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The interacting impact between the crude oil prices and the stock market indices in China is
investigated in the present paper, and the corresponding statistical behaviors are also analyzed.
The database is based on the crude oil prices of Daqing and Shengli in the 7-year period from
January 2003 to December 2009 and also on the indices of SHCI, SZCI, SZPI, and SINOPEC with
the same time period. A jump stochastic time effective neural network model is introduced and
applied to forecast the fluctuations of the time series for the crude oil prices and the stock indices,
and we study the corresponding statistical properties by comparison. The experiment analysis
shows that when the price fluctuation is small, the predictive values are close to the actual values,
and when the price fluctuation is large, the predictive values deviate from the actual values to some
degree. Moreover, the correlation properties are studied by the detrended fluctuation analysis, and
the results illustrate that there are positive correlations both in the absolute returns of actual data
and predictive data.

1. Introduction

The objective of this work is to investigate the relationships between the crude oil market and
the stock market and examine whether the shocks in crude oil price transmitted to Chinese
stock market will receive considerable attention from investors. In the past decade, the crude
oil demand of China is growing rapidly, and China has already become the second-largest
oil importer in the world, after the United States. Fourteen years ago, China from an oil-
exporting country became a net oil-importing country. From then on, the movement of crude
oil prices had a strong influence on the economic behavior of individuals and firms, and as a
result, it affects the economic development directly. In another aspect, since July 2009, China
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has taken the place of Japan to be the world’s second-largest stock market, and the stock
market has played an important part in its economy. China has two stock markets: Shanghai
Stock Exchange and Shenzhen Stock Exchange. The indices studied in the present paper are
Shanghai Composite Index (SHCI) and Shenzhen Compositional Index (SZCI). These two
most influential indices play an important role in Chinese stock markets. We also consider
Shenzhen Petrochemical Index (SZPI) and the stock price of China’s largest oil company:
China Petroleum & Chemical Corporation (SINOPEC). Daqing oil field and Shengli oil field
are the first and the second largest oil fields in China respectively, the crude oil prices of
Daqing and Shengli have a strong impact on Chinese energy market. The data for these crude
oil prices and indices in the 7-year period is selected and analyzed by the statistical method
and the neural network method.

Recently, some progress has been made in the study of fluctuations for the financial
market and the energy market in China, for example see [1–7]. Artificial neural networks
(ANNs) are one of the technologies that have made great progress in studying the stock
markets [3, 8–11]. ANN have good self-learning ability, a strong antijamming capability, and
they have been widely used in financial fields such as stock prices, profits, exchange rate,
and risk analysis and prediction. Although the historical data has a great influence on the
investors’ positions, we think that the impacts of different historical data on the stock price
are not same. In the present paper, we suppose that the degree of impact of a data depends
on its occurring date (or time), we give a high level effect of a data when it is very near to
the current state. Furthermore, we also introduce the Brownian motion and Poisson jump in
the model [3, 6, 11–15], in order to make the model have the effect of random movement
and random jump while maintaining the original trend. In a financial market, jumps in
financial assets play a crucial role in volatility forecasting. And jumps have a positive and
mostly significant impact on future volatility. In this work, the artificial neural network model
based on jump stochastic time effective function is applied to forecast the fluctuations of
SHCI, SZCI, SZPI, Daqing, Shengli, and SINOPEC. We study the statistical behaviors and
the linear regression for these indices, and the simulation plots and the comparisons of
the observed data are given. We introduce mean absolute error (MAE), mean relative error
(MRE), Theil’s inequality coefficient (Theil’s IC), bias proportion (BP), variance proportion
(VP) and covariance proportion (CP) to evaluate the predictive results. Detrended fluctuation
analysis (DFA) is developed to study both the stock markets and the crude oil markets [16–
19]. DFA is one of the statistical analysis methods, which is applied to study the extent of
long-range correlations in time series, it gives a statistical approach that reduces the effects of
nonstationary market trends and focuses on the intrinsic autocorrelation structure of market
fluctuations over different time horizons. DFA provides a simple quantitative parameter, the
scaling exponent α, to represent the correlation properties of time series. In the last part of
Section 3, the empirical analysis shows the positive correlations in the absolute returns of the
actual data and the predictive data by calculating the scaling exponent α.

In this paper, we introduce a new method: the jump stochastic time effective function
in the neural network, to investigate the relationships between the crude oil market and
the stock market. And the intelligent system, artificial neural networks with random theory
are integrated in this work. The method is different from the methods used in previous
papers [13, 14, 20], which also investigate the relationships between the crude oil market
and the stock market. This paper also extends the method mentioned in [3] by introducing
the random jump process, which can make the model have the effect of random jump while
maintaining the original trend. And we do the different statistical analysis with the work in
[3]. In the present paper, we improve the forecasting method in the neural network, each
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historical datum is given a weight (random with jump) depending on the time it occurs in
the model, and we also use the probability density functions to classify the various variables
from the training samples. The empirical research exhibits that the improved neural network
model takes advantage over the traditional neural network models to some degree.

2. A Brief Description of Oil Market and Stock Market in China

Chinese oil market is attracting more and more attentions from all over the world. China has
been the world’s second-largest oil consumer since 2003, and its oil demand reached 9% of the
world’s total demand in 2006. Figure 1 shows the monthly output and the monthly growth
rate of the crude oil production in China from January 2003 to December 2009. The plot
indicates that the crude oil output has almost reached the high limit, whereas the oil demand
will grow by 4.5% in the coming three years. This displays that the stronger relationships
between the international oil market and Chinese oil market become obvious.

In fact, China has become a net importer of crude oil since 1996; and the import
dependence has exceeded 51% in 2008. Figures 2(a) and 2(b) present China’s crude oil import
and consumption monthly in the recent 7 years. The plots exhibit that the trends of the
curves in Figures 2(a) and 2(b) are similar, which implies that the oil demand relies heavily
on the international oil market. At the same time, the total values of China stock markets
A shares reached 3.21 trillion US dollars on July 15; 2009, ranking as the world’s second-
largest stock market. The listed oil companies usually are the large cap companies, so the
market capitalization value of these companies is not only a main part of the stock market
value but also an important component of the stock market indices. Although some research
work has been done in studying the relationship between the crude oil market and the stock
market [4, 13, 14, 20–22], there has been relatively little empirical work done to analyze the
relationships in China. In this paper, we select the data of SHCI, SZCI, SZPI, Daqing (Daqing
crude oil price), Shengli (Shengli crude oil price), and the price of SINOPEC for each trading
day in 7-year period from January 2, 2003 to December 31, 2009. And the corresponding
statistical behaviors and comparisons of prices changes are studied in the following.

3. Forecasting and Statistical Analysis

In the real crude oil market, understanding the process by which oil prices evolve is
fundamental to our knowledge of this market. Many empirical evidences, like the asymmetric
and leptokurtic feature of return distributions and volatilities, strongly suggested an
inappropriateness for the usage of Brownian motions in the Black-Scholes model. More
precisely, it is often observed that the return distribution is skewed to zero and has a
higher peak and fatter tails than those of the corresponding normal distribution. To explain
those empirical phenomena, many researches propose innovative models such as normal
jump diffusion models (see [12–15]), and continuous-time stochastic volatility models are
becoming an increasingly popular way to describe moderate-and high-frequency financial
data. These models introduce discontinuities, or jumps, into the volatility process, this can
improve the empirical performance of these models. The distribution behavior of jumps for
oil prices often represent an important piece of the temporal crude oil price dynamics. We
establish the presence of jumps in the data of the financial model, where the jumps that
disrupt the entire term structure represent the most significant jump events. For example,
in the present paper, these jump events may include the changing of international energy
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Figure 1: The output and the growth rate of crude oil in China.
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(a) China’s crude oil import
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(b) China’s crude oil consumption

Figure 2

markets, the amount of oil production in China, the crude oil reserve in China, Chinese
oil consumption, Chinese energy policy, the wars, and the political events in the world,
so on. These random events may be responsible for generating jumps in crude oil price
dynamics. Since the fluctuation behaviors of the crude oil prices are also nonlinear, unstable,
and random, we introduce the stochastic time effective function in the neural network. The
function is supposed to follow a Brownian motion plus a compound Poisson process with a
random jump distribution, in order to describe the above-mentioned empirical phenomena.
We assume that the historical data of the crude oil market can reflect these random events, and
affect the price volatility of the current oil market. For the model, the proposed stochastic time
effective function may reflect the large fluctuations of the oil prices. Further, the function is a
time-dependent random variable and also shows that the recent information has a stronger
effect than the old information for the investors.

3.1. Jump Stochastic Time Effective Neural Network Model for Forecasting

There are various methods to forecast the volatilities of the time series, for example, the
autoregressive conditional heteroscedasticity model has been applied by many financial
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Figure 3: The plot of three-layer neural network.

analysts [23]. These financial time series models are based on the financial theories and
require some strict assumptions on the distributions of the time series, so sometimes it
is hard to reflect the market variables directly in the models. Usually stock prices can
be seen as a random time sequence with noise, artificial neural networks, as large-scale
parallel processing nonlinear systems that depend on their own intrinsic link data, providing
methods and techniques that can approximate any nonlinear continuous function, without
a priori assumptions about the nature of the generating process. The ANN model is a
nonparametric method and can forecast future results by learning the pattern of market
variables without any strict theoretical assumption [11]. Brooks demonstrated that it is
applicable to forecast the volatilities of the financial time series by ANN [24].

First we introduce the three-layer BP neural network model in Figure 3, (for the details
see [8–10]), and for any fixed neuron n (n = 1, 2, . . . ,N), the model has the following
structure: let {xi(n) : i = 1, 2, . . . , p} denote the set of input of neurons, {yj(n) : j = 1, 2, . . . , m}
denote the set of output of hidden layer neurons, Vi is weight that connects the node in i the
input layer neurons to the node j in the hidden layer, Wj is weight that connects the node
j in the hidden layer neurons to the node k in the output layer, and {ok(n) : k = 1, 2, . . . , q}
denote the set of output of neurons. Then the output value for a unit is given by the following
function

yj(n) = f

(
p∑
i=1

Vixi(n) − θj

)
, ok(n) = f

(
p∑
i=1

Wjyj(n) − θk

)
, (3.1)

where θj , θk are the neural thresholds, and f(x) = 1/(1 + e−α) is Sigmoid activation function.
Let Tk(n) be the actual value of data sets, then the error of the corresponding neuron k to the
output is defined as εk = Tk − ok.

Obviously, the real data follow normal distribution ingeneral. However, the tail of the
real distribution is fatter than the normal, which is called fat-tail phenomena. It is caused by
drastic fluctuation of stock price. Moreover, we can find that the log return of stock price will
fluctuate rapidly at intervals. In view of the above reality problem, the error of the output is
defined as ε = ε2

k/2, then the error of the sample n (n = 1, 2, . . . ,N) is defined as

e(n, t) =
1
2
φ(t)

q∑
k=1

(Tk(n) − ok(n))2, (3.2)
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where φ(t) is the jump stochastic time effective function. Now we defined φ(t) as follows

φ(t1 − tn) =
1
τ

exp

{
−
∫ t1

tn

μ(t)dt −
∫ t1

tn

σ(t)dB(t) +
N(t1−tn)∑

l=1

Jl

}
, (3.3)

where τ(> 0) is the time strength coefficient, t1 is the current time or the time of newest data
in data set, and tn is an arbitrary time point in data set. Jl (l = 1, 2, . . . ,N(t)) are independent
and identically distributed jump processes and Jl obey the normal distribution with mean μJ

and variance σJ . N(t)(t ≥ 0) is a Poisson process with intensity λ. μ(t) is the drift function
(or the trend term), σ(t) is the volatility function, and B(t) is the standard Brownian motion
[5]. The stochastic time effective function implies that the recent information has a stronger
effect for the investors than the old information. In detail, the nearer the events happened,
the greater the investors and market are affected. Then the total error of all data training set
in the set output layer with the jump stochastic time effective function is defined as

E =
1
N

N∑
n=1

e(n, t)

=
1
N

N∑
n=1

1
τ
e−

∫ t1
tn
μ(t)dt−∫ t1tn σ(t)dB(t)+

∑N(t1−tn)
l=1 Jl

q∑
k=1

1
2
(Tk(n) − ok(n))2.

(3.4)

Data is divided into two sections: the data from 2003 to 2007 is used for training and
the rest is used for testing. For the stock indices, we input five kinds of stock prices: daily
open price, daily closed price, daily highest price, daily lowest price, and daily trade volume,
and one price of stock prices in the output layer: the closed price of the next trade day. And
for the crude oil prices, we input five kinds of prices: the crude oil price of Brent, WTI, Dubai,
Daqing, and Shengli, and the crude oil price of Daqing (or Shengli) of the next trade day is in
the output layer. The number of neural nodes in input layer is 5, the number of neural nodes
in the hidden layer is 13, and the number of neural nodes in output layer is 1. In this section,
we take μJ and σJ to be the mean and the variance of reality historical data of SHCI, and let
the intensity λ be 1/30. That is to say, jump will happen 10 times a year in average. Moreover,
we suppose that the values of vector (μ(t), σ(t)) are (1, 1). The training algorithms procedures
of the neural network is described as follows.

Step 1. Normalize the data as follows: S(t)′ = (S(t) − minS(t))/(max S(t) − minS(t)).

Step 2. At the beginning of data processing, connective weights Vi and Wj follow the uniform
distribution on (−1, 1), and let the neural threshold θk, θj be 0.

Step 3. Introducing the jump stochastic time effective function φ(t) in the error function
e(n, t). Choosing different volatility parameter. Giving the transfer function from input layer
to hidden layer and the transfer function from hidden layer to output layer.

Step 4. Establishing an error-acceptable model and setting preset minimum error. If output
error is below preset minimum error, go to Step 6, otherwise go to Step 5.
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Table 1: Linear regression parameters.

Parameter SHCI SZCI SZPI Daqing Shengli SINOPEC
a 0.9940 0.9715 0.9107 0.9217 0.8776 0.9934
b 8.5849 510.7603 91.7800 4.9774 5.6977 0.1957
r 0.9806 0.9824 0.9749 0.9942 0.9941 0.9792

Step 5. Modify connective weights by calculating backward for the node in output layer:

δo(n) =
1
τ

e−
∫ t1
tn
μ(t)dt−∫ t1

tn
σ(t)dB(t)+

∑N(t1−tn)
l=1 Jlo(n)[o(n) − T(n)][1 − o(n)]. (3.5)

Calculate δ backward for the node in hidden layer:

δh(n) =
1
τ

e−
∫ t1
tn
μ(t)dt−∫ t1tn σ(t)dB(t)+

∑N(t1−tn)
l=1 Jlo(n)[1 − o(n)]

∑
h′
Wjδh′(n), (3.6)

where o(n) is the output of the neuron n, T(n) is the actual value of the neuron n in data
sets, o(n)[1 − o(n)] is the derivative of the sigmoid activation function and h′ is each of the
node which connect with the node h and in the next hidden layer after node h. Modifying the
weights from this layer to the previous layer:

Wj(n + 1) = Wj(n) + ηδo(n)y(n) or Vj(n + 1) = Vj(n) + ηδk(n)x(n), (3.7)

where η is learning step, which usually take constants between 0 and 1.

Step 6. Output the predictive value.
Next, according to the computer simulations of the given neural network model, we do

the comparisons between the predictive data of the model and the actual data of SHCI, SZCI,
SZPI, Daqing, Shengli, and SINOPEC. And these comparison results are plotted in Figure 4.

In Figure 5, by using the linear regression method, we compare the predictive data of
the neural network model with the actual data of SHCI, SZCI, SZPI, Daqing, Shengli, and
SINOPEC. It is known that the linear regression attempts to model the relationship between
two variables by fitting a linear equation to observed data. And it is usually used to fit a
predictive model to an observed data set of two variables. Through the regression analysis,
there are different linear equations in SHCI, SZCI, SZPI, Daqing, Shengli, and SINOPEC
respectively, in Figure 5. We set the predictive data as x-axis and set the actual data as y-axis,
and the linear equation is y = ax + b. A valuable numerical measure of association between
two variables is the correlation coefficient r. Table 1 shows the values of a, b, and r for the
indices.

3.2. Experiment Analysis

In Section 3.1, the financial price model is modeled by the neural network system. In order
to evaluate the prediction of the model, we introduce some statistics in this section: mean
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Figure 4: Comparisons of the predictive data and the actual data.

absolute error (MAE), mean relative error (MRE), Theil inequality coefficient (Theil’s IC),
bias proportion (BP), variance proportion (VP) and covariance proportion (CP). We set xi,
yi, x, y, σx, σy, and r as the predictive value, the actual value, the mean of the predictive
value, the mean of the actual value, and the variance of the predictive value, the variance of
the actual value and the correlation, respectively. These statistics are defined as follows:



Journal of Applied Mathematics 9

0 2000 4000 6000
0

2000

4000

6000
A

ct
ua

l d
at

a 
of

 S
H

C
I

Predictive data of SHCI

(a)

0.5

0

1

1.5

2

0.50 1 1.5 2

×104

×104

A
ct

ua
l d

at
a 

of
 S

Z
C

I

Predictive data of SZCI

(b)

500 1000 1500
500

1000

1500

A
ct

ua
l d

at
a 

of
 S

Z
PI

Predictive data of SZPI

(c)

0 50 100 150
0

50

100

150

A
ct

ua
l d

at
a 

of
 D

aq
in

g

Predictive data of Daqing

(d)

0 50 100 150
0

50

100

150

A
ct

ua
l d

at
a 

of
 S

he
ng

li

Predictive data of Shengli

(e)

0 5 10 15 20 25
0

5

10

15

20

25

A
ct

ua
l d

at
a 

of
 S

IN
O

PE
C

Predictive data of SINOPEC

(f)

Figure 5: Regressions of the predictive data and the real data.

MAE =
1
n

n∑
i=1

∣∣xi − yi

∣∣, MRE =
1
n

n∑
i=1

∣∣∣∣xi − yi

yi

∣∣∣∣,

Theil’s IC =

√
(1/n)

∑n
i=1

(
xi − yi

)2

√
(1/n)

∑n
i=1 x

2
i +

√
(1/n)

∑n
i=1 y

2
i

,

(3.8)

where the value of Theil IC is in [0, 1], and the smaller value means the better prediction of
the model.
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Figure 6: Comparisons of the fluctuation and the prediction of Daqing.

BP =

(
x − y

)2

∑n
i=1

(
xi − yi

)2
/n

, VP =

(
σx − σy

)2

∑n
i=1

(
xi − yi

)2
/n

,

CP =
2(1 − r)σxσy∑n
i=1

(
xi − yi

)2
/n

= 1 − BP − VP,

(3.9)

where BP denotes the normalized difference between the mean of the predictive value and
the mean of the actual value, and VP denotes the normalized difference between the variance
of the predictive value and the variance of the actual value. Their values range from 0 to
1. The prediction of the model is effective when the value of CP is close to 1. Form the
computer computation, Table 2 presents the values of the above statistics. Table 2 also gives
a description of the deviating degrees between the predictive data and the actual data.

In the next part, we will discuss the relationship between the crude oil price fluctuation
of Daqing and the predictive values of the model. It is apparent in Figure 6(a) when the
fluctuation is small, the predictive values are close to the actual values. In another aspect,
when the fluctuation is large, the predictive values deviate from the actual values in some
extent. We also can see in Figures 6(b) and 6(c) that the small fluctuation leads to the small
relative errors and the small errorbars and the large fluctuation leads to the big relative errors
and the big errorbars. So there is a relationship between the fluctuation and the prediction. To
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Figure 8: Detrended fluctuation analysis for the absolute returns of the actual data and the predictive data.
(a) The plot of the absolute returns for the actual data from January 2003 to December 2009. (b) The plot
of the absolute returns of the predictive data from January 2008 to December 2009.

Table 2: Evaluation of the prediction.

SHCI SZCI SZPI Daqing Shengli SINOPEC
MAE 116.5679 433.4098 37.8812 2.8028 3.6815 0.4957
MRE 0.0431 0.0448 0.0343 0.0349 0.0466 0.0448
Theil’s IC 0.0269 0.0260 0.0236 0.0348 0.0367 0.0273
BP 1.1760e−8 5.6445e−7 1.8592e−8 4.4732e−7 1.5301e−6 1.5276e−7
VP 0.0496 0.4514 0.15795 0.0047 0.0045 7.8972e−7
CP 0.9504 0.5486 0.84205 0.9942 0.9955 1.0000
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Table 3: The relationship between the fluctuation and the prediction by the absolute return intervals.

|R(t)| intervals MAE MRE
[0, 0.01) 0.0312 17.3123
[0.01, 0.02) 0.0363 16.4007
[0.02, 0.03) 0.0401 16.3452
[0.03, 0.04) 0.0387 14.8879
[0.04,M] 0.0376 26.2455
[0,M] 0.0382 18.2984

Table 4: Returns statistics of the real data.

SHCI SZCI SZPI Daqing Shengli SINOPEC
Mean 7.6353e−4 1.2217e−3 8.7236e−4 6.8830e−4 8.4244e−4 1.5475e−3
Variance 3.3633e−4 3.9532e−4 3.6080e−4 6.3243e−4 7.9565e−4 7.4543e−4
Skewness −0.0779 −0.1274 −0.3832 −0.1276 −0.0643 0.3245
Kurtosis 3.1675 2.4920 2.2832 3.1553 1.8875 2.4495
Minimum −0.0884 −0.0932 −0.0844 −0.1352 −0.1263 −0.1030
Maximum 0.0954 0.0963 0.0843 0.1323 0.1146 0.1015

investigate this relationship, we choose the predictive values and the actual values of Daqing
as the research object. First, we measure the fluctuation in absolute returns, which is denoted
by |R(t)|. Then we divide the data into five groups by the absolute return intervals. The
intervals are [0, 0.01), [0.01, 0.02), [0.02, 0.03), [0.03, 0.04), and [0.04,M], where M denotes the
maximum of absolute returns. Table 3 shows the relationship between the actual fluctuation
and the prediction by the absolute return intervals.

3.3. Return Analysis

In this section, we discuss the statistical properties of SHCI, SHZI, SZPI, Daqing, Shengli,
and SINOPEC in the 7-year period from January 2003 to December 2009. Figure 7 presents
the figures of the returns time sequence for these indices. We denote the daily price at time t
by S(t) (t = 0, 1, 2 . . .), then the return of the stock price (or index) is given by

R(t) =
S(t + 1) − S(t)

S(t)
=

S(t + 1)
S(t)

− 1. (3.10)

Table 4 presents the statistical analysis of the returns for the actual data. Note that the daily
price fluctuation is limited in China, that is, the changing limits of the daily returns for stock
prices and stock indices are between 10% and −10%, whereas the returns of the crude oil price
can change in a larger value range. Table 5 presents the statistical analysis of the returns for
the predictive data. In these two tables, they show the values of mean, variance, kurtosis and
skewness of the returns, and we also can compare these values between the actual data and
the predictive data.
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Table 5: Returns statistics of the predictive data.

SHCI SZCI SZPI Daqing Shengli SINOPEC
Mean −9.9940e−4 −4.3613e−5 2.2083e−4 −7.4974e−5 −2.0295e−4 −4.9588e−4
Variance 8.3044e−4 1.1969e−3 9.5615e−4 1.0991e−3 1.1038e−3 1.2144e−3
Skewness 0.6257 0.0838 1.0189 0.2120 0.1417 0.5700
Kurtosis 2.6270 2.3022 1.9964 3.1030 2.0811 1.7350
Minimum −0.08211 −0.1327 −0.2057 −0.1227 −0.1101 −0.1073
Maximum 0.1525 0.1340 0.2815 0.1589 0.1250 0.1597

Table 6: Scaling exponent of the absolute returns.

Scaling exponent SHCI SZCI SZPI Daqing Shengli SINOPEC
αA 3.5852 3.6523 3.7007 3.8456 3.9760 3.6342
αP 5.6438 5.7443 5.6002 5.9843 5.7712 5.8732

3.4. Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a scaling analysis method providing the scaling
exponent α to represent the correlation properties [7, 16–18]. There are two advantages
in DFA method. One is that it permits the detection of long-range correlations embedded
in seemingly nonstationary time series. The other is that it avoids the spurious detection
of apparent long-range correlations that are artifact of nonstationarity. Briefly, for a given
stochastic time series S(i), i = 1, 2, . . . ,N, with the sampling period Δt, the DFA method can
be implemented as follows.

Step 1. Compute the mean S = (1/N)
∑N

i=1 S(i) and obtain an integrated time series y(j) =
(1/N)

∑j

i=1(S(i) − S). Then divide the integrated time series into boxes of equal size, n.

Step 2. In each box, fit the integrated time series by using a polynomial function, yfit(i). For
order-l DFA, l order polynomial function should be applied for the fitting and in this paper,
l = 2. Then calculate the detrended fluctuation function as follows:

Y (i) = y(i) − yfit(i). (3.11)

Step 3. For a given box size n, calculate the root mean square fluctuation:

F(n) =

(
1
N

N∑
i=1

[Y (i)]2

)1/2

. (3.12)

A power-law relation between F(n) and the box size n indicates the presence of scaling:
F(n) ∼ nα. The parameter α, called the scaling exponent or correlation exponent, represents
the correlation properties of the time series: if α = 0.5, there is no correlation and the time
series is uncorrelated; if α < 0.5, the signal is anticorrelated; if α > 0.5, there are positive
correlations in the time series.

In this paper, we use DFA to analyze the absolute returns of the actual data and the
predictive data, see Figure 8. αA and αP denote the scaling exponents of the absolute returns
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for the actual data and the predictive data respectively. Table 6 shows that αA and αP are all
larger than 0.5, which means that there are positive correlations in the absolute returns of the
actual data and the predictive data.

4. Conclusion

In this paper, we introduce the jump stochastic time effective neural network model
to forecast the fluctuations of SHCI, SZCI, SZPI, Daqing, Shengli, and SINOPEC. The
corresponding statistical behaviors of these indices are investigated; and several kinds of
comparisons between the actual data and the predictive data are given. Further, the absolute
returns of the actual data and the predictive data are studied by the statistical method and
the detrended fluctuation analysis.
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