Those problems need further
investigations and form tasks for future research. These ideas mentioned above will be
developed in forthcoming papers.
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