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A kind of generalized convex set, called as local star-shaped E-invex set with respect to η, is
presented, and some of its important characterizations are derived. Based on this concept, a new
class of functions, named as semilocal E-preinvex functions, which is a generalization of semi-E-
preinvex functions and semilocal E-convex functions, is introduced. Simultaneously, some of its
basic properties are discussed. Furthermore, as its applications, some optimality conditions and
duality results are established for a nonlinear programming.

1. Introduction

It is well known that convexity and generalized convexity have been playing a key
role in many aspects of optimization, such as duality theorems, optimality conditions,
and convergence of optimization algorithms. Therefore, the research on characterizations
and generalizations of convexity is one of the most important aspects in mathematical
programming and optimization theory in [1, 2]. During the past several decades, many
significant generalizations of convexity have been proposed.

In 1977, Ewing [3] presented a generalized convexity known as semilocal convexity,
where the concept is applied to provide sufficient optimality conditions in variational and
control problems. Generalizations of semilocal convex functions and their properties have
been studied by Kaul and Kaur [4, 5] and Kaur [6]. In [7], optimality conditions and
duality results were established for nonlinear programming involving semilocal preinvex
and related functions. These results are extended in [8] for a multiple-objective programming
problems. In [9, 10], Lyall et al. investigated the optimality conditions and duality results
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for fractional single- (multiple-) objective programming involving semilocal preinvex and
related functions, respectively.

On the other hand, in 1999, Youness [11] introduced the concepts of E-convex sets,
E-convex functions, and E-convex programming, discussed some of their basic properties,
and obtained some optimality results on E-convex programming. In 2002, Chen [12] brought
forward a class of semi-E-convex functions and also discussed its basic properties. In 2007,
by combining the concept of semi-E-convexity and that of semilocal convexity, Hu et al. [13]
put forward the concept of generalized convexity called as semilocal E-convexity, studied
some of its characterizations, and obtained some optimality conditions and duality results
for semilocal E-convex programming. In [14], optimality and duality were further studied
for a fractional multiple-objective programming involving semilocal E-convexity. In 2009,
Fulga and Preda [15] extended the E-convexity to E-preinvexity and local E-preinvexity and
discussed some of their properties and an application. In 2011, Luo and Jian [16] introduced
semi-E-preinvex maps in Banach spaces and studied some of their properties.

Motivated by research work of [13–16] and references therein, in this paper, we
present the concept of semilocal E-preinvexity and discuss its some important properties.
Furthermore, as applications of semilocal E-preinvexity, we establish the optimality
conditions and duality results for a nonlinear programming. The concept of semilocal E-
preinvexity unifies the concepts of semilocal E-convexity and semi-E-preinvexity. Thus, we
extend the work of [10, 12, 13] and generalize the results obtained in the literatures on this
topic.

2. Preliminaries

Throughout the paper, let Rn denote the n-dimensional Euclidean space, and let E : Rn → Rn

and η : Rn × Rn → Rn be two fixed mappings. In this section, we review some related
definitions and some results which will be used in this paper.

Definition 2.1 (see [11]). A set K ⊂ Rn is said to be E-convex if there is a map E such that

λE(x) + (1 − λ)E(y) ∈ K, ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.1)

Definition 2.2 (see [11]). A function f : Rn → R is said to be E-convex on a setK ⊂ Rn if there
is a map E such that K is an E-convex set and

f
(
λE(x) + (1 − λ)E(y)) ≤ λf(E(x)) + (1 − λ)f(E(y)), ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.2)

Definition 2.3 (see [12]). A function f : Rn → R is said to be semi-E-convex on a set K ⊂ Rn

if there is a map E such that K is an E-convex set and

f
(
λE(x) + (1 − λ)E(y)) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.3)

Definition 2.4 (see [15]). A set K ⊂ Rn is said to be E-invex with respect to η if

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.4)
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Definition 2.5 (see [15]). LetK ⊂ Rn be anE-invex set with respect to η. A function f : Rn → R
is said to be E-preinvex on K with respect to η if

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(E(x)) + (1 − λ)f(E(y)), ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.5)

Definition 2.6 (see [16]). LetK ⊂ Rn be anE-invex set with respect to η. A function f : Rn → R
is said to be semi-E-preinvex on K with respect to η if

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ K, 0 ≤ λ ≤ 1. (2.6)

Definition 2.7 (see [17]). A setK ⊂ Rn is said to be local star-shaped invex with respect to η if
for any x, y ∈ K, there is a maximal positive number a(x, y) ≤ 1 satisfying

y + λη
(
x, y

) ∈ K, ∀λ ∈ [
0, a

(
x, y

)]
. (2.7)

Definition 2.8 (see [13]). A set K ⊂ Rn is said to be local star-shaped E-convex if there is
a map E such that corresponding to each pair of points x, y ∈ K, and there is a maximal
positive number a(x, y) ≤ 1 satisfying

λE(x) + (1 − λ)E(y) ∈ K, ∀λ ∈ [
0, a

(
x, y

)]
. (2.8)

Definition 2.9 (see [13]). A function f : Rn → R is said to be semilocal E-convex on a local
star-shaped E-convex setK ⊂ Rn if for each pair of x, y ∈ K(with a maximal positive number
a(x, y) ≤ 1 satisfying (2.8)), there exists a positive number b(x, y) ≤ a(x, y) satisfying

f
(
λ(E(x)) + (1 − λ)E(y)) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [

0, b
(
x, y

)]
. (2.9)

Definition 2.10 (see [18]). A vector function f : X0 → Rk is said to be a convex-like function
if for any x, y ∈ X0 ⊂ Rn and 0 ≤ λ ≤ 1, there is z ∈ X0 such that

f(z) ≤ λf(x) + (1 − λ)f(y), (2.10)

where the inequalities are taken component wise.

Lemma 2.11 (see [19]). Let S be a nonempty set in Rn, and let ψ : S → Rk be a convexlike function
then either ψ(x) < 0 has a solution x ∈ S or λTψ(x) ≥ 0 for all x ∈ S and some λ ∈ Rk, λ ≥ 0, and
λ/= 0, but both alternatives are never true.

3. Local Star-Shaped E-Invex Set

In this section, we introduce the local star-shaped E-invex set with respect to a givenmapping
η and discuss some of its basic characterizations.
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Definition 3.1. A set K ⊂ Rn is said to be local star-shaped E-invex with respect to a given
mapping η if there is a map E such that corresponding to each pair of points x, y ∈ K, and
there is a maximal positive number a(x, y) ≤ 1 satisfying

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, 0 ≤ λ ≤ a(x, y). (3.1)

Remark 3.2. Every E-convex set is a local star-shaped E-invex set with respect to η, where
η(x, y) = x − y, a(x, y) = 1, for all x, y ∈ Rn. Every local star-shaped E-convex set is a local
star-shapedE-invex set with respect to η, where η(x, y) = x−y, for all x, y ∈ Rn. EveryE-invex
set with respect to η is a local star-shaped E-invex set with respect to η, where a(x, y) = 1, for
all x, y ∈ Rn. But their converses are not necessarily true.

The following example shows that local star-shaped E-invex set is more general than
E-convex set, E-invex set, and local star-shaped E-convex set.

Example 3.3. Let K = [−4,−1)⋃[1, 4],

E(x) =

{
x2 if |x| ≤ 2,
−1 if |x| > 2,

η
(
x, y

)
=

⎧
⎪⎪⎨

⎪⎪⎩

x − y if x ≥ 0, y ≥ 0, or x ≤ 0, y ≤ 0,
−1 − y if x > 0, y ≤ 0, or x ≥ 0, y < 0,
1 − y if x < 0, y ≥ 0, or x ≤ 0, y > 0.

(3.2)

We can testify that K is a local star-shaped E-invex set with respect to η.
However, when x0 = 1, y0 = 3, there exists a λ1 ∈ [0, 1] such that λ1E(x0) + (1 −

λ1)E(y0) = −1 + 2λ1 /∈ K, namely, K is not an E-convex set.
Also, there is a λ2 ∈ [0, 1] such that E(y0) + λ2η(E(x0), E(y0)) = −1 /∈ K, that is, K is

not an E-invex set with respect to η.
Similarly, for any positive number a ≤ 1, there exists a sufficiently small positive

number λ3 ≤ a satisfying λ3E(x0) + (1 − λ3)E(y0) = −1 + 2λ3 /∈ K, that is, K is not a local
star-shaped E-convex set.

Proposition 3.4. If a set K ⊂ Rn is local star-shaped E-invex with respect to η, then E(K) ⊂ K.

Proof. Since K is local star-shaped E-invex, then for any x, y ∈ K, there exists a maximal
positive number a(x, y) ≤ 1 satisfying E(y) + λη(E(x), E(y)) ∈ K, for all λ ∈ [0, a(x, y)].

Thus, for λ = 0, E(y) ∈ K.
Hence, E(K) ⊂ K.

Proposition 3.5. Let E(K) be local star-shaped invex with respect to η, E(K) ⊂ K, then K is local
star-shaped E-invex with respect to the same η.

Proof. Assume that x, y ∈ K, then E(x), E(y) ∈ E(K). Since E(K) is local star-shaped invex
with respect to η, thus for E(x), E(y) ∈ E(K), there exists a positive number a(E(x), E(y)) ≤ 1
satisfying

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ E(K) ⊂ K, ∀λ ∈ [

0, a
(
E(x), E

(
y
))]

. (3.3)

Hence, K is local star-shaped E-invex with respect to η.
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Remark 3.6. Every local star-shaped invex set with respect to η is local star-shaped E-invex
set, where E is an identity map, but its converse is not necessarily true. See the following
example.

Example 3.7. Let K1 = {(x, y) ∈ R2 : (x, y) = λ1(0, 0) + λ2(2, 3) + λ3(0, 2)}, K2 = {(x, y) ∈ R2 :
(x, y) = λ1(0, 0)+λ2(−2,−3)+λ3(0,−4)}, andK = K1 ∪K2, where λ1, λ2, λ3 ≥ 0 and

∑3
i=1 λi = 1.

Let η : R2 × R2 → R2 be defined as η(x, y) = x − y, and let E : R2 → R2 be defined as

E
(
x, y

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(0, 3) if
(
x, y

)
= (2, 3),

(
0, y − 1

)
, if

(
x, y

) ∈ K1 \ {(0, 0), (2, 3)},
(
0, y

)
if
(
x, y

) ∈ K2.

(3.4)

It is not difficult to prove that K is a local star-shaped E-invex set with respect to η.
However, by taking x = (2, 3), y = (0,−4), we know that there exists no maximal positive
number a(x, y) ≤ 1 such that y + λη(x, y) ∈ K, for all λ ∈ [0, a(x, y)].

That is, K is not a local star-shaped invex set with respect to η.

Proposition 3.8. Let Ki ⊂ Rn (i = 1, 2, . . . , m) be a collection of local star-shaped E-invex sets with
the same map η, then

⋂m
i=1Ki is a local star-shaped E-invex set with respect to η.

Proof. For all x, y ∈ ⋂m
i=1Ki, we have x, y ∈ Ki (i = 1, 2, . . . , m).

SinceKi (i = 1, 2, . . . , m) are all local star-shaped E-invex sets, then there exist positive
numbers ai(x, y) ≤ 1 (i = 1, 2, . . . , m) such that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ Ki, ∀λ ∈ [

0, ai
(
x, y

)]
, i = 1, 2, . . . , m. (3.5)

Taking a(x, y) = minai(x, y), i = 1, 2, . . . , m, we can get

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈

m⋂

i=1

Ki, ∀λ ∈ [
0, a

(
x, y

)]
. (3.6)

Therefore, the proposition is proved.

Remark 3.9. Even if K1, K2 are all local star-shaped E-invex set with respect to η, K1 ∪ K2 is
not necessarily a local star-shaped E-invex set. See the following example.

Example 3.10. Let the map η : R2 × R2 → R2 be defined as η(x, y) = x − y, and the map
E : R2 → R2 be defined as E(x, y) = (x/2, y/2). Consider the two sets

K1 =
{(
x, y

) ∈ R2 :
(
x, y

)
= λ1(0, 0) + λ2(2, 0) + λ3(0, 2)

}
,

K2 =
{(
x, y

) ∈ R2 :
(
x, y

)
= λ1(0, 0) + λ2(−2, 0) + λ3(0,−2)

}
,

(3.7)

where λi ≥ 0, i = 1, 2, 3, and
∑3

i=1 λi = 1.
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We can easily prove that the two setsK1,K2 are all local star-shaped E-invex sets with
respect to η. However, when x = (2, 0), y = (0,−2), there is not a positive number a(x, y) ≤ 1
such that

E
(
y
)
+ λ

(
E(x), E

(
y
))

= (λ,−1 + λ) ∈ K1 ∪K2, ∀λ ∈ (
0, a

(
x, y

)]
. (3.8)

Thus, K1 ∪K2 is not a local star-shaped E-invex set with respect to η.

Proposition 3.11. Let K ⊂ Rn be a local star-shaped E1 and E2-invex set with respect to the same η,
then K is a local star-shaped (E1 ◦ E2) and (E2 ◦ E1)-invex set with respect to the same η.

Proof. By contradiction, assume that for a pair of x, y ∈ K, for all a(x, y) ∈ (0, 1], there exists
a λ0 ∈ (0, a(x, y)] such that E1 ◦ E2(y) + λ0η((E1 ◦ E2(x), E1 ◦ E2(y)) /∈ K, that is, E1(E2y) +
λ0η((E1(E2x), E1(E2y)) /∈ K.

Since, from Proposition 3.4, E2(x), E2(y) ∈ K, then E1(E2y) + λ0η(E1(E2x), E1(E2y)) /∈
K contradicts the local star-shaped E1-invexity of K.

Hence, K is a local star-shaped (E1 ◦ E2)-invex set.
Similarly, K is a local star-shaped (E2 ◦ E1)-invex set.

4. Semilocal E-Preinvex Functions

In the section, we present the concept of semilocal E-preinvex function and study some of its
properties. We first recall a relevant definition.

Definition 4.1 (see [15]). A function f : Rn → R is said to be local E-preinvex on k ⊂ Rn with
respect to η if for any x, y ∈ K (with a maximal positive number a(x, y) ≤ 1 satisfying (3.1)),
there exists 0 < b(x, y) ≤ a(x, y) such that K is a local star-shaped E-invex set and

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(E(x)) + (1 − λ)f(E(y)), ∀λ ∈ [

0, b
(
x, y

)]
. (4.1)

Definition 4.2. A function f : Rn → R is said to be semilocal E-preinvex on k ⊂ Rn with
respect to η if for any x, y ∈ K (with a maximal positive number a(x, y) ≤ 1 satisfying (3.1)),
there exists 0 < b(x, y) ≤ a(x, y) such that K is a local star-shaped E-invex set and

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [

0, b
(
x, y

)]
. (4.2)

If the inequality sign above is strict for any x, y ∈ K and x /=y, then f is called a strict
semilocal E-preinvex function.

A vector function f : Rn → Rk is said to be semilocal E-preinvex on a local star-shaped
E-invex set K ⊂ Rn with respect to η if for each pair of points x, y ∈ K(with a maximal
positive number a(x, y) ≤ 1 satisfying (3.1)), there exists a positive number b(x, y) ≤ a(x, y)
satisfying

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [

0, b
(
x, y

)]
, (4.3)

where the inequalities are taken component wise.
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The definition of strict semilocal E-preinvex of a vector function f : Rn → Rk is similar
to the one for a vector semilocal E-preinvex function.

Remark 4.3. Every semilocal E-convex function on a local star-shaped set K is a semilocal E-
preinvex function, where η(x, y) = x − y, for all x, y ∈ Rn. Every semi-E-preinvex function
with respect to η is a semilocal E-preinvex function, where a(x, y) = b(x, y) = 1, for all
x, y ∈ Rn. But their converses are not necessarily true.

We give below an example of semilocal E-preinvex function, which is neither a
semilocal E-convex function nor a semi-E-preinvex function.

Example 4.4. Let the map E : R → R be defined as

E(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0,
1 if 1 < x ≤ 2,
x if 0 ≤ x ≤ 1 or x > 2,

(4.4)

and the map η : R × R → R be defined as

η
(
x, y

)
=

{
0 if x = y,
1 − x if x /=y.

(4.5)

Obviously, R is a local star-shaped E-convex set and a local star-shaped E-invex set with
respect to η. Let f : R → R be defined as

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 1 < x ≤ 2,
1 if x > 2,
−x + 1 if 0 ≤ x ≤ 1,
−x + 2 if x < 0.

(4.6)

We can prove that f is semilocal E-preinvex on R with respect to η. However, when
x0 = 2, y0 = 3, and for any b ∈ (0, 1], there exists a sufficiently small λ0 ∈ (0, b] satisfying

f
(
λ0E(x0) + (1 − λ0)E

(
y0
))

= f(3 − 2λ0) = 1 > 1 − λ0 = λ0f(x0) + (1 − λ0)f
(
y0
)
. (4.7)

That is, f(x) is not a semilocal E-convex function on R.
Similarly, taking x1 = 1, y1 = 4, we have

f
(
E
(
y1
)
+ λ1η

(
E(x1), E

(
y1
)))

= f(4) = 1 > 1 − λ1 = λ1f(x1) + (1 − λ1)f
(
y1
)
, (4.8)

for some λ1 ∈ [0, 1].
Thus, f(x) is not a semi-E-preinvex function on Rwith respect to η.
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Theorem 4.5. Let f : K ⊂ Rn → R be a local E-preinvex function on a local star-shaped E-invex set
K with respect to η, then f is a semilocal E-preinvex function if and only if f(E(x)) ≤ f(x), for all
x ∈ K.

Proof. Suppose that f is a semilocal E-preinvex function on set K with respect to η, then for
each pair of points x, y ∈ K (with a maximal positive number a(x, y) ≤ 1 satisfying (3.1)),
there exists a positive number b(x, y) ≤ a(x, y) satisfying

f
(
E(x) + λη

(
E
(
y
))
, E(x)

) ≤ λf(y) + (1 − λ)f(x), λ ∈ [
0, b

(
x, y

)]
. (4.9)

By letting λ = 0, we have f(E(x)) ≤ f(x), for all x ∈ K.
Conversely, assume that f is a local E-preinvex function on a local star-shaped E-

invex set K, then for any x, y ∈ K, there exist a(x, y) ∈ (0, 1] satisfying (3.1) and b(x, y) ∈
(0, a(x, y)] such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(E(x)) + (1 − λ)f(E(y)), ∀λ ∈ [

0, b
(
x, y

)]
. (4.10)

Since f(E(x)) ≤ f(x), for all x ∈ K, then

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [

0, b
(
x, y

)]
. (4.11)

The proof is completed.

Remark 4.6. A local E-preinvex function on a local star-shaped E-invex set with respect to η
is not necessarily a semilocal E-preinvex function.

Example 4.7. LetK, E, and η be the same as the ones of Example 3.3 and f : R → R be defined
by f(x) = x2, then f is local E-preinvex on K with respect to η.

Since f(E(2)) = 16 > f(2) = 4, from Theorem 4.5, it follows that f is not a semilocal
E-preinvex function.

Theorem 4.8. Let f : Rn → R be a semilocal E-preinvex function on a local star-shaped E-invex set
K ⊂ Rn with respect to η, and let ϕ : R → R be a nondecreasing and convex function, then ϕ(f(x))
is semilocal E-preinvex on K with respect to η.

The proof is easy and is omitted.

Theorem 4.9. If the functions fi : Rn → R (i = 1, 2, . . . , m) are all semilocal E-preinvex on a local
star-shaped E-invex set K ⊂ Rn with respect to the same η, then the function f(x) =

∑m
i=1 aifi(x) is

semilocal E-preinvex on K with respect to η for all ai ≥ 0, i = 1, 2, . . . , m.

Proof. Since K is a local star-shaped E-invex set with respect to η, then for all x, y ∈ K, there
exists a positive number a(x, y) ≤ 1 such that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀λ ∈ [

0, a
(
x, y

)]
. (4.12)



Journal of Applied Mathematics 9

On the other hand, fi (i = 1, 2, . . . , m) are all semilocal E-preinvex on K with respect to the
same η; thus, there exist positive numbers bi(x, y) ≤ a(x, y) such that

fi
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λfi(x) + (1 − λ)fi

(
y
)
, ∀λ ∈ [

0, bi
(
x, y

)]
, i = 1, 2, . . . , m.

(4.13)

Now, letting b(x, y) = min bi(x, y), i = 1, 2, . . . , m, we have

m∑

i=1

aifi
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λ

m∑

i=1

aifi(x) + (1 − λ)
m∑

i=1

aifi
(
y
)
, ∀λ ∈ [

0, b
(
x, y

)]
.

(4.14)

That is, f(x) is semilocal E-preinvex on Kwith respect to η.

Definition 4.10. The set G = {(x, α) : x ∈ K ⊂ Rn, α ∈ R} is said to be a local star-shaped
E-invex set with respect to η corresponding to Rn if there are two maps η, E and a maximal
positive number a((x, α1), (y, α2)) ≤ 1, for each (x, α1), (y, α2) ∈ G such that

(
E
(
y
)
+ λη

(
E(x), E

(
y
))
, λα1 + (1 − λ)α2

) ∈ G, ∀λ ∈ [
0, a

(
(x, α1),

(
y, α2

))]
. (4.15)

Theorem 4.11. Let K ⊂ Rn be a local star-shaped E-invex set with respect to η, then f is a semilocal
E-preinvex function on K with respect to η if and only if its epigraph Gf = {(x, α) : x ∈ K, f(x) ≤
α, α ∈ R} is a local star-shaped E-invex set with respect to η corresponding to Rn.

Proof. Assume that f is semilocal E-preinvex on K with respect to η and (x, α1), (y, α2) ∈ Gf ,
then x, y ∈ K, and f(x) ≤ α1, f(y) ≤ α2. Since K is a local star-shaped E-invex set, there is a
maximal positive number a(x, y) ≤ 1 such that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀λ ∈ [

0, a
(
x, y

)]
. (4.16)

In addition, in view of f being a semilocal E-preinvex function on K with respect to η, there
is a positive number b(x, y) ≤ a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y) ≤ λα1 + (1 − λ)α2, ∀λ ∈ [

0, b
(
x, y

)]
.

(4.17)

That is, (E(y) + λη(E(x), E(y)), λα1 + (1 − λ)α2) ∈ Gf , for all λ ∈ [0, b(x, y)].
Therefore, Gf = {(x, α) : x ∈ K, f(x) ≤ α, α ∈ R} is a local star-shaped E-invex set with

respect to η corresponding to Rn.
Conversely, if Gf is a local star-shaped E-invex set with respect to η corresponding

to Rn, then for any points (x, f(x)), (y, f(y)) ∈ Gf , there is a maximal positive number
a((x, f(x)), (y, f(y))) ≤ 1 such that

(
E
(
y
)
+ λη

(
E(x), E

(
y
))
, λf(x) + (1 − λ)f(y)) ∈ Gf, ∀λ ∈ [

0, a
((
x, f(x)

)
,
(
y, f

(
y
)))]

.
(4.18)
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That is, E(y) + λη(E(x), E(y)) ∈ K,

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [

0, a
((
x, f(x)

)
,
(
y, f

(
y
)))]

.
(4.19)

Thus,K is a local star-shaped E-invex set, and f is a semilocal E-preinvex function onK with
respect to η.

Theorem 4.12. If f is a semilocal E-preinvex function on a local star-shaped E-invex set K ⊂ Rn

with respect to η, then the level set Sα = {x ∈ K : f(x) ≤ α} is a local star-shaped E-invex set for any
α ∈ R.

Proof. For any α ∈ R and x, y ∈ Sα, then x, y ∈ K and f(x) ≤ α, f(y) ≤ α. Since K is a local
star-shaped E-invex set, there is a maximal positive number a(x, y) ≤ 1 such that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀λ ∈ [

0, a
(
x, y

)]
. (4.20)

In addition, due to the semilocal E-preinvexity of f , there is a positive number b(x, y) ≤
a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y) ≤ λα + (1 − λ)α = α, ∀λ ∈ [

0, b
(
x, y

)]
.

(4.21)

That is, E(y) + λη(E(x), E(y)) ∈ Sα, for all λ ∈ [0, b(x, y)].
Therefore, Sα is a local star-shaped E-invex set with respect to η for any α ∈ R.

Theorem 4.13. Let f be a real-valued function defined on a local star-shaped E-invex set K ⊂ Rn,
then f is a semilocal E-preinvex function with respect to η if and only if for each pair of points x, y ∈
K (with a maximal positive number a(x, y) ≤ 1 satisfying (3.1)), there exists a positive number
b(x, y) ≤ a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
)))

< λα + (1 − λ)β, ∀λ ∈ [
0, b

(
x, y

)]
, (4.22)

whenever f(x) < α, f(y) < β.

Proof. Let x, y ∈ K and α, β ∈ R such that f(x) < α, f(y) < β. Due to the local star-shaped
E-invexity of K, there is a maximal positive number a(x, y) ≤ 1 such that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀λ ∈ [

0, a
(
x, y

)]
. (4.23)

In addition, owing to the semilocal E-preinvexity of f , there is a positive number b(x, y) ≤
a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y) < λα + (1 − λ)β, ∀λ ∈ [

0, b
(
x, y

)]
.

(4.24)
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Conversely, let (x, α) ∈ Gf , (y, β) ∈ Gf (see epigraph Gf in Theorem 4.11), then x, y ∈
K, f(x) ≤ α, and f(y) ≤ β. Hence, f(x) < α+ ε and f(y) < β + ε hold for any ε > 0. According
to the hypothesis, for x, y ∈ K (with a positive number a(x, y) ≤ 1 satisfying (3.1)), there
exists a positive number b(x, y) ≤ a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
)))

< λα + (1 − λ)β + ε, ∀λ ∈ [
0, b

(
x, y

)]
. (4.25)

Let ε → 0+, then

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λα + (1 − λ)β, ∀λ ∈ [

0, b
(
x, y

)]
. (4.26)

That is, (E(y) + λη(E(x), E(y)), λα + (1 − λ)β) ∈ Gf , for all λ ∈ [0, b(x, y)].
Therefore, Gf is a local star-shaped E-invex set corresponding to Rn.
From Theorem 4.11, it follows that f is semilocal E-preinvex on K with respect to η.

5. Nonlinear Programming

In this section, we discuss the optimality conditions and Mond-Weir type duality for
nonlinear programming involving semilocal E-preinvex and related functions.

We firstly consider the nonlinear programming problemwithout constraint as follows:

(P)min f(x), x ∈ K, (5.1)

where K is a local star-shaped E-invex set and the objective function f is a semilocal E-
preinvex function on K with respect to η.

Theorem 5.1. The following statements hold for programming (P).

(i) The optimal solution set ω for (P) is a local star-shaped E-invex set with respect to η.

(ii) If x0 is a local minimum for (P) and E(x0) = x0, then x0 is a global minimum for (P).

(iii) If the real-valued function f is a strict semilocal E-preinvex function on K with respect to
η, then the global optimal solution for (P) is unique.

Proof. (i) Assume that x, y ∈ ω, then x, y ∈ K and f(x) = f(y). On account ofK being a local
star-shaped E-invex set with respect to η, there is a maximal positive number a(x, y) ≤ 1 such
that

E
(
y
)
+ λη

(
E(x), E

(
y
)) ∈ K, ∀λ ∈ [

0, a
(
x, y

)]
. (5.2)

Besides, due to semilocal E-preinvexity of f , there is a positive number b(x, y) ≤ a(x, y) such
that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f(y) = f(x), ∀λ ∈ [

0, b
(
x, y

)]
. (5.3)

From the optimality of x, we have f(E(y) + λη(E(x), E(y))) ≥ f(x).



12 Journal of Applied Mathematics

Hence, f(E(y) + λη(E(x), E(y))) = f(x), that is, E(y) + λη(E(x), E(y)) ∈ ω, for all
λ ∈ [0, b(x, y)].

This shows that ω is a local star-shaped E-invex set with respect to η.
(ii) Assume that Nε(x0) is a neighbourhood of x0 with radius ε > 0, and f attains

its local minimum at x0 ∈ Nε(x0) ∩ K. For x, x0 ∈ K, there is a maximal positive number
a(x, x0) ≤ 1 such that E(x0) + λη(E(x), E(x0)) ∈ K, for all λ ∈ [0, a(x, x0)].

Moreover, there is a positive number b(x, x0) ≤ a(x, x0) such that

f
(
E(x0) + λη(E(x), E(x0))

) ≤ λf(x) + (1 − λ)f(x0), ∀λ ∈ [0, b(x, x0)]. (5.4)

Owing to E(x0) = x0, so for sufficiently small λ > 0,

E(x0) + λη(E(x), E(x0)) ∈Nε(x0) ∩K. (5.5)

Thus, f(x0) ≤ f(E(x0) + λη(E(x), E(x0))) ≤ λf(x) + (1 − λ)f(x0), namely, f(x0) ≤ f(x).
This means that x0 is a global minimum for (P).
(iii) By contradiction, assume that x1, x2 ∈ K are two global optimal solutions for (P)

and x1 /=x2. For x1, x2 ∈ K, there is a maximal positive number a(x1, x2) ≤ 1 such that

E(x2) + λη(E(x1), E(x2)) ∈ K, ∀λ ∈ [0, a(x1, x2)]. (5.6)

Furthermore, there is a positive number b(x1, x2) ≤ a(x1, x2) such that

f
(
E(x2) + λη(E(x1), E(x2))

)
< λf(x1) + (1 − λ)f(x2) = f(x1), ∀λ ∈ [0, b(x1, x2)]. (5.7)

This contradicts the fact that x1 is a global optimal solution for (P).
Therefore, the global optimal solution for (P) is unique.

Theorem 5.2. Let u ∈ K and E(u) = u. If f is differentiable on K, then u is a minimum for
programming (P) if and only if u satisfies the inequality ∇f(u)Tη(E(v), u) ≥ 0, for all v ∈ K.

Proof. Assume that u is a minimum for (P). Since K is a local star-shaped E-invex set with
respect to η, for any v ∈ K, there is a maximal positive number a(u, v) ≤ 1 such that

E(u) + λη(E(v), E(u)) ∈ K, ∀λ ∈ (0, a(u, v)]. (5.8)

From the differentiability of f and E(u) = u, we get

f(u) ≤ f(E(u) + λη(E(v), E(u))) = f(u) + λ∇f(u)Tη(E(v), u) + o(λ). (5.9)

Dividing the inequality above by λ and letting λ → 0+, we have

∇f(u)Tη(E(v), u) ≥ 0. (5.10)
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Conversely, if∇f(u)Tη(E(v), u) ≥ 0, owing to semilocal E-preinvexity of f onK, there
is a positive number b(u, v) ≤ a(u, v) such that

f
(
E(u) + λη(E(v), E(u))

) ≤ λf(v) + (1 − λ)f(u), ∀λ ∈ (0, b(u, v)], (5.11)

which together with E(u) = u implies

f(v) − f(u) ≥ f
(
u + λη(E(v), u)

) − f(u)
λ

. (5.12)

Letting λ → 0+ in the inequality above, we obtain

f(v) − f(u) ≥ ∇f(u)Tη(E(v), u) ≥ 0. (5.13)

This follows that u is a minimum for (P).

Next, we consider the optimization problem with inequality constraint

(NP)

⎧
⎪⎪⎨

⎪⎪⎩

minf(x)
s.t. gi(x) ≤ 0, i ∈ I,
x ∈ K.

(5.14)

Denote the feasible set of (NP) by K0 = {x ∈ K, gi(x) ≤ 0, i ∈ I}, where I =
{1, 2, . . . , m}, and K ⊂ Rn is an open local star-shaped E-invex set with respect to η.

If the constraint functions gi(x) (i ∈ I) are all semilocal E-preinvex on K with
respect to the same map η, then, from Theorem 4.12 and Proposition 3.8, we can conclude
that the feasible set K0 is a local star-shaped E-invex set with respect to η. Moreover, from
Theorem 5.1, we can obtain the following theorem easily.

Theorem 5.3. Assume that f, gi (i ∈ I) are all semilocal E-preinvex on K with respect to η, then

(i) K0 is a local star-shaped E-invex set with respect to η;

(ii) the optimal solution set ω for (NP) is a local star-shaped E-invex set with respect to η;

(iii) if x0 is a local minimum for (NP) and E(x0) = x0, then x0 is a global minimum for (NP);

(iv) if the real-valued function f is a strict semilocal E-preinvex function on K with respect to
η, then the global optimal solution for (NP) is unique.

For convenience of discussion, we give the following notation:

g(x) =
(
gi(x), i ∈ I

)
, gJ(x) =

(
gj(x), j ∈ J

)
, where J ⊂ I. (5.15)

For x∗ ∈ K0, denote I(x∗) = {i ∈ I : gi(x∗) = 0}, I(x∗) = I \ I(x∗).
To discuss the necessary optimality conditions for the corresponding programming,

we first give a lemma as follows.
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Lemma 5.4. Let x∗ be a local optimal solution for (NP). Assume that gj is continuous at x∗ for any
j ∈ I(x∗), and f , gI(x∗) possess the directional derivatives at x∗ along the direction η(E(x), x∗) for
each x ∈ K, then the system:

f ′(x∗;η(E(x), x∗)
)
< 0,

g ′
I(x∗)

(
x∗;η(E(x), x∗)

)
< 0

(5.16)

has no solution in K, where f ′(x∗;d) denotes the directional derivative of f at x∗ along the direction
d and g ′

I(x∗)(x
∗;d) = (g ′

i(x
∗;d), i ∈ I(x∗)).

The proof of this lemma is similar to the one of [10, Lemma 13].

Theorem 5.5. Let x∗ be a local optimal solution for (NP). Assume that functions gj are continuous
at x∗ for any j ∈ I(x∗), and f , g possess the directional derivatives with respect to η(E(x), x∗)
at x∗ for each x ∈ K. If (f ’(x∗;η(E(x), x∗)), g ′

I(x∗)(x
∗;η(E(x), x∗))) is a convex-like function and

E(x∗) = x∗, then there are λ∗0 ∈ R, λ
∗ ∈ Rm such that

λ∗0f
′(x∗;η(E(x), x∗)

)
+ λ

∗T
g ′(x∗;η(E(x), x∗)

) ≥ 0, ∀x ∈ K, (5.17)

λ
∗T
g(x∗) = 0, g(x∗) ≤ 0, 0/=

(
λ∗0, λ

∗) ≥ 0. (5.18)

Additionally, if g is a semilocal E-preinvex function on K with respect to η and there is x̂ ∈ K such
that g(x̂) < 0, then there exists λ∗ ∈ Rm such that

f ′(x∗;η(E(x), x∗)
)
+ λ∗Tg ′(x∗;η(E(x), x∗)

) ≥ 0, ∀x ∈ K, (5.19)

λ∗Tg(x∗) = 0, g(x∗) ≤ 0, λ∗ ≥ 0. (5.20)

Proof. Define vector function ψ(x) = (f ′(x∗;η(E(x), x∗)), g ′
I(x∗)(x

∗;η(E(x), x∗))). Then ψ(x) is
a convexlike function. By Lemma 5.4, the system ϕ(x) < 0 has no solution in K. Thus, from
Lemma 2.11, there are λ∗0 ∈ R, λ

∗
I(x∗) ∈ R|I(x∗)| such that

λ∗0f
′(x∗;η(E(x), x∗)

)
+ λ

∗T
I(x∗)g

′
I(x∗)

(
x∗;η(E(x), x∗)

) ≥ 0, ∀x ∈ K, 0/=
(
λ∗0, λ

∗
I(x∗)

)
≥ 0.

(5.21)

Hence, by letting λ
∗
= (λ

∗
I(x∗), 0I(x∗)), we further have

λ∗0f
′(x∗;η(E(x), x∗)

)
+ λ

∗T
g ′(x∗;η(E(x), x∗)

) ≥ 0, ∀x ∈ K,
λ
∗T
g(x∗) = 0, g(x∗) ≤ 0, 0/=

(
λ∗0, λ

∗) ≥ 0.
(5.22)
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Subsequently, we testify that λ∗0 /= 0, and if this is not true, we get from above

λ
∗T
g ′(x∗;η(E(x), x∗)

) ≥ 0, ∀x ∈ K, λ
∗T
g(x∗) = 0, g(x∗) ≤ 0, 0/=λ

∗ ≥ 0. (5.23)

On account of g being semilocal E-preinvex on K with respect to η and E(x∗) = x∗, from
Proposition 5.9(i) below, we have g(x̂) − g(x∗) ≥ g ′(x∗;η(E(x̂), x∗)).

So λ
∗T
g(x̂) ≥ 0. But this contradicts the fact that g(x̂) < 0 and λ

∗
> 0.

Thus, λ∗0 > 0. Dividing (5.17) and the first equality of (5.18) by λ∗0 and letting λ∗ = λ
∗\λ∗0,

we know that (5.19) and (5.20) hold.
Consequently, the whole proof is finished.

To discuss the sufficient optimality conditions for (NP), we further generalize the
concept of semilocal E-preinvex function as follows.

Definition 5.6. A real-valued function f defined on a local star-shaped E-invex set k ⊂ Rn is
said to be quasisemilocal E-preinvex (with respect to η) if for all x, y ∈ K (with a maximal
positive number a(x, y) ≤ 1 satisfying (3.1)) satisfying f(x) ≤ f(y), there is a positive number
b(x, y) ≤ a(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ f(y), ∀λ ∈ [

0, b
(
x, y

)]
. (5.24)

The definition of quasi-semilocal E-preinvex of a vector function f : Rn → Rk is
similar to the one for a vector semilocal E-preinvex function.

Definition 5.7. A real-valued function f defined on a local star-shaped E-invex set K ⊂ Rn is
said to be pseudosemilocal E-preinvex (with respect to η) if for all x, y ∈ K (with a maximal
positive number a(x, y) ≤ 1 satisfying (3.1)) satisfying f(x) < f(y), there are a positive
number b(x, y) ≤ a(x, y) and a positive number c(x, y) such that

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ f(y) − λc(x, y), ∀λ ∈ [

0, b
(
x, y

)]
. (5.25)

The definition of pseudo-semilocal E-preinvex of a vector function f : Rn → Rk is
similar to the one for a vector semilocal E-preinvex function.

Remark 5.8. Every semilocal E-preinvex function on a local star-shaped E-invex set K with
respect to η is both a quasi-semilocal E-preinvex function and a pseudo-semilocal E-preinvex
function.

We now present one of their elementary properties.

Proposition 5.9. Let f be a real-valued function on a local star-shaped E-invex set K ⊂ Rn, and
f possesses directional derivative with respect to the direction η(E(x), y) at y for all x, y ∈ K. If
E(y) = y, then the following statements hold true:

(i) if f is semilocal E-preinvex on K with respect to η, then f ′(y;η(E(x), y)) ≤ f(x) − f(y),
(ii) if f is quasi-semilocal E-preinvex on K with respect to η, then f(x) ≤ f(y) implies that

f ′(y;η(E(x), y)) ≤ 0,
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(iii) if f is pseudo-semilocal E-preinvex on K with respect to η, then f(x) < f(y) implies that
f ′(y;η(E(x), y)) < 0.

The proof is obvious by using the related definitions and is omitted.

Theorem 5.10. Let x∗ ∈ K0 and E(x∗) = x∗. Suppose that f, g possess directional derivatives with
respect to the direction η(E(x), x∗) at x∗ for any x ∈ K, and assume that there is λ∗ ∈ Rm such
that (5.19) and (5.20) hold. If f is pseudo-semilocal E-preinvex on K and gI(x∗) is quasi-semilocal
E-preinvex on K with respect to η, then x∗ is an optimal solution for (NP).

Proof. Due to gI(x∗)(x) ≤ gI(x∗)(x∗) = 0, for all x ∈ K0, it follows from Proposition 5.9(ii) that
g ′
I(x∗)(x

∗, η(E(x), x∗)) ≤ 0, for all x ∈ K0, which together with λ∗
I(x∗) ≥ 0 implies

λ∗TI(x∗)g
′
I(x∗)

(
x∗, η(E(x), x∗)

) ≤ 0, ∀x ∈ K0. (5.26)

Moreover, using λ∗Tg(x∗) = 0, g(x∗) ≤ 0, and λ∗ ≥ 0, we get

λ∗Tg ′(x∗;η(E(x), x∗)
) ≤ 0, ∀x ∈ K0. (5.27)

Therefore, from (5.19), we have f ′(x∗;η(E(x), x∗)) ≥ 0, for all x ∈ K0.
Thus, from Proposition 5.9(iii), this implies f(x) ≥ f(x∗), for all x ∈ K0.
That is, x∗ is an optimal solution for (NP).

Theorem 5.11. Let x∗ ∈ K0 and E(x∗) = x∗. Suppose that f, g possess directional derivatives with
respect to the direction η(E(x), x∗) at x∗ for any x ∈ K, and there is a λ∗ ∈ Rm such that (5.19) and
(5.20) hold. If (f + λ∗T

I(x∗)gI(x∗)) is pseudo-semilocal E-preinvex on K with respect to η, then x∗ is an
optimal solution for (NP).

Proof. Considering λ∗Tg(x∗) = 0, g(x∗) ≤ 0, λ∗ ≥ 0, and the given conditions, we have
(f + λ∗T

I(x∗)gI(x∗))
′(x∗;η(E(x), x∗)) = f ′(x∗;η(E(x), x∗)) + λ∗Tg’(x∗;η(E(x), x∗)) ≥ 0, for all

x ∈ K0. Hence, from Proposition 5.9(iii), we get

(
f + λ∗TI(x∗)gI(x∗)

)
(x) ≥

(
f + λ∗TI(x∗)gI(x∗)

)
(x∗), ∀x ∈ K0. (5.28)

The inequality above together with λ∗T
I(x∗)gI(x∗)(x

∗) = 0 follows:

f(x) + λ∗TI(x∗)gI(x∗)(x) ≥ f(x∗), ∀x ∈ K0. (5.29)

On account of λ∗
I(x∗) ≥ 0 and gI(x∗)(x) ≤ 0, we obtain

f(x) ≥ f(x∗), ∀x ∈ K0. (5.30)

Therefore, x∗ is an optimal solution for (NP).

The following conclusion is a direct corollary of Theorem 5.10 or Theorem 5.11.
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Corollary 5.12. Let x∗ ∈ K0 and E(x∗) = x∗. Suppose that f, g possess directional derivatives with
respect to the direction η(E(x), x∗) at x∗ for any x ∈ K, and assume that there is a λ∗ ∈ Rm such that
(5.19) and (5.20) hold. If f and gI(x∗) are semilocal E-preinvex functions onK with respect to η, then
x∗ is an optimal solution for (NP).

Finally, we consider the following Mond-Weir type dual problem of (NP):

(DP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maxf(u)
s.t. f ′(u;η(E(x), u)

)
+ λTg ′(u;η(E(x), u)

) ≥ 0, ∀x ∈ K,
λTg(u) ≥ 0,
λ ∈ Rm, λ ≥ 0,
u ∈ K.

(5.31)

Theorem 5.13 (weak duality). Let x and (u, λ) be arbitrary feasible solutions of (NP) and (DP),
respectively. If f and g are all semilocal E-preinvex functions onK with respect to η, and they possess
directional derivatives with respect to the direction η(E(x), u) at u, where E(u) = u, x ∈ K, then
f(x) ≥ f(u).

Proof. Considering f and g being semilocal E-preinvex on K with respect to η and E(u) = u,
we get from Proposition 5.9(i)

f(x) ≥ f(u) + f ′(u;η(E(x), u)
)
, g(x) ≥ g(u) + g ′(u;η(E(x), u)

)
. (5.32)

Combining the first constraint condition of (DP) and the inequalities above, we have

f(x) ≥ f(u) − λTg ′(u;η(E(x), u)
) ≥ f(u) + λT(g(u) − g(x)). (5.33)

Hence, on account of λ ≥ 0, g(x) ≤ 0, and λTg(u) ≥ 0, we obtain f(x) ≥ f(u).

Theorem 5.14 (strong duality). Assume that x∗ is an optimal solution for (NP), E(x∗) = x∗,
and E(u) = u for any feasible point (u, λ) of (DP). Suppose that f and g are semilocal E-
preinvex on K with respect to η and gj is continuous at x∗ for any j ∈ I(x∗), and they possess
directional derivatives with respect to the direction η(E(x), x∗) at x∗ and the direction η(x∗, u)
at u, respectively, where x ∈ K. Further, assume that there is x̂ ∈ K such that g(x̂) < 0. If
f ′(x∗;η(E(x), x∗)), g ′

I(x∗)(x
∗;η(E(x), x∗)) is a convex-like function, then there is a λ∗ ∈ Rm such

that (x∗, λ∗) is an optimal solution for (DP).

Proof. From the assumptions and Theorem 5.5, we can conclude that there is λ∗ ≥ 0 such
that (x∗, λ∗) is a feasible point for (DP). Assume that (u, λ) is a feasible solution of (DP). On
account of f and g being semilocal E-preinvex on K with respect to η and E(u) = u, we get
from Proposition 5.9(i)

f(x∗) − f(u) ≥ f ′(u;η(x∗, u)
)
, g(x∗) − g(u) ≥ g ′(u;η(x∗, u)

)
. (5.34)
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Combining the first constraint condition of (DP) and the relationships above, we have

f(x∗) − f(u) ≥ −λTg ′(u;η(x∗, u)
) ≥ λT(g(u) − g(x∗)

)
. (5.35)

Noticing that λ ≥ 0, g(x∗) ≤ 0, and λTg(u) ≥ 0, we know f(x∗) ≥ f(u).
Therefore, (x∗, λ∗) is an optimal solution for (DP).

Theorem 5.15 (converse duality). Suppose that x∗ ∈ K0 and (u, λ) is a feasible point for (DP).
Further, suppose that f and g are semilocal E-preinvex on K with respect to η, and f , g possess
directional derivatives with respect to the direction η(E(x), u) at u for any x ∈ K. If f(x∗) = f(u)
and E(u) = u, then x∗ is an optimal solution for (NP).

Proof. Since f and g are semilocal E-preinvex on K with respect to η and E(u) = u, we have
from Proposition 5.9(i)

f(x) − f(u) ≥ f ′(u;η(E(x), u)
)
, g(x) − g(u) ≥ g ′(u;η(E(x), u)

)
, ∀x ∈ K0. (5.36)

On account of (u, λ) being a feasible point for (DP), we get from the first constraint inequality
of (DP) and the two relationships above

f(x) − f(u) ≥ −λTg ′(u;η(E(x), u)
) ≥ λT(g(u) − g(x)). (5.37)

This together with λ ≥ 0, g(x) ≤ 0, f(x∗) = f(u), and λ
T
g(u) ≥ 0 follows that

f(x) ≥ f(x∗). (5.38)

Thus, x∗ is an optimal solution for (NP).
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