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We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary
differential equations (D — ptDF)x(t) = f(t, x(t),D'x(t)), t € (0,1) with boundary conditions
x(0) = xp, x(1) = x1 or satisfying the initial conditions x(0) = 0, x’(0) = 1, where ©* denotes
Caputo fractional derivative, p is constant, 1 < a < 2,and 0 < f+ y < a. Schauder’s fixed-point
theorem was used to establish the existence of the solution. Banach contraction principle was used
to show the uniqueness of the solution under certain conditions on f.

1. Introduction

Fractional calculus deals with generalization of differentiation and integration to the
fractional order [1, 2]. In the last few decades the fractional calculus and fractional differential
equations have found applications in various disciplines [2-6]. Owing to the increasing
applications, a considerable attention has been given to exact and numerical solutions of
fractional differential equations [2, 6-11]. Many papers were dedicated to the existence and
the uniqueness of the fractional differential equations, to the analytic methods for solving
fractional differential equations, e.g., Greens function method, the Mellin transform method,
and the power series (see for example references [2, 6-26] and the references therein). On
this line of taught in this manuscript we proved the existence and uniqueness of a specific
nonlinear fractional order ordinary differential equations within Caputo derivatives. Very
recently in [27-31], the authors and other researchers studied the existence and uniqueness
of solutions of some classes of fractional differential equations with delay. The paper is
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organized as follows: In Section 2 we introduce some necessary definitions and mathematical
preliminaries of fractional calculus. In Section 3 sufficient conditions are established for
the existence and uniqueness of solutions for a class fractional order differential equations
satisfying the boundary conditions or satisfying the initial conditions. In order to illustrate
our results several examples are presented in Section 3.

2. Fractional Integral and Derivatives

In this section, we present some notations, definitions, and preliminary facts that will be
used further in this work. The Caputo fractional derivative allows the utilization of initial
and boundary conditions involving integer order derivatives, which have clear physical
interpretations. Therefore, in this work we will use the Caputo fractional derivative 9
proposed by Caputo in his work on the theory of viscoelasticity [32].

Leta e R,n-1<a <neNandx € C((0,0),R); then the Caputo fractional derivative
of order a defined by

Dx(t) = O"° <%> (2.1)
where
a _ 1 ' a-1
D%x(t) = m Jo (t—s)""x(s)ds, (2.2)

is the Riemann-Liouville fractional integral operator of order & and I' is the gamma function.
The fractional integral of x(t) = (t - a)ﬂ ,a>0,p>-1isgiven as

a _ F(ﬂ + 1) pra
) .X'(t) = m(t - [1) . (23)

For a, p > 0, we have the following properties of fractional integrals and derivative [33].
The fractional order integral satisfies the semigroup property

0" (oﬂx(t)> = 0P(D7x (1)) = D"*Px(t). (2.4)
The integer order derivative operator ™ commutes with fractional order @7, that is:
D(Dx(t)) = D" x(t) = DY(D"x(t)). (2.5)

The fractional operator and fractional derivative operator do not commute in general. Then
the following result can be found in [33, 34].
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Lemma 2.1 (see [33, 34]). For a > 0, the general solution of the fractional differential equation
D*x(t) = 0 is given by

r—1
x(t)=Dat, c€R,i=012,...,r-1,r=[a]+1, (2.6)
i=0

where [a] denotes the integer part of the real number a.
In view of Lemma 2.1 it follows that

DD x(t)) = x(t) + co+ it + ot + -+ + ¢ gt ! for some ¢c;eR, i=0,1,...,r—1.
(2.7)

But in the opposite way we have
@ (oﬂ(t)) = 2P (t). (2.8)

Proposition 2.2. Assume that x : [0,00) — R is continuous and 0 < p < a. Then

(i) D%(tx(t)) = tD%x(t) — aD* 1 x(t),
(ii) 0% {(tDPx(8)} = 0% Px(t) — aD* P ix(b).

The proof of the above proposition can be found in [9, page 53].
As a pursuit of this in this paper, we discuss the existence and uniqueness of solution
for nonlinear fractional order differential equations

(spa - pt%ﬁ>x(t) = f(t,x(t),DTx(t)), te(0,1), (2.9)
satisfying the boundary conditions
x(0) = xo, x(1) = x1, (2.10)
or satisfying the initial conditions
x(0) = xo, x'(0) =1, (2.11)

wherel <a<2and0<pf+y<a.
In the following, we present the existence and the uniqueness results for fractional
differential equation (2.9) with boundary conditions (2.10).
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3. Existence and Uniqueness of Solutions

Lemma 3.1. Assume that f : [0,1] x R — R is continuous. Then x € C[0,1] is a solution of the
boundary value problem (2.9) and (2.10) if and only if x(t) is the solution of the integral equation

x(t) = —co — c1t + ptI*Px(t) — pal® P x(t) + T°f (t, x(t), DV x (1))

1 3.1)
=xp + (x1 —x0)t + f G(t,s)ds,
0
for some constants co, c; where G(t, s) given by
Gl(t,S) 0S5<t/
G(t,s) = { (3.2)
Ga(t,s), t<s<l1,
where
 fat@-s)*P  t(1-s)* P #(t-s)* P a(t-s)*P
nlt:e) "’{r<a—ﬁ+1> TT@-p  T@-p Tapen [
_ o\a-l 1— a-1
: { - }f(ax(s),%rx(s)),
(3.3)

_ o\ap a-p-1
Gz(t,s)=pt{ all-s) ~ _(1-5) } (s)

T(a-p+1) T(a-p)
_t1-9)*!

Y
(o), 2Ix(6)).

Proof. Assume that x € C[0,1] is a solution of the fractional differential equation (2.9)
satisfying boundary conditions (2.10). Then in view of Lemma 2.1 and Proposition 2.2, we
have

x(t) = ptI®Px(t) — pal®FPx(t) + T°f (£, x(t), DV x(t)) — co — c1t
(- s P a(t-s)*F
"f{ fa-p)  Ta-priy) 0% (34)

(t _ S)“ 1
f T f(s,x(s),Dx(s))ds — co — cit,
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for some constants ¢y and c¢;. Hence using the boundary conditions (2.10) we obtain ¢y = —xo
and

~ 1= a@1-s)*F
cl—xo—x1+pjo{ T(zx—ﬁ) _F(a—ﬂ+1) x(s)ds

1 B (3.5)
+ JO % F(s,x(s), 2 x(s))ds.
Substituting cy = —xo and ¢; into (3.4) we get

x(f) = xo + (x1 — x)t - pt f:{ (1&:)_“;)1 - r"‘(g__;):f) }x(s)ds (3.6)
B tJ‘: a - (Z))u_l (s, %(s), D' x(s))ds 3.7)
ﬂ{ t(; (—asz“[‘:;‘l ~ rvzfxt:;)+f ) }x(s)ds (3.8)

oo [ LT s xts), @7x(0)s,

= X+ (x1 - x0)t
I

+ ﬂ{ (t ;(Sa);‘_l ~ t(lr—(iga_l }f(s,x(s),SNx(s))ds (3.9)

AN _ o\a -
+PJ‘:{at(1 s) t(1—-s) P!

T(a-p+1) T(a-p) }x(s)ds

_ ! t(1 - s)"‘_1
L I'(a) f(S,x(s),%Yx(S))ds

1
= xg + (x1 — x0)t +I G(t,s)ds.
0

We consider the space

B = {x(t) : x(t) € C[0,1], 2" x(t) € C[0,1]}, (3.10)
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furnished with the norm

= t DVx(t)]. 3.11
I(8)]| = max|x(t)] + max|®x(t) (311)

The space B is a Banach space [35]. O

Theorem 3.2. Let f : [0,1]xR? — R be continuous, and there exists a functionn : [0,1] — [0, o0],
such that f(t,x,y) < n(t) + alx| + bly|, a,b >0, 2a + 2b + a|p| < 26 where 6 = min{I'(a - -y +
2),I(a-p-y+1),I(a—-y+1),I(a+1)}. Then, the boundary value problem (2.9), (2.10) has a
solution.

Proof. Define an operator  : B — B by

1 (1 _ S)afl
Fx(t) =x0+ (x1 —x0)t =t | ———f(s,x(s),D"x(s))ds (3.12)
o TI(a)
Hoa@-s)P (@1-s)*F1
+pt,[0{l"(zx—ﬂ+l) - (= p) x(s)ds (3.13)
+ ptI®Px(t) — pal®Px(t) + I°f (t, x(t), DV x(t)) (3.14)
1
=x0 + (x1 — x0)t + J‘ G(t,s)ds. (3.15)
0

In order to show that the boundary value problem (2.9), (2.10) has a solution, it is sufficient
to prove that the operator ¥ has a fixed point. For s < t, from (3.2), we have

2a(1-8)*P 2(1-s)*F1
T(a—p+1)  T(a-p) }'x(s)'

2(1-s)""!
N { (@)

1G(t,5)] < Ipl{

}|f(s,x(s),%yx(s))|

<mu{a(l-s)F + (1= 9" Ix(s)]
+mi(1=5)""|f(5,x(s), D x(5))]

< f(@+ 1)(1=8) () + (1) fs,x(s), Dx(9))] }
<my(1- ) PH3|x(s)| + | f (s, x(s), D x(5))]}
<mi(1-5)" PG+ a)lx(s)| +7(s) + b2 x(s) |}

< mymy(1-5)" P,

(3.16)



Abstract and Applied Analysis

where

2Jp| 2lpl 2
IF(a-p+1) T(a-p) T(a) [’

my = max{ (3 + a)|x(s)|,7(s), b|Dx(s)|, 0 < s <1}

my = max{

On the other hand, for s > t, we arrive at same conclusion. Therefore,
1 1 R

J‘ |G(t,s)|ds < mlmZJ‘ 1- s)”‘_ﬁ_lds =——.
0 0 a-p

Choose R > max{R1,R,}, where Ry = max{mimy/2(a - f), (1/2)(2|xo| + |x1])} and

Rzzmax{5|x1—xo| 5|1l 5(17| 5|p|a 5)p| }

2r(1-y) 2r(a-y+1) 2l(a+1)" 2T (a - p+2) 2 (a—f+1)

Define the set Q = {x € B : ||x|| < 8R}. For x € Q, using (3.15) and (3.18), we obtain
! mimiy
|Fx(t)] < |xo| + |x1 — x0lt + f |G(t, s)|ds < 2|xo| + |x1]| + W <2R +2R =4R.
0 _

From the Caputo derivative and with using (3.12)-(3.14), we have

_ [ dFx(t)
o/ -1 { T
_1ri{ 1M ¥ }
1 T, tfo T(a) f(s,x(s),Drx(s))ds
L d Hoa@-s)P (1-s)*F1
H YE{”L{f(a—ﬂH)_ fa-p) )70

+ IH{ % [xo + (o1 = xo)t + ptI®Px(t) - P“Iaiﬂﬂx(t)] }

; IH{%I“f(t,xm,%(t))}

(3.17)

(3.18)

(3.19)

(3.20)
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1 a-1
e fo (1; (Z)) £(s,x(s), D'x(s))ds

1 a-p a-p-1
1- a(l~-s) (1-59)
e on{r(a—ﬂﬂ)_ F(a-p) }x(s)ds

+ IH{x1 — xp + p(1 = ) ¥ Px(t) + ptT* Pl x () + I £ (1, x(t), D x(F)) }

(3.21)
Then, (2.3) yields
D (Fx(t)) = _r(ij) f: (1;(i))u‘lf(slx(s),%Yx(s))ds
1- 1 _oya-p _ya—p-1
+F€1t—YY) o{ra(g—;ll) ) (1F(:)—ﬂ) }x(s)ds (3.22)
% +p(1 = a) [P lx(t)

+ ptIF P x(t) + I*7V f(t, x(t), D x(t)).

Hence,

t-r

DT (Fx ()] < Tla+ ){ﬂ(t) +alx(f)] + b|D"x(£)|}

+|pl A Hor
PN\Ta-p+2) "Ta-p+1)

x-x e -l

r(l-y) Iﬂ(ﬂc y+1)f (t-

% Jo (t—s)" P ds + " (t) + alx(t)| + b|D'x(1)|}
1y

t
< m{ﬂ(t)

—ﬂ-Y ds

+alx(t)| + b|Dx(t)]}

Hlpl] s e T

PNT—p+2) "T(a-p+1)

1 —xol | lp(1 - a)|||x|jg* P! . || llx[|t*~y . 7| + (a + b))l jay
F(l-y) T(a-p-y+2) T(a-p-y+1)  T(a-y+1) '

(3.23)
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Thus,
|21 — o] |7l 7l
BTN < FA Ty Fla—y 1) Ta+ D

1-
+R< lp(1-a)| lp| a+b a+b>

Ta—p-y+2) T(a—p-y+1) T(a-y+l) T+l

pa ||
"Tla-p+2) T(a-p+1)

_ 2a+2b
§2R+R<hﬂ%%jz+%§+2a22b>=2R+—£i—3iﬁkﬂkgzk+2k=4k

(3.24)

Therefore, ||fx(t)|| < 4R + 4R = 8R. Thus, F : Q — Q. Finally, it remains to show that ¥ is

completely continuous. For any x € Q, let £ = maxe[oq]|f (¢, x(t), DV x(t))[; then for 0 < t; <
t <1 and using (3.12)—(3.14), we have

[Fx(tz) — Fx(t)| < |x1 = xol|tz — t1| + €|ty — ¢ |J‘1 (1—s)a—1ds
2 R P )

Ha-s)P1t  a@d-s)*F
+IPIItz—t1IL{ Ta-p) T p+D) x(s)ds

Ll (-9 (h-s)"
J < ) ) >ds‘
rz<tz(tz -5)" P alt-9)™” > ds
o\ T(a-p) T(a-p+1)
(b= a(h -s)*F 4
T(a-p) T(a-p+1) )"

O)ty — t]
Ia+1)

1 o |ty =t + |t — 15|
ty—t - ¢
+ |p[llx|l[t2 1|<F(a—ﬂ+1) F(a—ﬂ+2)>+ I(a+1)

a—-p+1 a-p+1
£ -

+

+ [p|llx]l

< |x1 = xollta — 1] +

|t — b P +

17+ |ty — t2|*F
+[|x|||t — to| 2

[(a-p+2) [(a-p+1)

+ af|x]|

(3.25)
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Hence, it follows that ||Fx(t2) — Fx(t1)|| — 0, as t» — t;. By the Arzela-Ascoli theorem,
F : Q — Qis completely continuous. Thus by using the Schauder fixed-point theorem, it
was proved that the boundary value problem (2.9), (2.10) has a solution. O

Theorem 3.3. Let f : [0,1] x R2 — R be continuous. If there exists a constant p such that

lft,x,y)—f(t, X, y)| < u(|lx—X|+|y—y|) foreach t € [0,1] and all x,X,y, € Rand 4 M+3u <1,
where

(3.26)

B 2|p| lpl(1+ a) lp(1-a)l 4
'“‘““x{na—ﬁ+n’na—ﬂ+a'na—ﬂ—r+m’Na—ﬂ—r+n}'

Then the boundary value problem (2.9) with boundary conditions (2.10) has a unique solution.

Proof. Under condition on f, we have

|Fx(t) - FX(t)| <t

a-9 P a(-s)F
le){ T(a—p) T(a-p+1) [X(s) - x(s)]ds

1 ( _s)a 1
J;) [(a) [f(s,x(s) %Yx(s)) f(slx(s) %YX(S))]

t t(t—s)a—ﬁl a(t—s)“ﬂ 3
+‘p£’{ T(a-p) T(a-p+1) [x(s) - X(s)]ds

+t

a-1
+ J (t=9)"" [f(s,x(5), D x(s)) — f(s,X(s), D'X(s))]ds (3.27)
0

T

2p)|X — x||

Ibe=xll+ T

<‘ P ap
“|T(a-p+1) T(a—-p+2)
ptef 2ullxe = Ft°
‘F(a p+1) r(a-p+z)‘”x_x T TT@+1)

[l = X]|.

< |p|(1+t“‘ﬂ)+ lp|(1+a)t L2+t
“\I(a-p+1) TI(a- [5+2) T(a+1)

Using (3.22) we conclude

D (Fx) () - D (FX) ()] < |p(1 - a)
+ [TV (f(x(1), DV x(H) - f(£, X (H), DVE(H)))]

TP+ (xe(t) - g?(t))| + tipI“_ﬂ‘Y(x(t) - J7(15))|
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— s)“_ﬂ_yds

lp(1-a)]llx - %] (*
. F(a-p-y+1) I(t
pllx =% (g
+F(a—ﬁ—y)f0(t_s) "ds
2l - 7|
T(a-y)
- p|l — ajtrPr+l pt* Py 2utey
F(a—ﬂ—y+2)+r(a p-y+1) F(zx—y+1) I

f (t—s)*"ds

Thus, we have

IFx(0) - FEO < (44 22 ) < (e 3u) - 51, (3:29)

[(a+

Therefore, by the contraction mapping theorem, the boundary value problem (2.9), (2.10) has
a unique solution. O

Theorem 3.4. Let f : [0,1] — [0, 0], such that f(t,x,y) < n(t) + alx| + bly|, a,b > 0 with
a+b+alp <6 whered =min{l'(a-pf-y+1),I(a-p-y+2),T(a—p—y+3)}. Then the initial
value problem (2.9), (2.10) has a solution.

Proof. In view of Lemma 2.1 and Proposition 2.2, we have

x(t) = ptI®Px(t) — pal™Px(t) + I°f (t, x(t), D' x(t)) - co — it (3.30)
Then,
X' (t) = p(1 = a) I Px(t) + ptI* Pl (t) + IV F (£, x(£), DV x(t)) — o — cit. (3.31)
By initial conditions we have ¢y = —xp and ¢; = —1. Define an operator C: Q — Qby
Tx(t) = xo + t+ ptI“Px(t) — pal* P Ux(t) + T°f (¢, x(t), D x(t)). (3.32)

Can be easily to prove that T: Q — Q is completely continuous as operator ¥. O

Theorem 3.5. Let f : [0,1] x R? — R be continuous. If there exists a constant p such that
lf(t,x,y) - f(t, X, )| < u(|x—X|+|y—yl|) foreach t € [0,1] and all x,X,y,yj € Rand 3(M+pu) <1,
where

_ 14 |pla lp
'/ﬂ_max{l"(a—ﬂ+1)'F(a—ﬂ+2)'1"(a—ﬁ—y+1)}' (3:33)

then the initial value value problem (2.9), (2.11) has a unique solution.
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The proof of the Theorem 3.5 is similar to the proof of Theorem 3.3. Note that

dcx(t)

=1 p(1 =)0 Px(t) + ptO™Flx(t) + D% £ (t, x(t), D x(1)). (3.34)

Then using Proposition 2.2 we have,

@7 (Tx (1)
[ dTx()

-0 {0}

oy

= r oyt (@ p) —p (@) elt) + pt0 T (E) 4 O f (1, (8), B (1)

(3.35)

Example 3.6. Consider the following boundary value problem for nonlinear fractional order
differential equation:

1 1 1/3
3/2 _1qyl/2 _ t 1/2
(% D >x(t) <3e + 10x(t) + 109 x(t)> , te(0,1),

x(0) = xo, x(1) = x3.

(3.36)

Then, (3.36) with assumed boundary conditions has a solution in .

In Example 3.6 f(t, x(t), D'x(t)) = \3/33t +(1/10)x(t) + (1/10)DYV/2x(t) satisfies the
conditions required in Theorem 3.2, that is

F(bx(),22x(0) <e' + 31—0|x(t)| + 31—0|91/2x(t)| (3.37)

and 6 = min{I'(3/2),T'(2),I'(5/2)} =T(3/2) =+/w/2and 2a+2b + ap = 47/30 < 26 = /7.

Example 3.7. Consider the following boundary value problem for nonlinear fractional order
differential equation:

1 1
(272~ /812! )x(t) = 5px() + 3772'x(0), te (O1), (3.38)

x(0) = xo, x(1) = x3.

Then, (3.38) with assumed boundary conditions has unique solution in €.

In Example 3.7 f(t, x(t), D x(t)) = (1/21)x(t) + (1/21)D"/2x(t) satisfies the conditions
required in Theorem 3.3. L = max{1/3+/or,1/8y/or,1/12y/o,1/4\/r} = 1/3\/r and 4 M+3p =
4/3/r+1/7 < 1.
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4, Conclusion

We considered a class of nonlinear fractional order differential equations involving Caputo
fractional derivative with lower terminal at 0 in order to study the existence solution
satisfying the boundary conditions or satisfying the initial conditions. The unique solution
under Lipschitz condition is also derived. In order to illustrate our results several examples
are presented. The presented research work can be generalized to multiterm nonlinear
fractional order differential equations with polynomial coefficients.
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