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We use the auxiliary principle technique to suggest and analyze a proximal point method for
solving the mixed variational inequalities on the Hadamard manifold. It is shown that the
convergence of this proximal point method needs only pseudomonotonicity, which is a weaker
condition than monotonicity. Some special cases are also considered. Results can be viewed as
refinement and improvement of previously known results.

1. Introduction

In recent years, much attention has been given to study the variational inequalities and
related problems on the Riemannian manifold and the Hadamard manifold. This framework
is a useful for the developments of various fields. Several ideas and techniques from the
Euclidean space have been extended and generalized to this nonlinear framework. The
Hadamard manifolds are examples of hyperbolic spaces and geodesics; see [1–7] and
the references therein. Németh [8], Tang et al. [6], and Colao et al. [2] have considered
the variational inequalities and equilibrium problems on the Hadamard manifolds. They
have studied the existence of a solution of the equilibrium problems under some suitable
conditions. To the best of our knowledge, no one has considered the auxiliary principle
technique for solving the mixed variational inequalities on the Hadamard manifolds. In
this paper, we use the auxiliary principle technique to suggest and analyze a proximal
iterative method for solving the mixed variational inequalities. If the nonlinearity in the
mixed variational inequalities is an indicator function, then the mixed variational inequalities
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are equivalent to the variational inequality on the Hadamard manifold. This shows that the
results obtained in this paper continue to hold for variational inequalities on the Hadamard
manifold, which is due to Tang et al. [6] and Németh [8]. We hope that the technique and
idea of this paper may stimulate further research in this area.

2. Preliminaries

We now recall some fundamental and basic concepts needed for a reading of this paper. These
results and concepts can be found in the books on the Riemannian geometry [2, 3, 5].

Let M be a simply connected m-dimensional manifold. Given x ∈ M, the tangent
space of M at x is denoted by TxM and the tangent bundle ofM by TM = ∪x∈MTxM, which
is naturally a manifold. A vector field A on M is a mapping of M into TM which associates
to each point x ∈ M, a vector A(x) ∈ TxM. We always assume that M can be endowed
with a Riemannian metric to become a Riemannian manifold. We denote by 〈, ·, 〉 the scalar
product on TxMwith the associated norm ‖ · ‖x, where the subscript xwill be omitted. Given
a piecewise smooth curve γ : [a, b] → M joining x to y (i.e., γ(a) = x and γ(b) = y) by
using the metric, we can define the length of γ as L(γ) =

∫b
a ‖γ ′(t)‖dt. Then, for any x, y ∈ M

the Riemannian distance d(x, y), which includes the original topology on M, is defined by
minimizing this length over the set of all such curves joining x to y.

Let Δ be the Levi-Civita connection with (M, 〈·, ·〉). Let γ be a smooth curve in M. A
vector field A is said to be parallel along γ if Δγ ′A = 0. If γ ′ itself is parallel along γ , we say
that γ is a geodesic and in this case ‖γ ′‖ is constant. When ‖γ ′‖ = 1, γ is said to be normalized.
A geodesic joining x to y in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete, if for any x ∈ M all geodesics emanating from x
are defined for all t ∈ R. By the Hopf-Rinow theorem, we know that if M is complete, then
any pair of points in M can be joined by a minimal geodesic. Moreover, (M,d) is a complete
metric space, and bounded closed subsets are compact.

Let M be complete. Then the exponential map expx : TxM → M at x is defined by
expxv = γv(1, x) for each v ∈ TxM, where γ(·) = γv(·, x) is the geodesic starting at x with
velocity v (i.e., γ(0) = x and γ ′(0) = v) Then expxtv = γv(t, x) for each real number t.

A complete simply connected Riemannianmanifold of nonpositive sectional curvature
is called aHadamard manifold. Throughout the remainder of this paper, we always assume that
M is an m-manifold Hadamard manifold.

We also recall the following well-known results, which are essential for our work.

Lemma 2.1 (see [5]). Let x ∈ M. Then expx : TxM → M is a diffeomorphism, and for any two
points x, y ∈ M, there exists a unique normalized geodesic joining x to y, γx,y, which is minimal.

So from now on, when referring to the geodesic joining two points, we mean the
unique minimal normalized one. Lemma 2.1 says that M is diffeomorphic to the Euclidean
space Rm. Thus M has the same topology and differential structure as Rm. It is also known
that the Hadamard manifolds and Euclidean spaces have similar geometrical properties.
Recall that a geodesic triangle �(x1, x2, and x3) of a Riemannian manifold is a set consisting
of three points x1, x2, x3 and three minimal geodesics joining these points.

Lemma 2.2 (see (comparison Theorem for Triangles [2, 3, 5])). Let �(x1, x2, x3) be a geodesic
triangle. Denote, for each i = 1, 2, 3 (mod3), by γi : [0, li] → M the geodesic joining xi to xi+1, and
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αi;= L(γ ′i(0),−γ ′l (i − 1)(li − 1)), the angle between the vectors γ ′i(0) and −γ ′i−1(li−1), and li;= L(γi).
Then

α1 + α2 + α3 ≤ π , (2.1)

l2
l
+ l2i+1 − 2Lili+1 cosαi+1 ≤ l2i−1. (2.2)

In terms of the distance and the exponential map, the inequality (2.2) can be rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2) − 2
〈
exp−1

xi+1
xi, exp−1

xi+1
xi+2

〉
≤ d2(xi−1, xi), (2.3)

since

〈
exp−1

xi+1
xi, exp−1

xi+1
xi+2

〉
= d(xi, xi+1)d(xi+1, xi+2) cosαi+1. (2.4)

Lemma 2.3 (see [5]). Let �(x, y, z) be a geodesic triangle in a Hadamard manifold M. Then, there
exist x′, y′, z′ ∈ R2 such that

d
(
x, y

)
=
∥∥x′ − y′∥∥, d

(
y, z

)
=
∥∥y′ − z′

∥∥, d(z, x) =
∥∥z′ − x′∥∥. (2.5)

The triangle �(x′, y′, z′) is called the comparison triangle of the geodesic triangle �(x, y, z), which is
unique up to isometry of M.

From the law of cosines in inequality (2.3), we have the following inequality, which is
a general characteristic of the spaces with nonpositive curvature [5]:

〈
exp−1

x y, exp−1
x z

〉
+
〈
exp−1

y x, exp−1
y z

〉
≥ d2(x, y

)
. (2.6)

From the properties of the exponential map, we have the following known result.

Lemma 2.4 (see [5]). Let x0 ∈ M and {xn} ⊂ M such that xn → x0. Then the following assertions
hold.

(i) For any y ∈ M,

exp−1
xn
y −→ exp−1

x0
y, exp−1

y xn −→ exp−1
y x0. (2.7)

(ii) If {vn} is a sequence such that vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M.

(iii) Given the sequences {un} and {vn} satisfying un, vn ∈ TxnM, if un → u0 and vn → v0,
with u0, v0 ∈ Tx0M, then

〈un, vn〉 −→ 〈u0, v0〉. (2.8)
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A subset K ⊆ M is said to be convex if for any two points x, y ∈ K, the geodesic
joining x and y is contained inK,K; that is, if γ : [a, b] → M is a geodesic such that x = γ(a)
and y = γ(b), then γ((1 − t)a + tb) ∈ K, for all t ∈ [0, 1]. From now on K ⊆ M will denote a
nonempty, closed and convex set, unless explicitly stated otherwise.

A real-valued function f defined onK is said to be convex if, for any geodesic γ ofM,
the composition function f ◦ γ : R → R is convex; that is,

(
f ◦ γ)(ta + (1 − t)b) ≤ t

(
f ◦ γ)(a) + (1 − t)

(
f ◦ γ)(b), ∀a, b ∈ R, t ∈ [0, 1]. (2.9)

The subdifferential of a function f : M → R is the set-valuedmapping ∂f : M → 2TM

defined as

∂f(x) =
{
u ∈ TxM :

〈
u, exp−1

x y
〉
≤ f

(
y
) − f(x), ∀y ∈ M

}
, ∀x ∈ M, (2.10)

and its elements are called subgradients. The subdifferential ∂f(x) at a point x ∈ M is a
closed and convex (possibly empty) set. Let D(∂f) denote the domain of ∂f defined by

D
(
∂f

)
=
{
x ∈ M : ∂f(x)/= ∅}. (2.11)

The existence of subgradients for convex functions is guaranteed by the following
proposition; see [7].

Lemma 2.5 (see [5, 7]). Let M be a Hadamard manifold and f : M → R convex. Then, for any
x ∈ M, the subdifferential ∂f(x) of f at x is nonempty; that is, D(∂f) = M.

For a given single-valued vector field T : M → TM and a real-valued function f :
M → R, we consider the problem of finding u ∈ M such that

〈
Tu, exp−1

u v
〉
+ f(v) − f(u) ≥ 0, ∀v ∈ M, (2.12)

which is called the mixed variational inequality. This problem was considered by Colao et al.
[2]. They proved the existence of a solution of problem (2.12) using the KKM maps. For the
applications, formulation, and other aspects of the mixed variational inequalities in the linear
setting, see [8–16].

We remark that if the function f is an indicator of a closed and convex set K in M,
then problem (2.12) is equivalent to finding u ∈ K such that

〈
Tu, exp−1

x v
〉
≥ 0, ∀v ∈ K, (2.13)

which is called the variational inequality on the Hadamard manifolds. Németh [8], Colao
et al. [2] and Udrişte [7] studied variational inequalities on the Hadamard manifold from
different point of views. In the linear setting, variational inequalities have been studied
extensively; see [8–25] and the references therein.
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Definition 2.6. An operator T is said to be speudomonotone with respect a mapping f , if and
only if

〈
T(u), exp−1

u v
〉
+ f(v) − f(u) ≥ 0 =⇒

〈
T(v), exp−1

v u
〉
+ f(v) − f(u) ≥ 0, ∀u, v ∈ M.

(2.14)

3. Main Results

We now use the auxiliary principle technique of Glowinski et al. [9] to suggest and analyze an
implicit iterative method for solving themixed variational inequality (2.12) on the Hadamard
manifold.

For a given u ∈ M satisfying (2.12), consider the problem of finding w ∈ M such that

〈
ρTw +

(
exp−1

u w
)
, exp−1

w v
〉
+ f(v) − f(w) ≥ 0, ∀v ∈ M, (3.1)

which is called the auxiliary mixed variational inequality on the Hadamard manifolds. We
note that if w = u, then w is a solution of the mixed variational inequality (2.12). This
observation enable to suggest and analyzes the following proximal point method for solving
the mixed variational inequality (2.12).

Algorithm 3.1. For a given u0, compute the approximate solution by the iterative scheme:

〈
ρTun+1 +

(
exp−1

un
un+1

)
, exp−1

un+1
v
〉
+ f(v) − f(un+1) ≥ 0, ∀v ∈ M, (3.2)

Algorithm 3.1 is called the implicit (proximal point) iterative method for solving the mixed
variational inequality on the Hadamard manifold.

IfM = Rn, then Algorithm 3.1 collapses to the following algorithm:

Algorithm 3.2. For a given u0 ∈ Rn, find the approximate solution un+1 by the iterative scheme.

〈
ρTun+1 + un+1 − un, v − un+1

〉
+ ρf(v) − f(un+1) ≥ 0, ∀v ∈ Rn, (3.3)

which is known as the proximal pint method for solving the mixed variational inequalities.
For the convergence analysis of Algorithm 3.2, see [11, 12].

If f is the indicator function of a closed and convex set K in M, then Algorithm 3.1
reduces to the following method, which is due to Tang et al. [6].

Algorithm 3.3. For a given u0 ∈ K, compute the approximate solution by the iterative scheme

〈
ρTun+1 +

(
exp−1

un
un+1

)
, exp−1

un+1
v
〉
≥ 0, ∀v ∈ K. (3.4)

We would like to mention that Algorithm 3.1 can be rewritten in the following
equivalent form.
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Algorithm 3.4. For a given u0 ∈ M, compute the approximate solution by the iterative scheme:

〈
ρTun + exp−1

un
yn, exp−1

yn
v
〉
+ ρf(v) − ρf

(
yn

) ≥ 0 ∀v ∈ M,
〈
Tyn + exp−1

un
un+1, exp−1

un+1
v
〉
+ ρf(v) − ρf(un+1), ∀v ∈ M,

(3.5)

which is called the extraresolvent method for solving the mixed variational inequalities on
the Hadamard manifolds.

In a similar way, one can obtain several iterative methods for solving the variational
inequalities on the Hadamard manifold.

We now consider the convergence analysis of Algorithm 3.1, and this is the main
motivation of our next result.

Theorem 3.5. Let T be a pseudomonotone vector field. Let un be the approximate solution of the mixed
variational inequality (2.12) obtained from Algorithm 3.1; then

d2(un+1, u) + d2(un+1, un) ≤ d2(un, u), (3.6)

where u ∈ M is the solution of the mixed variational inequality (2.12).

Proof. Let u ∈ M be a solution of the mixed variational inequality (). Then, by using the
pseudomonotonicity of the vector filed, T(u), we have

〈
ρT(v), exp−1

u v
〉
+ ρf(v) − ρf(u) ≤ 0, ∀v ∈ M. (3.7)

Taking v = un+1 in (3.7), we have

〈
ρT(un+1), exp−1

u un+1

〉
+ ρf(un+1) − ρf(u) ≤ 0. (3.8)

Taking v = u in (3.2), we have

〈
ρTun+1 +

(
exp−1

un
un+1

)
, exp−1

un+1
u
〉
+ f(u) − f(un+1) ≥ 0. (3.9)

From (3.8) and (3.9), we have

〈
exp−1

un+1
un, exp−1

un+1
u
〉
≤ 0. (3.10)

For the geodesic triangle �(un, un+1, u) the inequality (3.10) can be written as,

d2(un+1, u) + d2(un+1, un) −
〈
exp−1

un+1
un, exp−1

un+1
u
〉
≤ d2(un, u). (3.11)

Thus, from (3.10) and (3.11), we obtained inequality (3.6), the required result.
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Theorem 3.6. Let u ∈ M be solution of (2.12), and let un+1 be the approximate solution obtained
from Algorithm 3.1; then limn→∞(un+1) = u.

Proof. Let û ∈ M be a solution of (2.12). Then, from (3.6), it follows that the sequence {un} is
bounded and

∞∑

n=0

d2(un+1, un) ≤ d2(u0, u); (3.12)

it follows that

lim
n→∞

d(un+1, un) = 0. (3.13)

Let û be a cluster point of {un}. Then there exists a subsequence {uni} such that {uui}
converges to û. Replacing un+1 by uni in (3.2), taking the limit, and using (3.13), we have

〈
Tû, exp−1

û
v
〉
+ f(v) − f(û) ≥ 0, ∀v ∈ M. (3.14)

This shows that û ∈ M solves (2.12) and

d2(un+1û) ≤ d2(un, û), (3.15)

which implies that the sequence {un} has unique cluster point and limn→∞un = û is a solution
of (2.12), the required result.

4. Conclusion

We have used the auxiliary principle technique to suggest and analyzed a proximal point
iterative method for solving the mixed quasi-variational inequalities on the Hadamard
manifolds. Some special cases are also discussed. Convergence analysis of the new proximal
point method is proved under weaker conditions. Results obtained in this paper may
stimulate further research in this area. The implementation of the new method and its
comparison with other methods is an open problem. The ideas and techniques of this paper
may be extended for other related optimization problems.
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