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Let T be a time scale. We study the existence of positive solutions for the nonlinear four-point sin-
gular boundary value problem with p-Laplacian dynamic delay differential equations on time
scales, subject to some boundary conditions. By using the fixed-point index theory, the existence of
positive solution and many positive solutions for nonlinear four-point singular boundary value
problem with p-Laplacian operator is obtained.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Hilger [1] and is a
new area of still fairly theoretical exploration in mathematics. Boundary value problems for
delay differential equations arise in a variety of areas of applied mathematics, physics, and
variational problems of control theory (see [2, 3]). In recent years, many authors have begun
to pay attention to the study of boundary-value problems or with p-Laplacian equations or
with p-Laplacian dynamic equations on time scales (see [4–14] and the references therein).

In [7], Sun and Li considered the existence of positive solution of the following dy-
namic equations on time scales:

uΔ∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T), (1.1)

βu(0) − γuΔ(0) = 0, αu
(
η
)
= u(T), (1.2)

where β, γ ≥ 0, β + γ > 0, η ∈ (0, ρ(T)), 0 < α < T/η. They obtained the existence of single
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and multiple positive solutions of the problem (1.1) and (1.2) by using fixed-point theorem
and Leggett-Williams fixed-point theorem (see [15]), respectively.

In [4], Anderson discussed the following dynamic equation on time scales:

uΔ∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T),

u(0) = 0, αu
(
η
)
= u(T).

(1.3)

He obtained some results for the existence of one positive solution of the problem (1.3) based
on the limits f0 = limu→ 0+f(u)/u and f∞ = limu→∞f(u)/u.

In [5], Kaufmann studied the problem (1.3) and obtained the existence results of at
least two positives solutions.

In [14], Wang et al. discussed the following dynamic equation on time scales by using
Avery-Peterson fixed theorem (see [14]):

(
φp

(
u′))′ + q(t)f

(
t, u(t), u(t − 1), u′(t)

)
= 0, t ∈ (0, 1), (1.4)

u(t) = ξ(t), −1 ≤ t ≤ 0, u(1) = 0, (1.5)

u(t) = ξ(t), −1 ≤ t ≤ 0, u′(1) = 0. (1.5′)

They obtained some results for the existence three positive solutions of the problem (1.4),
(1.5) and (1.4), and (1.5′), respectively.

In [15], Lee and Sim discussed the following equation:

(
φp

(
u′))′ + λh(t)f(u(t)) = 0, a. e. t ∈ (0, 1),

u(0) = u(1) = 0.
(1.6)

By applying the global bifurcation theorem and figuring the shape of unbounded subcon-
tinua of solutions, they obtainmany different types of global existence results of positive solu-
tions.

However, there are notmany concerning the p-Laplacian problems on time scales. Espe-
cially, for the singular multipoint boundary value problems for p-Laplacian dynamic delay
differential equations on time scales, with the author’s acknowledge, no one has studied the
existence of positive solutions in this case.

Recently, in [16], we have studied the existence of positive solutions for the following
nonlinear two-point singular boundary value problem with p-Laplacian operator:

(
φp

(
u′))′ + a(t)f(u(t)) = 0, 0 < t < 1,

αφp(u(0)) − βφp

(
u′(0)

)
= 0, γφp(u(1)) + δφp

(
u′(1)

)
= 0.

(1.7)

By using the fixed-point theorem of cone expansion and compression of norm type, the exis-
tence of positive solution and infinitelymany positive solutions for nonlinear singular bound-
ary value problem (1.7) with p-Laplacian operator is obtained.

Now, motivated by the results mentioned above, in this paper, we study the existence
of positive solutions for the following nonlinear four-point singular boundary value problem
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with higher-order p-Laplacian dynamic delay differential equations operator on time scales
(SBVP):

(
φp

(
uΔ(t)

))∇
+ g(t)f(u(t − τ), u(t)) = 0, 0 < t < T, τ > 0, (1.8)

u(t) = ζ(t), −τ ≤ t ≤ 0,

αφp(u(0)) − βφp

(
uΔ(ξ)

)
= 0,

γφp(u(T)) + δφp

(
uΔ(η

))
= 0,

(1.9)

or

u(t) = ζ(t), −τ ≤ t ≤ 0,

u(0) − B0

(
uΔ(ξ)

)
= 0,

u(T) + B1

(
uΔ(η

) )
= 0,

(1.10)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φq = φ−1
p , 1/p + 1/q = 1. ξ,

η ∈ (0, T), τ ∈ [0, T] is prescribed and ξ < η, g : (0, T) → [0,∞), α > 0, β ≥ 0, γ > 0, δ ≥ 0 and
B0, B1 are both nondecreasing continuous odd functions defined on (−∞,+∞).

In this paper, by constructing one integral equation which is equivalent to the problem
(1.8), (1.9) and (1.8), and (1.10), we research the existence of positive solutions for nonlinear
singular boundary value problem (1.8), (1.9) and (1.8), and (1.10)when g and f satisfy some
suitable conditions.

Our main tool of this paper is the following fixed point index theory.

Theorem 1.1 (see [17, 18]). Suppose that E is a real Banach space, K ⊂ E is a cone, let Ωr = {u ∈
K : ‖u‖ ≤ r}. Let operator T : Ωr → K be completely continuous and satisfy Tx /=x, ∀x ∈ ∂Ωr .
Then

(i) if ‖Tx‖ ≤ ‖x‖, ∀x ∈ ∂Ωr , then i(T,Ωr , K) = 1;

(ii) if ‖Tx‖ ≥ ‖x‖, ∀x ∈ ∂Ωr , then i(T,Ωr , K) = 0.

This paper is organized as follows. In Section 2, we present some preliminaries and
lemmas that will be used to prove our main results. In Section 3, we discuss the existence of
single solution of the systems (1.8) and (1.9). In Section 4, we study the existence of at least
two solutions of the systems (1.8) and (1.9). In Section 5, we discuss the existence of single
and many solutions of the systems (1.8) and (1.10). In Section 6, we give two examples as the
application.

2. Preliminaries and Lemmas

For convenience, we can found some basic definitions in [1, 19, 20].
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In the rest of this paper, T is closed subset of R with 0 ∈ Tk, T ∈ Tk. And let B = {u ∈
Cld[−τ, T]}, then B is a Banach space with the norm ‖u‖ = maxt∈[−τ,T]|u(t)|. And let

K = {u ∈ B : u(t) ≥ 0, u(t) is concave function, t ∈ [0, T]}. (2.1)

Obviously, K is a cone in B. Set Kr = {u ∈ K : ‖u‖ ≤ r}.

Definition 2.1. u(t) is called a solution of SBVP (1.8) and (1.9) if it satisfies the following:

(1) u ∈ C[−τ, 0] ∩ Cld(0, T),

(2) u(t) > 0 for all t ∈ (0, T) and satisfies conditions (1.9),

(3) (φp(uΔ(t)))∇ = −g(t)f(u(t − τ), u(t)) holds for t ∈ (0, T).

In the rest of the paper, we also make the following assumptions:

(H1) f ∈ Cld([0,+∞)2, [0,+∞)),

(H2) g(t) ∈ Cld((0, T), [0,+∞)) and there exists t0 ∈ (0, T), such that

g(t0) > 0, 0 <

∫T

0
g(s) ∇s < +∞, (2.2)

(H3) ζ(t) ∈ C([−τ, 0], ζ(t) > 0 on [−τ, 0) and ζ(0) = 0,

(H4) B0, B1 are both increasing, continuous, odd functions defined on (−∞,+∞), and at
least one of them satisfies the condition that there exists one b > 0 such that

0 < Bi(v) ≤ bv, ∀v ≥ 0, i = 0 or 1. (2.3)

It is easy to check that condition (H2) implies that

0 <

∫T

0
φq

(∫s

0
g(s1)∇s1

)
Δs < +∞. (2.4)

We can easily get the following Lemmas.

Lemma 2.2. Suppose that condition (H2) holds. Then there exists a constant θ ∈ (0, 1/2) that satis-
fies

0 <

∫T−θ

θ

g(t)∇t < ∞. (2.5)

Furthermore, the function

A(t) =
∫ t

θ

φq

(∫ t

s

g(s1)∇s1

)

Δs +
∫T−θ

t

φq

(∫s

t

g(s1)∇s1

)
∇s, t ∈ [θ, T − θ] (2.6)

is positive continuous functions on [θ, T − θ]; therefore, A(t) has minimum on [θ, T − θ]. Hence, we
suppose that there exists L > 0 such that A(t) ≥ L, t ∈ [θ, T − θ].
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Proof. At first, it is easily seen that A(t) is continuous on [θ, T − θ]. Nest, let

A1(t) =
∫ t

θ

φq

(∫ t

s

g(s1)∇s1

)

Δs, A2(t) =
∫T−θ

t

φq

(∫ s

t

g(s1)∇s1

)
Δs. (2.7)

Then, from condition (H2), we have the functionA1(t) is strictly monotone nondecreasing on
[θ, T − θ] and A1(θ) = 0, the function A2(t) is strictly monotone nonincreasing on [θ, T − θ]
and A2(T − θ) = 0, which implies L = mint∈[θ,T−θ]A(t) > 0. The proof is complete.

Lemma 2.3 (see [16]). Let u ∈ K and θ of Lemma 2.2, then

u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (2.8)

Lemma 2.4. Suppose that conditions (H1), (H2), (H3), and (H4) hold, u(t) ∈ B∩Cld(0, 1) is a solu-
tion of the following boundary value problems:

(
φp

(
uΔ(t)

))∇
+ g(t)f(u(t − τ) + h(t − τ), u(t)) = 0, 0 < t < T, (2.9)

u(t) = 0, −τ ≤ t ≤ 0,

αφp(u(0)) − βφp

(
uΔ(ξ)

)
= 0,

γφp(u(T)) + δφp

(
uΔ(η

))
= 0,

(2.10)

or

u(t) = 0, −τ ≤ t ≤ 0,

u(0) − B0

(
uΔ(ξ)

)
= 0,

u(T) + B1

(
uΔ(η

))
= 0,

(2.10′)

where

h(t) =

⎧
⎨

⎩

ζ(t), −τ ≤ t ≤ 0,

0, 0 ≤ t ≤ T.
(2.11)

Then, u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8) and (1.9) or (1.8) and
(1.10).

Proof. It is easy to check that u(t) satisfies (1.8) and (1.9) or (1.8) and (1.10).

So in the rest section of this paper, we focus on SBVP (2.9), (2.10), and (2.9), (2.10′).

Lemma 2.5. Suppose that conditions (H1), (H2), (H3), or (H1), (H2), (H3), (H4), hold, u(t) ∈ B∩
Cld(0, 1) is a solution of boundary value problems (2.9), (2.10) or (2.9), (2.10′), respectively, if and
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only if u(t) ∈ B is a solution of the following integral equation, respectively:

u(t) =

⎧
⎪⎨

⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0
w(s)Δs, 0 ≤ t ≤ T,

u(t) =

⎧
⎪⎨

⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0
w(s)Δs, 0 ≤ t ≤ T,

(2.12)

where

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫ t

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs, 0 ≤ t ≤ σ,

φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

t

φq

(∫ s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs, σ ≤ t ≤ T,

(2.13)

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0 ◦ φq

(∫�

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫ t

0
φq

(∫�

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs, 0 ≤ t ≤ �,

B1 ◦ φq

(∫η

�

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

t

φq

(∫s

�

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)

Δs, � ≤ t ≤ T.

(2.13′)

Here σ, � is unique solution of the equation, respectively,

g1(t) = g2(t), g1(t) = g2(t), (2.14)

where

g1(t) = φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫ t

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs,

g2(t) = φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

t

φq

(∫s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs,
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g1(t)= B0 ◦ φq

(∫�

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫ t

0
φq

(∫�

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs,

g2(t) = B1 ◦ φq

(∫η

�

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

t

φq

(∫s

�

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)

Δs.
(2.15)

Equation g1(t) = g2(t), g1(t) = g2(t) has unique solution in (0, T). Because g1(t), g1(t) is strictly
monotone increasing on [0, T), and g1(0) = 0, g1(0) = 0, g2(t), g2(t) is strictly monotone decreasing
on (0, T], and g2(T) = 0, g2(T) = 0.

Proof. We only proof the first section of the results.

Necessity. Obviously, for t ∈ (−τ, 0), we have u(t) = ζ(t).
If t ∈ (0, T), by the equation of the boundary condition andwe have uΔ(ξ) ≥ 0, uΔ(η) ≤

0, then there exist is a constant σ ∈ [ξ, η] ⊂ (0, T) such that uΔ(σ) = 0.
Firstly, by integrating the equation of the problems (2.9) on (σ, t), we have

φp

(
uΔ(t)

)
= φp

(
uΔ(σ)

)
−
∫ t

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s, (2.16)

then

uΔ(t) = −φq

(∫ t

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

, (2.17)

thus

u(t) = u(σ) −
∫ t

σ

φq

(∫ s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs. (2.18)

By uΔ(σ) = 0 and condition (2.16), t = η on (2.16), we have

φp

(
uΔ(η

))
= −
∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s. (2.19)

By the equation of the boundary condition (2.10), we have

φp(u(T)) = −δ
γ
φp

(
uΔ(η

))
, (2.20)
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then

u(T) = φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)
. (2.21)

Then, by (2.18) and let t = T on (2.18), we have

u(σ)= φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

σ

φq

(∫s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs.

(2.22)

Then

u(t) = φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

t

φq

(∫ s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs.

(2.23)

Similarly, for t ∈ (0, σ), by integrating the equation of problems (2.9) on (0, σ), we have

u(t)= φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

Δs

+
∫ t

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs.

(2.24)

Therefore, for any t ∈ [0, T], u(t) can be expressed as equation

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0
w(s)Δs, 0 ≤ t ≤ T,

(2.25)

where w(t) is expressed as (2.13).

Sufficiency. Suppose that u(t) =
∫ t
0 w(s)Δsn−2Δs, 0 ≤ t ≤ T . Then by (2.13), we have

uΔ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φq

(∫σ

t

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)
≥ 0, 0 ≤ t ≤ σ,

−φq

(∫ t

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

≤ 0, σ ≤ t ≤ T,

(2.26)

So, (φp(uΔ)∇ + g(t)f(u(t − τ) + h(t − τ), u(t)) = 0, 0 < t < T . These imply that (2.9) holds.
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Furthermore, by letting t = 0 and t = T on (2.13) and (2.26), we can obtain the boundary
value equations of (2.10). The proof is complete.

Now, we define an operetor equation T given by

(Tu)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0
w(s)Δs, 0 ≤ t ≤ T,

(
Tu
)
(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0
w(s)Δs, 0 ≤ t ≤ T,

(2.27)

where w(t), w(t) is given by (2.13) and (2.13′).
From the definition of T, T and above discussion, we deduce that for each u ∈ K, Tu,

Tu ∈ K. Moreover, we have the following Lemma.

Lemma 2.6. T, T : K → K is completely continuous.

Proof. We only proof the completely continuous of T .
Because

(Tu)Δ(t) = wΔ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φq

(∫σ

t

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)
≥ 0, 0 ≤ t ≤ σ,

−φq

(∫ t

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

≤ 0, σ ≤ t ≤ T,

(2.28)

is continuous, decreasing on [0, T], and satisfies that (Tu)Δ(σ) = 0, then, Tu ∈ K for each
u ∈ K and (Tu)(σ) = maxt∈[0,T](Tu)(t). This shows that TK ⊂ K. Furthermore, it is easy to
check by Arzela-ascoli Theorem that T : K → K is completely continuous.

Lemma 2.7. Suppose that conditions (H1), (H2), and (H3) hold, the solution u(t) ∈ K of problem
(2.9) and (2.10) satisfy

max
0≤t≤T

|u(t − τ) + h(t − τ)| ≤ max
−τ≤t≤0

|ζ(t)|. (2.29)

Proof. Firstly, we can have

max
0≤t≤T

|u(t − τ) + h(t − τ)| ≤ max
0≤t≤T

|u(t − τ)| +max
0≤t≤T

|h(t − τ)|

= max
−τ≤t≤T−τ

|u(t)| + max
−τ≤t≤T−τ

|h(t)|

= max
−τ≤t≤0

|ζ(t)|.

(2.30)

The proof is complete.
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For convenience, we set

H = max
−τ≤t≤0

|ζ(t)|, θ∗ =
2
L
,

θ∗ =
1

(
T + φq

(
β/α
))
φq

(∫T
0 g(r)∇r

) , θ∗∗ =
1

(b + 1)φq

(∫T
0 g(r)∇r

) ,
(2.31)

where L is the constant from Lemma 2.2. By Lemma 2.5, we can also set

f0 = lim
u2 → 0

max
0≤u1≤H

f(u1, u2)

u
p−1
2

, f∞ = lim
u2 →∞

max
0≤u1≤H

f(u1, u2)

u
p−1
2

,

f0 = lim
u2 → 0

min
0≤u1≤H

f(u1, u2)

u
p−1
2

f∞ = lim
u2 →∞

min
0≤u1≤H

f(u1, u2)

u
p−1
2

.

(2.32)

3. The Existence of Single Positive Solution to (1.8) and (1.9)

In this section, we present our main results.

Theorem 3.1. Suppose that condition (H1), (H2), and (H3) hold. Assume that f also satisfies

(A1): f(u1, u2) ≥ (mr)p−1, for θr ≤ u2 ≤ r, 0 ≤ u1 ≤ H,

(A2): f(u1, u2) ≤ (MR)p−1, for 0 ≤ u2 ≤ R, 0 ≤ u1 ≤ H,

wherem ∈ (θ∗,∞),M ∈ (0, θ∗).
Then, the SBVP (2.9), (2.10) has a solution u such that ‖u‖ lies between r and R. Furthermore

by Lemma 2.4, u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8) and (1.9).

Proof of Theorem 3.1. Without loss of generality, we suppose that r < R. For any u ∈ K, by
Lemma 2.3, we have

u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (3.1)

We define two open subset Ω1 and Ω2 of E:

Ω1 = {u ∈ K : ‖u‖ < r}, Ω2 = {u ∈ K : ‖u‖ < R}. (3.2)

For any u ∈ ∂Ω1, by (3.1), we have

r = ‖u‖ ≥ u(t) ≥ θ‖u‖ = θr, t ∈ [θ, T − θ]. (3.3)

For t ∈ [θ, T − θ] and u ∈ ∂Ω1, we shall discuss it from three perspectives.

(i) If σ ∈ [θ, T − θ], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

2‖Tu‖ = 2(Tu)(σ)

≥
∫σ

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs
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+
∫T

σ

φq

(∫s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≥
∫σ

θ

φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

+
∫T−θ

σ

φq

(∫s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≥ mrA(σ) ≥ mrL ≥ 2r = 2‖u‖.
(3.4)

(ii) If σ ∈ (T − θ, T], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

‖Tu‖ = (Tu)(σ)

≥ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫σ

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≥
∫T−θ

θ

φq

(∫T−θ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)

Δs

≥ mrA(T − θ) ≥ mrL ≥ 2r > r = ‖u‖.

(3.5)

(iii) If σ ∈ (0, θ), thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

‖Tu‖ = (Tu)(σ)

≥ φq

(
δ

γ

∫η

σ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

σ

φq

(∫s

σ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≥
∫T−θ

θ

φq

(∫s

θ

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≥ mrA(θ) ≥ mrL ≥ 2r > r = ‖u‖.

(3.6)

Therefore, no matter under which condition, we all have

‖Tu‖ > ‖u‖, ∀u ∈ ∂Ω1. (3.7)

Then by Theorem 1.1, we have

i(T,Ω1, K) = 0. (3.8)
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On the other hand, for u ∈ ∂Ω2, we have u(t) ≤ ‖u‖ = R, and by (A2), we know that

‖Tu‖ = (Tu)(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≤
(
T + φq

(
β

α

))
MRφq

(∫T

0
g(r)∇r

)

≤ R = ‖u‖,
(3.9)

thus

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω2. (3.10)

Then, by Theorem 1.1, we have

i(T,Ω2, K) = 1. (3.11)

Therefore, by (3.8), and (3.11), r < R, we have

i
(
T,Ω2 \Ω1, K

)
= 1. (3.12)

Then operator T has a fixed point u ∈ (Ω1 \Ω2), and r ≤ ‖u‖ ≤ R. This completes the proof of
Theorem 3.1.

Theorem 3.2. Suppose that condition (H1), (H2), and (H3) hold. Assume that f also satisfies

(A3) : f0 = ϕ ∈ [0, (θ∗/4)
p−1),

(A4) : f∞ = λ ∈ ((2θ∗/θ)p−1,∞).

Then, the SBVP (2.9), (2.10) has a solution u which is bounded in ‖ · ‖. Furthermore, by Lemma 2.4,
u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.9).

Proof of Theorem 3.2. First, by f0 = ϕ ∈ [0, (θ∗/4)
p−1), for ε = (θ∗/4)

p−1 − ϕ, there exists an
adequately small positive number ρ, as 0 ≤ u2 ≤ ρ, u2 /= 0, u1 ≤ H, we have

f(u1, u2) ≤
(
ϕ + ε

)
(u2)p−1 ≤

(
θ∗
4

)p−1
ρp−1 =

(
θ∗
4
ρ

)p−1
. (3.13)

Then let R = ρ, M = θ∗/4 ∈ (0, θ∗), thus by (3.13),

f(u1, u2) ≤ (MR)p−1, 0 ≤ u2 ≤ R. (3.14)

So condition (A2) holds.
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Next, by condition (A4), f∞ = λ ∈ ((2θ∗/θ)p−1,∞), then for ε = λ−(2θ∗/θ)p−1, there exists
an appropriately big positive number r /=R, as u2 ≥ θr, u1 ≤ H, we have

f(u1, u2) ≥ (λ − ε)(u2)p−1 ≥
(
2θ∗

θ

)p−1
(θr)p−1 = (2θ∗r)p−1. (3.15)

Let m = 2θ∗ > θ∗, thus by (3.15), condition (A1) holds. Therefore, by Theorem 3.1, we know
that the results of Theorem 3.2 hold. The proof of Theorem 3.2 is complete.

Theorem 3.3. Suppose that conditions (H1), (H2), (H3) hold. Assume that f also satisfies

(A5): f∞ = λ ∈ [0, (θ∗/4)
p−1),

(A6): f0 = ϕ ∈ ((2θ∗/θ)p−1,∞).

Then, the SBVP (2.9), (2.10) has a solution u which is bounded in ‖ · ‖. Furthermore by Lemma 2.4,
u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.9).

Proof of Theorem 3.3. First, by condition (A6), f0 = ϕ ∈ ((2θ∗/θ)p−1,∞), then for ε = ϕ −
(2θ∗/θ)p−1, there exists an adequately small positive number r, as 0 ≤ u2 ≤ r, u2 /= 0, u1 ≤ H,
we have

f(u1, u2) ≥
(
ϕ − ε

)
(u2)p−1 =

(
2θ∗

θ

)p−1
(u2)p−1, (3.16)

thus when θr ≤ u2 ≤ r, u1 ≤ H, we have

f(u1, u2) ≥
(
2θ∗

θ

)p−1
(θr)p−1 = (2θ∗r)p−1. (3.17)

Let m = 2θ∗ > θ∗, so by (3.17), condition (A1) holds.
Next, by condition (A5): f∞ = λ ∈ [0, (θ∗/4)

p−1), then for ε = (θ∗/4)
p−1 − λ, there exists

an suitably big positive number ρ /= r, as u2 ≥ ρ, u1 ≤ H, we have

f(u1, u2) ≤ (λ + ε)(u2)p−1 ≤
(
θ∗
4

)p−1
(u2)p−1. (3.18)

If f is unbounded, by the continuity of f on [0,∞)2, then exists constant R (/= r) ≥ ρ, and a
point (u01, u02) ∈ [0,∞)2 such that

ρ ≤ u02 ≤ R,

f(u1, u2) ≤ f(u01, u02), 0 ≤ u2 ≤ R, u1 ≤ H.
(3.19)

Thus, by ρ ≤ u02 ≤ R, u1 ≤ H, we know

f(u1, u2) ≤ f(u01, u02) ≤
(
θ∗
4

)p−1
(u02)p−1 ≤

(
θ∗
4
R

)p−1
. (3.20)
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Choose M = θ∗/4 ∈ (0, θ∗). Then, we have

f(u1, u2) ≤ (MR)p−1, 0 ≤ u2 ≤ R, u1 ≤ H. (3.21)

If f is bounded, we suppose f(u1, u2) ≤ M
p−1

, u2 ∈ [0,∞), M ∈ R+, there exists an appro-
priately big positive number R > (4/θ∗)M, then choose M = θ∗/4 ∈ (0, θ∗), we have

f(u1, u2) ≤ M
p−1 ≤

(
θ∗
4
R

)p−1
= (MR)p−1, 0 ≤ u2 ≤ R, u1 ≤ H. (3.22)

Therefore, condition (A2) holds. Therefore, by Theorem 3.1, we know that the results of
Theorem 3.3 holds. The proof of Theorem 3.3 is complete.

4. The Existence of Many Positive Solutions to (1.8) and (1.9)

Next, we will discuss the existence of many positive solutions.

Theorem 4.1. Suppose that conditions (H1), (H2), (H3), and (A2) in Theorem 3.1 hold. Assume
that f also satisfies

(A7): f0 = +∞,

(A8): f∞ = +∞.

Then, the SBVP (2.9), (2.10) has at last two solutions u1, u2 such that

0 < ‖u1‖ < R < ‖u2‖. (4.1)

Furthermore, by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) = u2(t) + h(t), −τ ≤ t ≤ T is a positive solu-
tion to the SBVP (1.8), (1.9).

Proof of Theorem 4.1. First, by condition (A7), for any N > 2/θL, there exists a constant ρ∗ ∈
(0, R) such that

f(u1, u2) ≥ (Nu2)p−1, 0 < u2 ≤ ρ∗, u1 ≤ H. (4.2)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (4.2) and Lemma 2.3, similar to the pre-
vious proof of Theorem 3.1, we can have from three perspectives

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ . (4.3)

Then by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 0. (4.4)

Next, by condition (A8), for any N > 2/θL, there exists a constant ρ0 > 0 such that

f(u1, u2) ≥
(
Nu2

)p−1
, u2 > ρ0, u1 ≤ H. (4.5)
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We choose a constant ρ∗ > max{R, ρ0/θ}, obviously ρ∗ < R < ρ∗. SetΩρ∗ = {u ∈ K : ‖u‖ < ρ∗}.
For any u ∈ ∂Ωρ∗ , by Lemma 2.3, we have

u(t) ≥ θ‖u‖ = θρ∗ > ρ0, t ∈ [θ, T − θ]. (4.6)

Then by (4.5) and also similar to the previous proof of Theorem 3.1, we can also have from
three perspectives

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ . (4.7)

Then by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 0. (4.8)

Finally, set ΩR = {u ∈ K : ‖u‖ < R}, For any u ∈ ∂ΩR, by (A2), Lemma 2.3 and also
similar to the latter proof of Theorem 3.1, we can also have

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂ΩR. (4.9)

Then by Theorem 1.1, we have

i(T,ΩR,K) = 1. (4.10)

Therefore, by (4.4), (4.8), (4.10), ρ∗ < R < ρ∗, we have

i
(
T,ΩR \Ωρ∗ , K

)
= 1, i

(
T,Ωρ∗ \ΩR,K

)
= −1. (4.11)

Then T has fixed-point u1 ∈ ΩR \Ωρ∗ , and fixed-point u2 ∈ Ωρ∗ \ΩR. Obviously, u1, u2 are all
positive solutions of problem (2.9), (2.10) and ρ∗ < ‖u1‖ < R < ‖u2‖ < ρ∗. The proof of
Theorem 4.1 is complete.

Theorem 4.2. Suppose that conditions (H1), (H2), (H3), and (A1) in Theorem 3.1 hold. Assume
that f also satisfies

(A9): f0 = 0,

(A10): f∞ = 0.

Then, the SBVP (2.9), (2.10) has at last two solutions u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖. Further-
more, by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) = u2(t) + h(t), −τ ≤ t ≤ T is a positive solution to
the SBVP (1.8), (1.10).

Proof of Theorem 4.2. First, by f0 = 0, for ε1 ∈ (0, θ∗), there exists a constant ρ∗ ∈ (0, r) such
that

f(u1, u2) ≤ (ε1u2)p−1, 0 < u2 ≤ ρ∗, u1 ≤ H. (4.12)
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Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (4.12), we have

‖Tu‖ = (Tu)(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs

≤ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+ Tφq

(∫T

0
g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)

≤
(
T + φq

(
β

α

))
ε1ρ∗φq

(∫T

0
g(r)∇r

)

≤ ρ∗ = ‖u‖,

(4.13)

that is

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ωρ∗ . (4.14)

Then by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 1. (4.15)

Next, let f∗(x) = max0≤u2≤x,u1≤Hf(u1, u2), and note that f∗(x) is monotone increasing
with respect to x ≥ 0. Then from f∞ = 0, it is easy to see that

lim
x→∞

f∗(x)
xp−1 = 0. (4.16)

Therefore, for any ε2 ∈ (0, θ∗), there exists a constant ρ∗ > r such that

f∗(x) ≤ (ε2x)p−1, x ≥ ρ∗. (4.17)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (4.17), we have

‖Tu‖ = (Tu)(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)
Δs
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≤ φq

(
β

α

∫σ

ξ

g(s)f(u(s − τ) + h(s − τ), u(s))∇s

)

+ Tφq

(∫T

0
g(r)f(u(r − τ) + h(r − τ), u(r))∇r

)

≤
(
T + φq

(
β

α

))
φq

(∫T

0
g(r)f∗(ρ∗

)∇r

)

≤
(
T + φq

(
β

α

))
ε2ρ

∗φq

(∫T

0
g(r)∇r

)

≤ r∗ = ‖u‖,
(4.18)

that is

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ωρ∗ . (4.19)

Then by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 1. (4.20)

Finally, setΩr = {u ∈ K : ‖u‖ < r}. For any u ∈ ∂Ωr , by (A1), Lemma 2.3 and also simi-
lar to the previous proof of Theorem 3.1, we can also have

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωr . (4.21)

Then by Theorem 1.1, we have

i(T,Ωr , K) = 0. (4.22)

Therefore, by (4.15), (4.20), (4.22), ρ∗ < r < ρ∗, we have

i
(
T,Ωr \Ωρ∗ , K

)
= −1, i

(
T,Ωρ∗ \Ωr , K

)
= 1. (4.23)

Then T have fixed point u1 ∈ Ωr \ Ωρ∗ , and fixed point u2 ∈ Ωρ∗ \ Ωr . Obviously, u1, u2 are
all positive solutions of problem (1.8), (1.9) and ρ∗ < ‖u1‖ < r < ‖u2‖ < ρ∗. The proof of
Theorem 4.2 is complete.

Similar to Theorem 3.1, we also obtain the following Theorems.

Theorem 4.3. Suppose that conditions (H1), (H2), (H3) and (A2) in Theorem 3.1, (A4) in
Theorem 3.2 and (A6) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.10) has at last two solutions
u1, u2 such that 0 < ‖u1‖ < R < ‖u2‖. Furthermore by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) =
u2(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

Theorem 4.4. Suppose that conditions (H1), (H2), (H3) and (A1) in Theorem 3.1, (A3) in
Theorem 3.2 and (A5) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.10) have at last two solutions
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u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖. Furthermore by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) =
u2(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

5. The Existence of Many Positive Solutions to (1.8) and (1.10)

In the following, we will deal with problem (1.8), (1.10), the method is similar to that in
Sections 3 and 4, so we omit many proof in this section.

Theorem 5.1. Suppose that condition (H1), (H2), (H3), (H4) hold. Assume that f also satisfies

(A′
1): f(u1, u2) ≥ (mr)p−1, for θr ≤ u2 ≤ r, 0 ≤ u1 ≤ H,

(A′
2): f(u1, u2) ≤ (MR)p−1, for 0 ≤ u2 ≤ R, 0 ≤ u1 ≤ H,

where m ∈ (θ∗,∞), M ∈ (0, θ∗∗). Then, the SBVP (2.9), (2.13) has a solution u such that ‖u‖ lies
between r and R. Furthermore by Lemma 2.4, u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to
the SBVP (1.8), (1.10).

Theorem 5.2. Suppose that condition (H1), (H2), (H3), (H4) hold. Assume that f also satisfies

(A′
3) : f

0 = ϕ ∈ [0, (θ∗∗/4)
p−1),

(A′
4): f∞ = λ ∈ ((2θ∗/θ)p−1,∞).

Then, the SBVP (2.9), (2.13) has a solution u which is bounded in ‖ · ‖. Furthermore by Lemma 2.4,
u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.3. Suppose that condition (H1), (H2), (H3), (H4) hold. Assume that f also satisfies

(A′
5): f

∞ = λ ∈ [0, (θ∗∗/4)
p−1),

(A′
6): f0 = ϕ ∈ ((2θ∗/θ)p−1,∞).

Then, the SBVP (2.9), (2.13) has a solution u which is bounded in ‖ · ‖. Furthermore by Lemma 2.4,
u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.4. Suppose that conditions (H1), (H2), (H3), (H4) and (A′
2) in Theorem 5.1 hold.

Assume that f also satisfies

(A′
7): f0 = +∞,

(A′
8): f∞ = +∞.

Then, the SBVP (2.9), (2.13) has at least two solutions u1, u2 such that

0 < ‖u1‖ < R < ‖u2‖. (5.1)

Furthermore by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) = u2(t) + h(t), −τ ≤ t ≤ T is a positive
solution to the SBVP (1.8), (1.10).

Theorem 5.5. Suppose that conditions (H1), (H2), (H3), (H4) and (A′
1) in Theorem 5.1 hold. As-

sume that f also satisfies
(A′

9): f
0 = 0,

(A′
10): f

∞ = 0.
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Then, the SBVP (2.9), (2.13) has at least two solutions u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖. Further-
more by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) = u2(t) + h(t), −τ ≤ t ≤ T is a positive solution to
the SBVP (1.8), (1.10).

Theorem 5.6. Suppose that conditions (H1), (H2), (H3), (H4) and (A2) in Theorem 5.1, (A4) in
Theorem 5.2 and (A′

6) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.13) has at least two solutions
u1, u2 such that 0 < ‖u1‖ < R < ‖u2‖. Furthermore by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) =
u2(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.7. Suppose that conditions (H1), (H2), (H3), (H4) and (A′
1) in Theorem 5.1, (A′

3) in
Theorem 5.2 and (A′

5) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.13) has at least two solutions u1,
u2 such that 0 < ‖u1‖ < r < ‖u2‖. Furthermore by Lemma 2.4, u1(t) = u1(t) + h(t), u2(t) = u2(t)+
h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.8), (1.10).

6. Application

In the section, we present two simple examples to explain our result.

Example 6.1. Let T = {1 − (1/2)N} ∪ {1}, where N denotes the set of all nonnegative integers.
Consider the following 3-order singular boundary value problem (SBVP) with p-Laplacian

(
φp

(
uΔ
))∇

(t) +
1
20

t−1/2u1/2(t) ·
[
1
5
+

(94/5)e2u(t)

120u(t − 1) + 7eu(t) + e2u(t)

]

= 0, 0 < t < 1,

u(t) = t2 − 1, −1 ≤ t ≤ 0,

φp(u(0)) − φp

(
uΔ
(
1
4

))
= 0, φp(u(1)) + δφp

(
uΔ
(
1
2

))
= 0,

(6.1)

where

α = γ = 1, β = 1, p =
3
2
, δ ≥ 0, ξ =

1
4
, η =

1
2
, θ =

1
4
,

τ = T = 1.
(6.2)

So, by Lemma 2.4, we discuss the following SBVP:

(
φp

(
uΔ
))∇

(t)+
1
20

t−1/2u1/2(t)·
[
1
5
+

(94/5)e2u(t)

120[u(t−1)+h(t − 1)]+7eu(t)+e2u(t)

]

=0, 0<t<1,

u(t) = 0, −1 ≤ t ≤ 0,

φp(u(0)) − φp

(
uΔ
(
1
4

))
= 0, φp(u(1)) + δφp

(
uΔ
(
1
2

))
= 0,

(6.3)
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where

h(t) =

⎧
⎨

⎩

t2 − 1, −1 ≤ t ≤ 0,

0, 0 ≤ t ≤ 1,
g(t) =

1
20

t−1/2, ζ(t) = t2 − 1,

f(u1, u2) = (u2)1/2
[
1
5
+

(94/5)e2u2

120u1 + 7eu2 + e2u2

]

.

(6.4)

Then obviously,

q = 3, H = max
−1≤t≤0

|ζ(t)| = 1, f0 = ϕ = lim
u2 → 0+

max
0≤u1≤1

f(u1, u2)

u
p−1
2

=
51
20

,

f∞ = λ = lim
u2 →∞

min
0≤u1≤1

f(u1, u2)

u
p−1
2

=
95
5
,

∫T

0
g(t)∇t =

1
10

,

(6.5)

so conditions (H1), (H2), (H3) hold.
Next,

θ∗ =
1

(
T + φq

(
β/α
))
φq

(∫T
0 g(r)∇r

) = 50, (6.6)

then (θ∗/4)
p−1 = 5

√
2/2 > 51/20, that is, ϕ ∈ [0, (θ∗/4)

p−1), so condition (A3) holds.
For θ = 1/4, it is easy to see by calculating that

L = min
t∈[θ,T−θ]

A(t) =
1
16

(
7
36

+
√
3
3

)

. (6.7)

Because of

(
2θ∗

θ

)p−1
= 96 ×

(
1

7 + 12
√
3

)1/2

<
95
5
, (6.8)

then

λ ∈
((

2θ∗

θ

)p−1
,∞
)

, (6.9)

so condition (A4) holds. Then by Theorem 3.2, SBVP (6.3) has at least a positive solution u(t).
So, u(t) = u(t) + h(t), −1 < t < 1 is the positive solution of SBVP (6.1).
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Example 6.2. Consider the following 3-order singular boundary value problem (SBVP) with
p-Laplacian:

(
φp

(
uΔ
))∇

(t) +
1

64π4
t−1/2(1 − t)

[
u(t − 1) + u2(t) + u4(t)

]
= 0, 0 < t < 1,

u(t) = −tet, −1 ≤ t ≤ 0,

2φp(u(0)) − φp

(
uΔ
(
1
4

))
= 0, φp(u(1)) + δφp

(
uΔ
(
1
2

))
= 0,

(6.10)

where

β = γ = 1, α = 2, p = 4, δ ≥ 0, p = 4, ξ =
1
4
, η =

1
3
,

θ =
1
4
, τ = T = 1.

(6.11)

So, by Lemma 2.4, we discuss the following SBVP:

(
φp

(
uΔ))∇(t) +

1
64π4

t−1/2(1 − t)
[
[u(t − 1) + h(t − 1)] + u2(t) + u4(t)

]
= 0, 0 < t < 1,

u(t) = 0, −1 ≤ t ≤ 0,

2φp(u(0)) − φp

(
uΔ
(
1
4

))
= 0, φp(u(1)) + δφp

(
uΔ
(
1
2

))
= 0,

(6.12)

where

h(t) =

⎧
⎨

⎩

ζ(t), −1 ≤ t ≤ 0,

0, 0 ≤ t ≤ 1,
ζ(t) = −tet,

g(t) =
1

64π4
t−1/2(1 − t), f(u1, u2) = u1 + u2

2 + u4
2.

(6.13)

Then obviously,

q =
4
3
,

∫1

0
g(t)∇t =

1
64π3

, H = max
−1≤t≤0

|ζ(t)| = e, f∞ = +∞, f0 = +∞, (6.14)

so conditions (H1), (H2), (H3), (A7), (A8) hold.
Next,

φq

(∫1

0
a(t)∇t

)

=
1
4π

, θ∗ =
4π

1 + 3
√
4
, (6.15)
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we choose R = 3, M = 2, and for θ = 1/4, because of the monotone increasing of f(u1, u2, u3)
on [0,∞)3, then

f(u1, u2) ≤ f(e, 3) = e + 90, 0 ≤ u2 ≤ 3, 0 ≤ u1 ≤ e. (6.16)

Therefore, by

M ∈ (0, θ∗), (MR)p−1 = (6)3 = 216, (6.17)

we know that

f(u1, u2, u3) ≤ (MR)p−1, 0 ≤ u2 ≤ 3, 0 ≤ u1 ≤ e, (6.18)

so condition (A2) holds. Then by Theorem 4.1, SBVP (6.12) has at least two positive solutions
v1, v2 and 0 < ‖v1‖ < 3 < ‖v2‖. Then, by Lemma 2.4, v1(t) = v1(t)+h(t), v2(t) = v2(t)+h(t), t ∈
(−1, 1) are the positive solutions of the SBVP (6.10).
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