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This work concerns the low-frequency interaction of a time-harmonic magnetic dipole, arbitrarily
orientated in the three-dimensional space, with two perfectly conducting spheres embedded
within a homogeneous conductive medium. In such physical applications, where two bodies are
placed near one another, the 3D bispherical geometry fits perfectly. Considering two solid impene-
trable (metallic) obstacles, excited by a magnetic dipole, the scattering boundary value problem is
attacked via rigorous low-frequency expansions in terms of integral powers (ik)n, where n ≥ 0, k
being the complex wave number of the exterior medium, for the incident, scattered, and total non-
axisymmetric electric and magnetic fields. We deal with the static (n = 0) and the dynamic (n =
1, 2, 3) terms of the fields, while for n ≥ 4 the contribution has minor significance. The calculation of
the exact solutions, satisfying Laplace’s and Poisson’s differential equations, leads to infinite linear
systems, solved approximately within any order of accuracy through a cut-off procedure and via
numerical implementation. Thus, we obtain the electromagnetic fields in an analytically compact
fashion as infinite series expansions of bispherical eigenfunctions. A simulation is developed in
order to investigate the effect of the radii ratio, the relative position of the spheres, and the position
of the dipole on the real and imaginary parts of the calculated scattered magnetic field.

1. Introduction

Several practical applications such as Earth’s subsurface electromagnetic probing for mineral
exploration, geoelectromagnetism, or other physical cases related to the identification of
buried metallic or nonmetallic objects of different shapes and sizes stand in the front line
of the scientific research. To this end, the primary motivation of the present work came from
several geophysical applications, such as mining prospection [1] and detection of cavities
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[2] or other underground detections for UneXploded Ordinance (also referred as UXO)
[3, 4] and buried objects [5]. Indeed, in those or similar cases we often face the problem of
retrieving anomalies of a certain kind, such as metallic ores, from three-dimensional magnetic
fields, collected along a borehole when a low-frequency [6] time harmonic source is placed
nearby, usually set at the ground surface of the Earth. So, interesting information concerning
orientations, sizes, shapes, conductivity, magnetic, and electric parameters of the anomalies
can be recovered.

However, this is not an easy task, since solution of this inverse problem often involves
a computationally demanding and time-consuming numerical process and it cannot be
performed in robust fashion, unless proper models of the field interaction are available. Also,
in practice, users want to measure and to identify the body structure at the same time. For this
reason, inverse schemesmust be fast enough, which can be achieved only if the solution of the
direct electromagnetic scattering problem is fast. Therefore, in order to reach this objective,
analytical solutions of such physical models are very useful.

There are many computational codes and numerical methods available to that matter.
As examples, an inverse scheme is used either to localize a smooth surface of a three-
dimensional perfectly conducting object using a boundary integral formulation [7] or to
find the parameters of an equivalent object [8] using iterative methods. A numerical
implementation via integral equations is illustrated in [9], whilst several complementary
investigations are presented in [10], where the complexity of the applied methods and the
difficulty to obtain practical information on buried structures are obvious. Nevertheless,
simple methodologies such as to obtain low-frequency expansions by the manipulation of
Debye potentials are described in the classical book [11] and remain useful, while a recent
and detailed contribution [12] illustrates this type of approach.

Following the assumption of low frequency, there are cases based on the well-known
Green’s function [13, 14], which assume that the body is a nonmetallic obstacle of finite
conductivity. Then, hybrid means from integral formulations of the fields, conveniently
approximated, have been developed in order to identify a penetrable sphere illuminated by
a dipolar magnetic field within a conductive host medium via a Mie series expansion [15].
In addition, in [16, 17] the problem dealt with is the general case of penetrable obstacles
of ellipsoidal shape [18] and it is tackled via expansions of the Green’s function or of the
electromagnetic fields inside and outside the body, within the framework of the localized
nonlinear approximation.

On the other hand, if the body is considered to be metallic, and hence impenetrable,
a recent work [19] for perfectly conducting ellipsoids has successfully dealt with the first
term (the static one) of the low-frequency expansion. Moreover, under the basic aim of the
present research activities, which is mineral exploration of the Earth by inductive means,
unexploded ordinance investigations and exploration of natural structures like water-filled
cavities and other possibly conductive materials in subsoil at shallow depths, useful results
can be recovered from the already ample library of scattering by simple shapes (e.g.,
spheroids [20]) via analytical methods in books [21, 22]. At this point, let us mention a
successful numerical approach of the characterization of spheroidal metallic objects using
electromagnetic induction [23] and an interesting numerical spheroidal-mode approach of
unexploded ordinance inversion under time harmonic excitations in the magnetoquasistatic
regime [4]. In both applications, complex inversion algorithms are developed.

Despite the fact that, for satisfactory identification of voluminous buried objects, the
use of elaborate computer codes is inevitable, there is always need for analytical methods
to describe sufficiently the electromagnetic process under consideration. For example,
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the low-frequency (fully 3D) electromagnetic fields, scattered from a perfectly conducting
sphere in a conductive medium, excited by a magnetic dipole, have been given in a
closed analytical form, followed by a numerical demonstration of the results, in [24]. A
mathematical formulation of the electromagnetic induction response to spheroidal anomalies
embedded in a weakly conducting host medium has been introduced in [25]. Lately, a similar
physical model with the same mathematical analysis as in [24] has been introduced in
order to extend the geometrical shape of the buried body to the spheroidal [26] and to the
ellipsoidal [27] shapes. However, the difficulty of the solution of every physical problem of
different geometries from [24] to [26] and, finally, to [27] is strongly increasing as a result of
the different kinds of eigenfunctions [14] of the potentials.

Until now, in the above references, only one-body problems are involved. Never-
theless, two-body problems appear in the literature in several physical areas, whereas the
most appropriate coordinate system that fits this particular geometry is the bispherical
coordinate system [18], provided that the two obstacles are being considered spherical
and set at short distance. Among other publications, low-frequency scattering by two soft
spheres is considered in [28] in acoustics, while in [29] the electric potential and field
between two different spheres in an infinite medium supporting an external uniform electric
field are analytically calculated by the Green’s function method. In [30] an analytical
solution is developed in order to evaluate the polarizability potential for two spheres, the
authors solving the resulting infinite linear systems with cut-off techniques. Although those
techniques converge to the final solution only at a certain level of accuracy, they provide us
with a good analytical approximation of the fields.

Inductive electromagnetic means which are currently employed in the exploration
of the Earth’s subsurface and embedded voluminous bodies often call for an intensive
use, primary at the modeling stage and later on at the inversion stage, of analytically
demanding tools of field calculation. Hence, the already ample library of scattering by simple
shapes using strong analytical methods is open to accept new and useful analytical results
concerning this matter. This paper describes how to build a versatile set of mathematical
tools in order to infer information on two unknown subsurface bodies, by solving the direct
scattering problem and calculating the 3D magnetic and electric fields, scattered off when
the bodies are illuminated by a magnetic dipole of arbitrary orientation. This primary source
is considered to be time harmonic and operated at low frequencies (to deeply penetrate in
the conductive ground). High-contrast cases, as in our case, for which the ratio between the
conductivity of the bodies and the one of the embedding medium is high, are approximated
via the assumption of perfectly impenetrable bodies.

To that purpose and according to the well-known low-frequency scattering theory
[6], we expand the electromagnetic fields (incident, as well as scattered) in positive integral
powers of (ik), where k is the complex wave number of the exterior medium at the operation
frequency. Then, our scattering problem is transformed into an appropriate succession of
coupled boundary value scattering problems of the nonaxisymmetric vector fields at each n of
the Rayleigh expansion (ik)n for n ≥ 0. Those problems are formulated according to second-
order Laplace’s partial differential equations with proper perfectly reflecting boundary
conditions, as a result of the non penetrable character of the boundary of the metallic objects.

Most of the literature (e.g., [24]) concerns spherical obstacles, a fact that does not
hold true for the case of general buried bodies. Although the most general work concerns
the ellipsoidal approximation [27], the simplest and important case is the spheroid [26].
However, here in this paper, we face the problem of two different buried objects placed
near each other and, thus, we are obliged to make use of the best fitting system to
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the particular physics, that is, the bispherical coordinate system [18]. Consequently, we apply
the mathematical tools of this nonaxisymmetric geometry to our scattering model, in order
to obtain the most important terms of the low-frequency expansions of the electromagnetic
fields, those being the static (for n = 0) and the dynamic (n = 1, 2, 3) terms. For n ≥ 4
the contribution of the additional terms is of minor significance and they provide no useful
information for the fields.

Every problem for n = 0, 1, 2, 3 is attacked in the three-dimensional space of the
conductive medium, by applying the appropriate boundary conditions on the surface of
the spherical bodies, that is, cancellation of the normal component of the total magnetic
field and of the two tangential components of the total electric field (total fields result from
the summation of the incident and scattered fields). After several cumbersome yet rigorous
calculations, we analytically calculate the nonaxisymmetric magnetic and electric scattered
fields. In particular, for n = 0 the Rayleigh term is obtained in terms of an infinite series
expansion, while for n = 1 there are no incident fields and, thus, no scattered ones. Emphasis
is then given on the calculation of the two next nontrivial terms for n = 2 and for n = 3 of the
aforementioned fields, where those are found in closed form from exact solutions of coupled
for n = 2, to the one at n = 0 (here we have to solve a Poisson’s equation) or uncoupled (for
n = 3) Laplace’s equations and given in compact fashion as infinite series expansions.

We must mention that the calculation of the exact solution of the zero-order and of
the third-order fields leads to infinite linear systems, solved approximately within any order
of accuracy through a cut-off procedure. However, this is not the case with the second-order
field, where the difficulty of the Poisson’s equation to be solved increases the complexity and,
hence, a numerical method is employed to solve the corresponding systems, yielded by the
boundary conditions.

The rest of the paper itself is organized as follows. In Section 2, the theoretical basis
via an analytic mathematical formulation is sketched, while in Section 3 some interesting
information concerning the bispherical coordinate system with its limiting cases, as well as
the bispherical harmonic eigenfunctions [14], is provided. In Section 4, the main results of
the direct scattering problem at hand are given and discussed, while the difficulties arisen
at each step of our calculations are described. Numerical implementation of our results is
considered in Section 5, using the analytical formulae derived, and how to get the desired
accuracy is discussed. The results include plots that depict the variation of the real and of
the imaginary part of the scattered magnetic field as we move upwards or downwards into
the subsurface of the Earth. An outline of our work and future steps follow in Section 6.
Finally, for completeness, the necessary mathematical material concerning the associated
Legendre functions of the first and of the second kind, as well as useful formulae associated
with trigonometric and hyperbolic functions, are collected in the appendix, along with the
presentation of various vector identities.

2. Physical and Mathematical Formulation

The particular physics deals with two different solid impenetrable bodies of surfaces S1

and S2 under a magnetic dipole excitation. Specifically, we consider two highly conductive
spheres buried in a less conductive, homogeneous and isotropic, nonmagnetic medium with
conductivity σ and permeability μ, which in fact takes the value of the permeability of free
space μ0. Provided that the two spheres lie at a reasonable distance from one another, the
bispherical geometry introduced next (Section 3), perfectly describes this two-body system.
Otherwise, we would have to solve two similar (almost identical) problems of identifying
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a metallic sphere [24]. With imaginary unit i, the wave number of the surrounding medium
is assumed to be

k =
√
iωμσ =

√
ωμσ

2
(1 + i), (2.1)

at a low circular frequency ω and with permittivity ε � σ/ω, while the harmonic
time dependence exp(−iωt) of all field quantities is implied from now on. The area of
electromagnetic action is confined by the external three-dimensional space V (R3), considered
to be smooth and bounded or not bounded, depending on the physical problem. In what
follows, every field is written in terms of the position vector r = x1x̂1 + x2x̂2 + x3x̂3 expressed
via the Cartesian basis x̂κ, κ = 1, 2, 3 in Cartesian coordinates (x1, x2, x3), this dependence
omitted for convenience in writing. As for the illumination, it is a known magnetic dipole m
with arbitrary location at r0 and arbitrary orientation:

m =
3∑
i=1

mix̂i. (2.2)

If we introduce theH-notation for the magnetic field and the E-notation for the electric
field, then the electromagnetic incident fields Hi, Ei, produced by the magnetic dipole (2.2),
are scattered by the solid spheres, creating the correspondingly scattered fieldsHs, Es, while
the total magnetic and electric fieldsHt, Et are given by summation of incident and scattered
fields, that is,

Ht = Hi +Hs, Et = Ei + Es for r ∈ V
(
R

3
)
− {r0}, (2.3)

where we have excluded the singular point r0 from the scattering domain. The boundary
value problem is attacked via low-frequency expansions [6] in terms of powers of (ik), that
is,

Hx =
∞∑
n=0

Hx
n(ik)

n, Ex =
∞∑
n=0

Ex
n(ik)

n for r ∈ V
(
R

3
)
− {r0}, x = i, s, t, (2.4)

for the incident (i), scattered (s), and total (t) electromagnetic fields. TheMaxwell’s equations
[6] connect magnetic and electric fields and they are written suitably for our purpose as
follows:

∇ × Ex = iωμHx, ∇ ×Hx = (−iωε + σ)Ex
ε�σ/ω∼= σEx with ∇ ·Hx = ∇ · Ex = 0, x = i, s, t,

(2.5)

wherein the gradient operator ∇ operates at r. However, whatever the case may be, it could
operate at r0, consequently for writing convenience we define ∇ ≡ ∇r and similarly for
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the Laplace operatorΔ ≡ Δr, otherwise it will be said so. From the low-frequency assumption,
the Maxwell’s equations (2.5) can be reduced in the form

σ∇ × Ex
n = −Hx

n−2 for n ≥ 2, ∇ ×Hx
n = σEx

n for n ≥ 0, x = i, s, t, (2.6)

respectively, while all the fields for every r ∈ V (R3) − {r0} are divergence-free,

∇ ·Hx
n = ∇ · Ex

n = 0 for n ≥ 0, x = i, s, t, (2.7)

as immediate consequence of (2.6).
Letting R = r − r0 and R = |r − r0|, the electromagnetic incident fields generated by the

magnetic dipole m assume the forms [6]

Hi =
1
4π

[(
k2 +

ik

R
− 1
R2

)
m −

(
k2 +

3ik
R

− 3
R2

)
R ⊗ R ·m

R2

]
eikR

R
,

Ei =
[
ωμk

4π

(
1 +

ik

R

)
m × R
R

]
eikR

R
,

(2.8)

where the symbol “⊗” denotes juxtaposition. Some extended algebraic calculations on the
incident fields (2.8), based on the Taylor’s expansion of the exponential functions eikR and on
definition (2.1), yield low-frequency relations as powers of (ik) for the incident fields, where
the first four powers of the fields, that is, the static term for n = 0 and the dynamic terms for
n = 1, 2, 3, are sufficient enough. In detail, the primary (incident) fields enjoy the expressions

Hi =
[
Hi

0 +Hi
2(ik)

2 +Hi
3(ik)

3
]
+©
(
(ik)4

)
,

Ei =
[
Ei
2(ik)

2
]
+©
(
(ik)4

)
.

(2.9)

In view of the gradient differential operator ∇ ≡ ∇r (operated at r) and the unit dyadic Ĩ, we
obtain

Hi
0 =

m
4π

·
(
3R ⊗ R
R2

− Ĩ
)

1
R3

=
m
4π

·
(
∇ ⊗ ∇ 1

R

)
, (2.10)

Hi
2 = − m

4π
·
(
R ⊗ R
R2

+ Ĩ
)

1
2R

=
m
4π

· 1
2

(
∇ 1
R

⊗ R − Ĩ
R

)
, (2.11)

Hi
3 =

m
4π

·
(
−2
3
Ĩ
)

(2.12)

for the magnetic incident fields, while

Ei
2 = − m

4πσ
× R
R3

=
m
4πσ

× ∇ 1
R

(2.13)
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for the electric incident field. In order to derive the second expressions on the right-hand side
of the nontrivial incident fields (2.10)–(2.13), which stand for equivalent and easy-to-handle
differential forms of those fields, we have used the fact that

∇r
1
R

≡ ∇ 1
R

= − R
R3

, ∇r
1
R

≡ ∇ 1
R

= −∇r0
1
R
, (2.14)

as well as the result ∇ ⊗ r = Ĩ, along with identities (A.1) and (A.2). It is obvious that the
magnetic terms of order n vary like 1/R3−n, while the electric ones vary like 1/R4−n as R
increases to infinity. We also observe that for the incident magnetic field the dynamic term
for n = 1 is not present, while for the incident electric field the only term that survives is the
dynamic term for n = 2, reflecting exactly the same physical and mathematical treatment to
the scattered fields.

Hence, for the degree of interest here n = 0, 2, 3, we obtain the scattered magnetic field

Hs =
[
Hs

0 +Hs
2(ik)

2 +Hs
3(ik)

3
]
+©
(
(ik)4

)
for r ∈ V

(
R

3
)
− {r0} (2.15)

and the scattered electric field

Es =
[
Es
2(ik)

2
]
+©
(
(ik)4

)
for r ∈ V

(
R

3
)
− {r0}, (2.16)

where the fields Hs
0, Hs

2, Hs
3, and Es

2 are unknown and must be evaluated. Inserting the
wave number k of the embedding medium from (2.1) into relations (2.15) and (2.16), trivial
analysis leads to

Hs =

[
Hs

0 +
(
ωμσ

)√ωμσ

2
Hs

3

]
+
(
ωμσ

)[√ωμσ

2
Hs

3 −Hs
2

]
i +©

(
(ik)4

)
for r ∈ V

(
R

3
)
− {r0},

(2.17)

Es =
[−(ωμσ

)
Es
2

]
i +©

(
(ik)4

)
for r ∈ V

(
R

3
)
− {r0}, (2.18)

respectively. One easily observes that the electric field is purely imaginary, while themagnetic
field is a complex number, indicating that the electromagnetic fields at n = 2 (Hs

2 and Es
2) are

more than adequate for the full solutions, since the contribution of the Hs
3 stands for a very

small correction to both the real and the imaginary parts of the scatteredmagnetic field (2.17).
As far as the zero-order static term Hs

0 is concerned, it provides a very good approximation
for the real part of the magnetic field (2.17). Note that there exist no first-order fields as a
consequence of lack of the corresponding incident fields resulting from (2.9).

Recapitulating, we have to calculate the nontrivial scattered fields by solving four
mixed Maxwell’s type problems for each n = 0, 2, 3. Straightforward calculations on
Maxwell’s equations (2.6) for x = s and elaborate use of identity (A.7) result in a set of
boundary value problems possibly coupled to one another, from the static one at n = 0 to
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dynamic ones at higher values of n up to n = 3, given in terms of the harmonic potentials
Φs

0, Φ
s
2, and Φs

3 via

ΔHs
0 = 0 =⇒ Hs

0 = ∇Φs
0, since ∇ ·Hs

0 = 0, ∇ ×Hs
0 = 0, (2.19)

ΔHs
2 = Hs

0 =⇒ Hs
2 = Φs

2 +
1
2
(
rΦs

0

)
, σEs

2 = ∇ ×Hs
2, since ∇ ·Hs

2 = ∇ · Es
2 = 0, (2.20)

ΔHs
3 = 0 =⇒ Hs

3 = ∇Φs
3, since ∇ ·Hs

3 = 0, ∇ ×Hs
3 = 0, (2.21)

where the fieldsHs
0, H

s
2, Es

2, andHs
3 are to be calculated in the scattering region V(R3)− {r0},

whileHs
1 = Es

0 = Es
1 = Es

3 = 0 as a direct consequence of the type of the incident fields (2.9) and
Maxwell’s equations (2.6). The harmonic potentials inside relationships (2.19)–(2.21) satisfy
the standard Laplace’s equations:

ΔΦs
0 = ΔΦs

3 = 0, ΔΦs
2 = 0. (2.22)

It is worth mentioning that the inhomogeneous vector Laplace equation (2.20), coupled with
the solution of (2.19), is actually a Poisson’s partial differential equation and provided that
the zero-order scattered field Hs

0 is obtained, then the second-order scattered field Hs
2 can

be written as the summation of a general vector harmonic function Φs
2 and of a particular

solution (1/2)(rΦs
0). The form of the particular solution is a straightforward result of the use

of identity (A.11) with respect to (2.19).
The set of problems (2.19)–(2.21) with (2.22) has to be solved by using the proper

perfectly reflecting boundary conditions on the surfaces of the two metal bodies under
identification S1 and S2. Those boundary conditions concern the total fields (2.3) at each
order n, where in view of the outward unit normal vector n̂, they demand cancellation of the
normal component of the total magnetic field (n̂ ·Ht = 0) and of the tangential component of
the electric field (n̂×Et = 0). Hence, combining (2.3) and (2.4), the boundary value problem’s
conditions yield

n̂ ·
(
Hi

n +Hs
n

)
= 0 for n = 0, 2, 3, n̂ ×

(
Ei
2 + Es

2

)
= 0 for every r ∈ S1 ∪ S2. (2.23)

Summarizing now, we are ready to apply the particular bispherical geometry that fits
to the two-sphere case, where the boundary value problems to be solved for the magnetic
field are the following ones: the static one for n = 0, reduced to a potential problem with
Neumann boundary condition, the one for n = 2, where the problem is far more complicated
due to coupling to the static term, and the one for n = 3, where we arrive again at a potential
problem with Neumann boundary condition. Finally, the scattered electric field for n = 2 is
given by the curl of the corresponding magnetic field via (2.20).

3. Bispherical Geometry and Harmonic Eigenfunctions

In this section, we specialize the previous analysis to the case of two spherical metallic (non
penetrable) obstacles of radii α1 and α2, whose centers are located on the x3-axis at a distance
d > α1 + α2 apart. Those spheres are embedded in an otherwise unbounded and continuous
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Figure 1: The bispherical coordinate system in the three-dimensional space V (R3), where the various
surfaces depicted correspond to different values of ζ ∈ R.

medium (scattering area), occupying the three-dimensional space V (R3)− {r0}. The first task
is to adapt exactly one bispherical coordinate system so as to identify the two given spheres
with two specified values of the related coordinate variables [18, 28]. Given a fixed positive
number c > 0, which we consider to be the semifocal distance of our system, we define the
bispherical coordinates (ζ, θ, ϕ) [18] (see Figure 1), which are connected to the Cartesian ones
(x1, x2, x3) through the equations

x1 = c
sin θ cosϕ

cosh ζ − cos θ
, x2 = c

sin θ sinϕ
cosh ζ − cos θ

, x3 = c
sinh ζ

cosh ζ − cos θ
, (3.1)

where ζ ∈ R specifies the nonintersecting spheres for ζ = constant, θ ∈ [0, π] denotes the
intersecting spheres for θ = constant, and ϕ ∈ [0, 2π) is the azimuthal angle that describes
half-planes (meridian planes) for ϕ = constant. Here we must notice that r = (x1, x2, x3)
and r0 = (x10, x20, x30). If we demand the sphere of radius α1 (in the lower half-space) to
correspond to the value ζ = −ζ1 on S1 and the sphere of radius α2 (in the upper half-space)
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to correspond to the value ζ = ζ2 on S2 with ζ1, ζ2 > 0, then we need to specify ζ1, ζ2, and c
so as to obtain a unique bispherical coordinate system that fits the system of the given two-
sphere scattering bodies and this is shown in Figure 1. Trivial analysis that appears among
several limiting cases in [28] is based on the characteristics of the geometry of the system and
provides the unique relations

c =

√
d2 − (α1 − α2)2

√
d2 − (α1 + α2)2

2d
, ζκ = sinh−1

(
c

ακ

)
for κ = 1, 2, (3.2)

where the radii of the spheres, as well the semifocal distance of the system, have to be
much less than the wavelength λ of the incident field, in order to justify the use of low-
frequency approximations. In terms of mathematical analysis, this restriction is secured via
the inequality 2c + α1 + α2 � λ.

Hence, the actual region of propagation of the scattered wave is the exterior domain
of the two spheres

V
(
R

3
)
− {r0} =

{(
ζ, θ, ϕ

)
: ζ ∈ (−ζ1, ζ2), θ ∈ [0, π], ϕ ∈ [0, 2π)

}
(3.3)

and forms a bispherical shell. Since they are impenetrable, there is no wave propagation
inside them, hence, there are no electromagnetic fields produced either in the interior region
ζ ∈ (−∞,−ζ1) of the first sphere S1 (at ζ = −ζ1) or in the interior region ζ ∈ (ζ2,+∞) of the
second sphere S2 (at ζ = ζ2). Therein,

Hx = Ex = 0, x = i, s, t for ζ ∈ (−∞,−ζ1) ∪ (ζ2,+∞), θ ∈ [0, π], ϕ ∈ [0, 2π). (3.4)

The spherical radial distance r in the bispherical domain is given by the expression

r = c

√
cosh ζ + cos θ
cosh ζ − cos θ

, where c > 0, ζ ∈ (−ζ1, ζ2), θ ∈ [0, π], (3.5)

which implies that the far-field region corresponds to a small neighborhood of (ζ, θ) = (0, 0),
whilst one can collapse to some interesting degenerate cases (i.e., the plane case for one
sphere when ζ2 ≡ 0).

The outward unit normal vector n̂ at the surface of each sphere ζ = −ζ1 or ζ = ζ2 is
provided in the Cartesian basis x̂κ, κ = 1, 2, 3, by the formula

n̂ =
|sinh ζ| sin θ cosϕ
cosh ζ − cos θ

x̂1 +
|sinh ζ| sin θ sinϕ
cosh ζ − cos θ

x̂2 +
|sinh ζ|(cosh ζ cos θ − 1)
sinh ζ(cosh ζ − cos θ)

x̂3 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ̂, ζ < 0,

x̂3, ζ = 0,

−ζ̂, ζ > 0.
(3.6)
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The sign for ζ > 0 changes in order to secure normal differentiation in the outer direction,
while, by the definition of a right-handed system (ζ̂, ϕ̂, θ̂), the three coordinate vectors are
assumed to be

ζ̂ = − 1
cosh ζ − cos θ

[
sinh ζ sin θ

(
cosϕx̂1 + sinϕx̂2

)
+ (cosh ζ cos θ − 1)x̂3

]
, (3.7)

θ̂ =
1

cosh ζ − cos θ
[
(cosh ζ cos θ − 1)

(
cosϕx̂1 + sinϕx̂2

) − sinh ζ sin θx̂3
]
, (3.8)

ϕ̂ = − sinϕx̂1 + cosϕ x̂2. (3.9)

The gradient ∇ and the Laplacian Δ differential operators (also valid for r = r0) are
provided by the expressions

∇r ≡ ∇ =
cosh ζ − cos θ

c

[
ζ̂
∂

∂ζ
+ θ̂

∂

∂θ
+

ϕ̂

sin θ
∂

∂ϕ

]
, (3.10)

Δr ≡ Δ =
(cosh ζ − cos θ)2

c2 sin θ

×
{
(cosh ζ − cos θ)

[
∂

∂ζ

(
sin θ

cosh ζ − cos θ
∂

∂ζ

)
+

∂

∂θ

(
sin θ

cosh ζ − cos θ
∂

∂θ

)]
+

1
sin θ

∂2

∂ϕ2

}
,

(3.11)

respectively. Obviously, the unit dyadic Ĩ can take the bispherical form

Ĩ =
3∑
i=1

x̂i ⊗ x̂i = ζ̂ ⊗ ζ̂ + θ̂ ⊗ θ̂ + ϕ̂ ⊗ ϕ̂, (3.12)

while the 3D boundary value problem is adjusted to the type of bispherical geometry
introduced here, where the x3-axis is the axis of symmetry of the scattering region.

Before we proceed further, we introduce the interior (regular as ζ → −∞) u(i)mq


and

the exterior (regular as ζ → +∞) u(e)mq

 harmonic eigenfunctions of degree ( = 0, 1, 2, . . .)
and of orderm(m = 0, 1, 2, . . . , ) in terms of the associated Legendre functions of the first Pm


and of the second Qm


kind [14] (see also the appendix) via the formulae

u
(i)mq

 = e(+1/2)ζPm
 (cos θ)fmq(ϕ), u

(e)mq

 = e−(+1/2)ζPm
 (cos θ)fmq(ϕ), (3.13)

respectively. Both are regular on the axis of symmetry, while the angular dependence is given
by

fmq(ϕ) =
⎧
⎨
⎩
cosmϕ, q = e

sinmϕ, q = o
=⇒ fmq ′(ϕ) =

⎧
⎨
⎩
−m sinmϕ, q = e

m cosmϕ, q = o
for every ϕ ∈ [0, 2π),

(3.14)
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with q denoting the even (e) or the odd (o) part of the eigenfunctions, the prime denoting
derivations with respect to the argument. Then, every harmonic function u in bispherical
geometry is written as follows:

Δu = 0 =⇒ u =
√
cosh ζ − cos θ

∞∑
=0

∑
m=0

∑
q=e,o

[
A

(i)mq

 u
(i)mq

 +A
(e)mq

 u
(e)mq



]
, (3.15)

where A(i)mq


and A

(e)mq


are constant coefficients.

In addition, as far as the incident fields (2.10)–(2.13) with (2.14) are concerned, we
utilize the expansion [14]

1
R

≡ 1
|r − r0| =

1
c

√
(cosh ζ − cos θ)(cosh ζ0 − cos θ0)

×
∞∑
=0

∑
m=0

εm
( −m)!
( +m)!

e−(+1/2)|ζ−ζ0|Pm
 (cos θ)Pm

 (cos θ0) cos
[
m
(
ϕ − ϕ0

)]
,

(3.16)

where εm = 1 for m = 0 and εm = 2 for m ≥ 1, while r0 = (ζ0, θ0, ϕ0). For convenience to our
further calculations, we choose to simplify expansion (3.16) and separate the dependence
from the singular point r0, by introducing, for  ≥ 0, m = 0, 1, 2, . . . ,  and q = e, o, the
function

ρ
mq

 (ζ; r0) =
εm
c

( −m)!
( +m)!

√
cosh ζ0 − cos θ0e−[sgn(ζ0−ζ)](+1/2)ζ0Pm

 (cos θ0)fmq(ϕ0
)
, (3.17)

in terms of definition (3.14) and by virtue of the sign function

sgn(ζ0 − ζ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, ζ0 < ζ,

0, ζ0 = ζ,

1, ζ0 > ζ,

and then

sgn(ζ0 − ζ) =
ζ0 − ζ

|ζ0 − ζ| =
⎧
⎨
⎩
−1, ζ = ζ2,

1, ζ = −ζ1,
since ζ0 /= − ζ1, ζ2,

(3.18)

accompanied by its ζ-derivative

∂

∂ζ

[
sgn(ζ0 − ζ)

]
= −2δ(ζ0 − ζ) =

⎧
⎨
⎩
0, ζ0 /= ζ,

−2, ζ0 = ζ,
(3.19)
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where δ(ζ0 − ζ) is the delta function. Consequently, since |ζ − ζ0| = −[sgn(ζ0 − ζ)](ζ − ζ0) and
by appropriate combination of (A.24)with (A.25), expansion (3.16) is transformed to

1
R

≡ 1
|r − r0| =

√
cosh ζ − cos θ

∞∑
=0

∑
m=0

∑
q=e,o

[
ρ
mq

 (ζ; r0)e[sgn(ζ0−ζ)](+1/2)ζPm
 (cos θ)fmq(ϕ)

]
.

(3.20)

Concluding, a key formula in works such as ours involving bispherical eigenexpan-
sions is provided by the uniformly convergent expansion [28]

1√
cosh ζ − cos θ

=
√
2

∞∑
=0

e−(+(1/2))|ζ|P(cos θ). (3.21)

In the following section, to solve explicitly the boundary value problems (2.19)–(2.23),
we use many useful recurrence relations for the Legendre and the trigonometric functions, as
well as certain identities concerning the differential operators, found in appendix.

4. Bispherical Low-Frequency Electromagnetic Fields

Our purpose is to derive closed analytical expressions for the nonvanishing scattered
magnetic fields Hs

0, Hs
2, and Hs

3, as well as for the scattered electric field Es
2, since Hs

1 = Es
0 =

Es
1 = Es

3 = 0. To achieve it, we must independently solve the problems (2.19) and (2.21) to
get Hs

0 and Hs
3, respectively, and then proceed to the problem (2.20) to get Hs

2 and, thus,
Es
2, which is much more complicated due to coupling with (2.19). The properly adjusted

boundary conditions for the total electromagnetic fields (2.3) on the two surfaces ζ = −ζ1
and ζ = ζ2 are given by (2.23) and fit the aforementioned boundary value problems. Since the
boundary conditions will be considered upon those two surfaces, it is convenient to introduce
the symbol ζs ≡ −ζ1, ζ2, which corresponds to ζs = −ζ1 when we are on S1 and to ζs = ζ2 when
we are on S2. The expressions (2.10)–(2.13) for the incident fields, as well as the unit dyadic
representation (3.12), are properly used, in view of the eigenexpansion (3.20) with (3.17).
The position of the magnetic dipole m at r = r0 is also taken into consideration via (2.2)
and (3.1), while harmonic potentials Φs

0, Φ
s
2, and Φs

3 satisfy (2.22) and follow the previous
analysis based on relations (3.13)–(3.15). The scattering bispherical domain r ∈ V (R3) − {r0}
is given by (3.3), in which the low-frequency magnetic and the electric fields must be built at
each n = 0, 2, 3. We recall that, in view of (3.4), there are no electromagnetic fields inside the
bodies.

Since the region of observation is between the two spheres, we have to employ both
interior and exterior harmonic eigenfunctions (3.13) for the potential problems. Under this
aspect and with respect to relation (3.10) (along with (3.7)–(3.9)), we have to perform long
and tedious calculations in order to obtain the electromagnetic fields, by making extensive
use of the mathematical material of the appendix. In this section, we present the basic and
most interesting steps of them. We begin from the easiest case for n = 3, continue to the fields
for n = 0, and conclude with the most cumbersome case for n = 2.

The simplest calculations concern the scattered magnetic field Hs
3, due to the fact that

the incident field (2.12) for n = 3 is a constant vector. Here, we have to solve the potential
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boundary value problem (2.21)with the Neumann boundary condition (2.23) on both S1 and
S2 for n = 3, which in terms of n̂ given by (3.6)with (3.7) is

Hs
3 = ∇Φs

3 with ΔΦs
3 = 0, where ζ̂ ·

(
Hi

3 +Hs
3

)
= 0 on ζ = ζs ≡ −ζ1, ζ2. (4.1)

Then, the interior and the exterior harmonic structure of the potential Φs
3, with the help of

definitions (3.13)–(3.15), yields

Hs
3 =

∞∑
=0

∑
m=0

∑
q=e,o

∇
[√

cosh ζ − cos θ
(
a
(i)mq

 e(+1/2)ζ + a
(e)mq

 e−(+1/2)ζ
)
Pm
 (cos θ)fmq(ϕ)

]
(4.2)

for every r ∈ V (R3) − {r0}, where a
(i)mq

 and a
(e)mq

 for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , and
q = e, o stand for the constant coefficients to be determined. Thus, in terms of the primary
field (2.12), in view of the unit dyadic (3.12) and taking the three projections of the magnetic
dipole onto the Cartesian coordinate system from (2.2), the boundary condition (4.1), the
gradient operator (3.10) and the unit normal vector (3.7) provides us with the following two
boundary expressions on ζ = ζs ≡ −ζ1, ζ2:
{√

cosh ζs − cos θ
2c

×
∞∑
=0

∑
m=0

∑
q=e,o

[
a
(i)mq

 (sinh ζs + (2 + 1)(cosh ζs − cos θ))e(+1/2)ζs

+a(e)mq

 (sinh ζs − (2 + 1)(cosh ζs − cos θ))e−(+1/2)ζs
]
Pm
 (cos θ)fmq(ϕ)

+
2
3

1
4π

1
cosh ζs − cos θ

×[sinh ζs sin θ
(
m1 cosϕ + m2 sinϕ

)
+m3(cosh ζs cos θ − 1)

]}
= 0.

(4.3)

An immediate consequence of the last summand of relation (4.3), corresponding to incident
field, is that

a
(i)mq

 = a
(e)mq

 = 0 for m = 2, 3, . . . , ,  ≥ 2, q = e, o, (4.4)

while, for convenience, we adopt the following notation for the nonvanishing coefficients:

a

(
i
e

)
1e

 ≡ a

(
i
e

)
1

 , a

(
i
e

)
1o

 ≡ a

(
i
e

)
2

 for  ≥ 1, a

(
i
e

)
0e

 ≡ a

(
i
e

)
3

 for  ≥ 0. (4.5)

Note that the coefficients a

(
i
e

)
0o

 for  ≥ 0 do not appear in expansion (4.2), since sin 0ϕ = 0. In

view of (4.4) and definitions (4.5), we multiply condition (4.3) by 2c(
√
cosh ζs − cos θ)

−1
and
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take orthogonality arguments for the set {cosϕ, sinϕ, 1} of trigonometric functions, in order
to recover three sets for every κ = 1, 2, 3 of two equations for ζs ≡ −ζ1, ζ2. Once done, we recall
the uniformly convergence expansion (3.21) and we use (A.21) so as to obtain

∞∑
=1

[
a
(e)κ
 ((2 + 1)(cosh ζs − cos θ) − sinh ζs)e−(+1/2)ζs

−a(i)κ
 ((2 + 1)(cosh ζs − cos θ) + sinh ζs)e(+1/2)ζs

]
P 1
 (cos θ)

=
cmκ sinh ζs

3π
sin θ

(cosh ζs − cos θ)3/2

= −2cmκ sinh ζs
3π

∂

∂θ

1√
cosh ζs − cos θ

= −2
√
2cmκ sinh ζs

3π

∞∑
=0

e−(+1/2)|ζs|
∂

∂θ
P(cos θ)

=
2
√
2cmκ sinh ζs

3π

∞∑
=0

e−(+1/2)|ζs|P 1
 (cos θ)

(4.6)

for κ = 1, 2. On the other hand, we apply one more time the very useful expansion (3.21),
which in combination with equality |ζs| = (sgn ζs)ζs and the properly adjusted derivative
(3.19) exhibits

∞∑
=0

[
a
(e)3
 ((2 + 1)(cosh ζs − cos θ) − sinh ζs)e−(+1/2)ζs

−a(i)3
 ((2 + 1)(cosh ζs − cos θ) + sinh ζs)e(+1/2)ζs

]
P(cos θ)

=
cm3

3π
(cosh ζs cos θ − 1)

(cosh ζs − cos θ)3/2

=
cm3

3π

(
sinh2ζs

(cosh ζs − cos θ)3/2
− cosh ζs√

cosh ζs − cos θ

)

=
cm3

3π

(
−2 sinh ζs

∂

∂ζs

1√
cosh ζs − cos θ

− cosh ζs√
cosh ζs − cos θ

)

= −
√
2cm3

3π

∞∑
=0

(
2 sinh ζs

∂

∂ζs
+ cosh ζs

)
e−(+1/2)|ζs|P(cos θ)

= −
√
2cm3

3π

∞∑
=0

(cosh ζs − (2 + 1) sinh|ζs|)e−(+1/2)|ζs|P(cos θ)

(4.7)

for κ = 3. The constant coefficients a

(
i
e

)
1

 , a

(
i
e

)
2

 for  ≥ 1 and a

(
i
e

)
3

 for  ≥ 0 are to be
evaluated from the two-set boundary conditions (4.6) and (4.7), applied on ζs ≡ −ζ1, ζ2.



16 Journal of Applied Mathematics

However, conditions (4.6) and (4.7) are not yet ready to profit from the orthogonality of the
Legendre functions of the first kind. Indeed, we have to apply the recurrence relation (A.20)
both on the term cos θP 1


(cos θ),  ≥ 1 of the first one and the term cos θP(cos θ),  ≥ 0

of the second one, which appear in the left-hand side of (4.6) and (4.7), respectively. Then,
we rearrange the indexes properly, and by virtue of orthogonality relation (A.19), we reach
systems of two (for every value of ζs ≡ −ζ1, ζ2) linear algebraic equations in the form of six-
term recurrence equations for every κ = 1, 2, 3. These equations can be written in a matrix
form if we define specific quantities for κ = 1, 2, 3. In effect, if

L(ζs) = e((2+1)/2)ζs for  ≥ 0, ζs ≡ −ζ1, ζ2, (4.8)

then in terms of (4.8) on surfaces S1 at ζs ≡ −ζ1 and S2 at ζs ≡ ζ2, we introduce

Dκ
,Sj

(ζs) =
2
√
2cmκ sinh ζs
3πL(ζs)

for κ = 1, 2,

D3
,Sj

(ζs) =
2
√
2cm3

3πL(ζs)

(
 sinh|ζs| − e−|ζs|

2

)
(κ = 3)

(4.9)

as well as the easy-to-handle functions, independent of κ = 1, 2, 3,

B
(i)
,Sj

(ζs) = −[L−1(ζs) + ( + 1)L+1(ζs)], B
(e)
,Sj

(ζs) =


L−1(ζs)
+

 + 1
L+1(ζs)

for  ≥ 0,

(4.10)

followed by the simple notations

A
(i)κ
,Sj

(ζs) = L(ζs) for κ = 1, 2, A
(i)3
,Sj

(ζs) = ( + 1)L(ζs) (κ = 3),

C
(i)κ
,Sj

(ζs) = ( + 1)L(ζs) for κ = 1, 2, C
(i)3
,Sj

(ζs) = L(ζs) (κ = 3),
(4.11)

corresponding to interior constants and

A
(e)κ
,Sj

(ζs) = − 

L(ζs)
for κ = 1, 2, A

(e)3
,Sj

(ζs) = −  + 1
L(ζs)

(κ = 3),

C
(e)κ
,Sj

(ζs) = −  + 1
L(ζs)

for κ = 1, 2, C
(e)3
,Sj

(ζs) = − 

L(ζs)
(κ = 3),

(4.12)

corresponding to exterior constants, where j = 1, 2 in definitions (4.9)–(4.12) stand for the
two different spherical surfaces ζs ≡ −ζ1, ζ2, respectively. Here, for κ = 1, 2 it is valid for  ≥ 1,
while for κ = 3 we have  ≥ 0, though, for convenience, we could insert the  = 0 case into
(4.6) without affecting the condition, since in view of (A.22) we readily obtain P 1

0 (cos θ) ≡ 0.
Therefore, as long as we force the extra constants and constant coefficients that appear for  =
0, κ = 1, 2 to vanish, we are able to gather the three cases for κ = 1, 2, 3 into one general and
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concrete case. Consequently, the systems of the linear algebraic equations discussed earlier
are written as

Ãκ
x

κ
 = bκ

 for  = 0, 1, 2, . . . , κ = 1, 2, 3, (4.13)

where in view of (4.8)–(4.12), for every  = 0, 1, 2, . . . and κ = 1, 2, 3, the matrix of the
coefficients of the unknowns Ãκ


is the six-diagonal symmetric matrix that reads us

Ãκ
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
(i)
0,S1

B
(e)
0,S1

C
(i)κ
1,S1

C
(e)κ
1,S1

0 0 0 0 0 · · · 0 0 0 0 0 0 0 · · ·

B
(i)
0,S2

B
(e)
0,S2

C
(i)κ
1,S2

C
(e)κ
1,S2

0 0 0 0 0 · · · 0 0 0 0 0 0 0 · · ·

A
(i)κ
0,S1

A
(e)κ
0,S1

B
(i)
1,S1

B
(e)
1,S1

C
(i)κ
2,S1

C
(e)κ
2,S1

0 0 0 · · · 0 0 0 0 0 0 0 · · ·

A
(i)κ
0,S2

A
(e)κ
0,S2

B
(i)
1,S2

B
(e)
1,S2

C
(i)κ
2,S2

C
(e)κ
2,S2

0 0 0 · · · 0 0 0 0 0 0 0 · · ·

0 0 A
(i)κ
1,S1

A
(e)κ
1,S1

B
(i)
2,S1

B
(e)
2,S1

C
(i)κ
3,S1

C
(e)κ
3,S1

0 · · · 0 0 0 0 0 0 0 · · ·

0 0 A
(i)κ
1,S2

A
(e)κ
1,S2

B
(i)
2,S2

B
(e)
2,S2

C
(i)κ
3,S2

C
(e)κ
3,S2

0 · · · 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 · · · A
(i)κ
−1,S1

A
(e)κ
−1,S1

B
(i)
,S1

B
(e)
,S1

C
(i)κ
+1,S1

C
(e)κ
+1,S1

0 · · ·

0 0 0 0 0 0 0 0 0 · · · A
(i)κ
−1,S2

A
(e)κ
−1,S2

B
(i)
,S2

B
(e)
,S2

C
(i)κ
+1,S2

C
(e)κ
+1,S2

0 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

and is of infinite dimensions. The matrix of constant terms bκ

is given by

bκ
 =
[
Dκ

0,S1
Dκ

0,S2
Dκ

1,S1
Dκ

1,S2
· · · Dκ

,S1
Dκ

,S2
· · ·
]ᵀ
, (4.15)

and the matrix of unknown constant coefficients xκ

renders

xκ =
[
a
(i)κ
0 a

(e)κ
0 a

(i)κ
1 a

(e)κ
1 · · · a

(i)κ
−1 a

(e)κ
−1 a

(i)κ


a
(e)κ


a
(i)κ
+1 a

(e)κ
+1 · · ·

]ᵀ
, (4.16)

where the symbol “ᵀ” denotes transpose, so as (4.15) and (4.16) be vectors. At this point,
it is important to remain compatible with the boundary conditions (4.6). Hence, especially
for the cases at κ = 1, 2 the first two lines and the first two columns of the matrix (4.14)
must be omitted, in (4.15) one have to set Dκ

0,S1
= Dκ

0,S2
≡ 0, while in (4.16) the constant

coefficients a
(i)κ
0 and a

(e)κ
0 do not affect (4.6) and must be set to nil. Now we are ready

to solve the infinite system (4.13)–(4.16) from which the determination of the unknown

constant coefficients a

(
i
e

)
1

 , a

(
i
e

)
2

 for  ≥ 1 and a

(
i
e

)
3

 for  ≥ 0 can be obtained up to any
order of accuracy through cut-off techniques based on the solution of square systems. Once
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the solution of the system is obtained, the scatteredmagnetic field (4.2), defined in the domain
(3.3), is provided by

Hs
3 = ∇

{√
cosh ζ − cos θ

×
[ ∞∑
=1

(
a
(i)1


e((2+1)/2)ζ + a
(e)1


e−((2+1)/2)ζ
)
P 1
 (cos θ) cosϕ

+
∞∑
=1

(
a
(i)2


e((2+1)/2)ζ + a
(e)2


e−((2+1)/2)ζ
)
P 1
 (cos θ) sinϕ

+
∞∑
=0

(
a
(i)3


e((2+1)/2)ζ + a
(e)3


e−((2+1)/2)ζ
)
P(cos θ)

]}
for r ∈ V

(
R

3
)
− {r0},

(4.17)

reminding that for n = 3 the scattered electric field vanishes, Es
3 = 0.

The efficiency of the cut-off method is demonstrated in Section 5 of this paper, where
numerical results produced by the solution of such systems are shown, accompanied by the
necessary discussion about the accuracy reached.

A much more complicated analysis, not only in terms of analytical calculations, but
also of numerical implementation, is based on the previous steps. Following the same
procedure, we are ready to obtain the scattered field when n = 0, that is, the static term
Hs

0, though not an easy task as immediate consequence of the complexity of the incident
field Hi

0, given by (2.10). This field admits the double action of the gradient operator (at
position r/= r0) on the quantity 1/R for R = |r − r0|. Therefore, we are confronted once more
with a potential boundary value problem of the form (2.19) and we also apply the Neumann
boundary condition (2.23) on both S1 and S2 for n = 0, whereas for n̂ defined by (3.6) with
(3.7), it is stated by

Hs
0 = ∇Φs

0 with ΔΦs
0 = 0, where ζ̂ ·

(
Hi

0 +Hs
0

)
= 0 on ζ = ζs ≡ −ζ1, ζ2. (4.18)

Similarly with the previous analysis, the interior and exterior harmonic potentialΦs
0, with the

help of relations (3.13)–(3.15), enter into (4.18) to yield

Hs
0 =

∞∑
=0

∑
m=0

∑
q=e,o

∇
[√

cosh ζ − cos θ
(
b
(i)mq

 e(+1/2)ζ + b
(e)mq

 e−(+1/2)ζ
)
Pm
 (cos θ)fmq(ϕ)

]

(4.19)

for every r ∈ V (R3)−{r0}, where, now, b(i)mq

 and b
(e)mq

 for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , and
q = e, o denote the constant coefficients to evaluate by the appropriate boundary condition
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(4.18). Initially, we calculate the two summands of the condition separately. Then, in view of
expression (3.10), we come up with

ζ̂ ·Hs
0

∣∣∣
ζ=ζs

=

{√
cosh ζs − cos θ

2c

×
∞∑
=0

∑
m=0

∑
q=e,o

[
b
(i)mq

 (sinh ζs + (2 + 1)(cosh ζs − cos θ))e(+1/2)ζs

+b(e)mq

 (sinh ζs − (2 + 1)(cosh ζs − cos θ))e−(+1/2)ζs
]

×Pm
 (cos θ)fmq(ϕ)

}

(4.20)

for ζs ≡ −ζ1, ζ2. Yet, the expression of the incident field does not appear easily amenable
to further processing and an alternative approach has been followed, which is the key to
calculation ofHs

0. To do so, we avoid to apply the operator ∇ ≡ ∇r twice on 1/R, as indicated
by relationship (2.10), but we first evaluate the inner product ζ̂ · ∇ with respect to relations
(3.7) and (3.10) to obtain

ζ̂ ·Hi
0

∣∣∣
ζ=ζs

=
cosh ζs − cos θ

c

[
∂

∂ζ

(
∇r

1
|r − r0|

)]

ζ=ζs
· m
4π

, (4.21)

since the dyadic∇⊗∇(1/R) is symmetric, whilst the second part of relation (2.14) helps us to
avoid the double derivation by changing the argument of derivation over the quantity 1/R.
Thus, (4.21) can be rewritten as

ζ̂ ·Hi
0

∣∣∣
ζ=ζs

= −cosh ζs − cos θ
c

[
∂

∂ζ

(
∇r0

1
|r − r0|

)]

ζ=ζs
· m
4π

, (4.22)

which, upon introduction of eigenexpansion (3.20) and with the help of the derivative (3.19),
becomes

ζ̂ ·Hi
0

∣∣∣
ζ=ζs

= −
√
cosh ζs − cos θ

2c

×
∞∑
=0

∑
m=0

∑
q=e,o

{(
m
4π

· ∇r0ρ
mq

 (ζs; r0)
)

×
[(
sinh ζs + sgn(ζ0 − ζs)(2 + 1)(cosh ζs − cos θ)

)
esgn(ζ0−ζs)(+1/2)ζs

]

×Pm
 (cos θ)fmq(ϕ)

}
,

(4.23)

where ρ
mq


(ζs; r0) and sign function sgn(ζ0 − ζs) are provided by relation (3.17) and (3.18),

respectively, on surfaces ζ = ζs. The gradient ∇r0ρ
mq


(ζs; r0) is a known quantity, which can be



20 Journal of Applied Mathematics

determined with the aid of (3.10), (3.18)-(3.19) taken at r = r0, while the magnetic dipole m
decomposes as shown in (2.2). Hence, we have achieved the reduction of the difficulty of this
boundary condition (4.18) by using this technique. However, if we combine (4.20) and (4.23),
in view of (4.18), we observe that imposing orthogonality arguments is impossible, since we
are obliged to use the recurrence relation (A.20), in order to manipulate properly the terms
cos θPm


(cos θ) for  ≥ 0 andm = 0, 1, 2, . . . , , which appear inside both the expressions (4.20)

and (4.23).
So, we substitute the modified relationships into condition (4.18), rearrange the

indexes properly, and upon enforcing the orthogonality relation (A.19), we similarly to the
previous problem for Hs

3 reach to systems of two (for every value of ζs ≡ −ζ1, ζ2) linear
algebraic six-term recurrence equations. These equations can be expressed in a matrix form
if we define specific quantities in order to reduce lengthy relations. Using the sign function
(3.18) for the specific cases on surfaces S1 at ζs ≡ −ζ1 and S2 at ζs ≡ ζ2, while conveniently
implying j = 1, 2 in the forthcoming definitions in order to identify the two different spherical
surfaces ζs ≡ −ζ1, ζ2, we introduce

D
mq

,Sj
(ζs; r0) = F(ζs; ζ0)M

mq

 (ζs; r0)

+ ( −m)G−1(ζs; ζ0)M
mq

−1(ζs; r0) + ( +m + 1)G+1(ζs; ζ0)M
mq

+1(ζs; r0),
(4.24)

in terms of functions

F(ζs; ζ0) = −[sinh ζs + sgn(ζ0 − ζs)(2 + 1) cosh ζs
]
esgn(ζ0−ζs)((2+1)/2)ζs ,

G(ζs; ζ0) = sgn(ζ0 − ζs)esgn(ζ0−ζs)((2+1)/2)ζs ,

M
mq

 (ζs; r0) =
m
4π

·∇r0ρ
mq

 (ζs; r0), where ∇r0 =
cosh ζ0 − cos θ0

c

[
ζ̂0

∂

∂ζ0
+ θ̂0

∂

∂θ0
+

ϕ̂0

sin θ0

∂

∂ϕ0

]

(4.25)

and  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , and q = e, o. In addition, we recall definition (4.8) from
the previous problem for Hs

3

L(ζs) = e((2+1)/2)ζs for  ≥ 0, ζs ≡ −ζ1, ζ2, (4.26)

so as to obtain the notations (4.10), which are

B
(i)
,Sj

(ζs) = −[L−1(ζs) + ( + 1)L+1(ζs)], B
(e)
,Sj

(ζs) =


L−1(ζs)
+

 + 1
L+1(ζs)

for  ≥ 0,

(4.27)
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as well as the easy-to-handle functions

A
(i)m
,Sj

(ζs)=( −m + 1)L(ζs), A
(e)m
,Sj

(ζs) = − −m + 1
L(ζs)

for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , ,

C
(i)m
,Sj

(ζs) = ( +m)L(ζs), C
(e)m
,Sj

(ζs) = −  +m

L(ζs)
for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , ,

(4.28)

corresponding to interior and exterior constants, respectively. Consequently, the similar
matrix form of the systems of the linear algebraic equations discussed earlier is

Ãm
 x

mq


= bmq


for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , q = e, o, (4.29)

where, in view of (4.24)–(4.28), the matrix of the coefficients of the unknowns Ãm
 is valid for

 ≥ 0, m = 0, 1, 2, . . . ,  and has the six-diagonal symmetric form

Ãm
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
(i)
0,S1

B
(e)
0,S1

C
(i)m
1,S1

C
(e)m
1,S1

0 0 0 0 0 · · · 0 0 0 0 0 0 0 · · ·

B
(i)
0,S2

B
(e)
0,S2

C
(i)m
1,S2

C
(e)m
1,S2

0 0 0 0 0 · · · 0 0 0 0 0 0 0 · · ·

A
(i)m
0,S1

A
(e)m
0,S1

B
(i)
1,S1

B
(e)
1,S1

C
(i)m
2,S1

C
(e)m
2,S1

0 0 0 · · · 0 0 0 0 0 0 0 · · ·

A
(i)m
0,S2

A
(e)m
0,S2

B
(i)
1,S2

B
(e)
1,S2

C
(i)m
2,S2

C
(e)m
2,S2

0 0 0 · · · 0 0 0 0 0 0 0 · · ·

0 0 A
(i)m
1,S1

A
(e)m
1,S1

B
(i)
2,S1

B
(e)
2,S1

C
(i)m
3,S1

C
(e)m
3,S1

0 · · · 0 0 0 0 0 0 0 · · ·

0 0 A
(i)m
1,S2

A
(e)m
1,S2

B
(i)
2,S2

B
(e)
2,S2

C
(i)m
3,S2

C
(e)m
3,S2

0 · · · 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 · · · A
(i)m
−1,S1

A
(e)m
−1,S1

B
(i)
,S1

B
(e)
,S1

C
(i)m
+1,S1

C
(e)m
+1,S1

0 · · ·

0 0 0 0 0 0 0 0 0 · · · A
(i)m
−1,S2

A
(e)m
−1,S2

B
(i)
,S2

B
(e)
,S2

C
(i)m
+1,S2

C
(e)m
+1,S2

0 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.30)

of infinite dimensions. For  ≥ 0, m = 0, 1, 2, . . . ,  and q = e, o the matrix of the constant
terms bmq

 is provided by

bmq


=
[
D

mq

0,S1
D

mq

0,S2
D

mq

1,S1
D

mq

1,S2
· · · D

mq

,S1
D

mq

,S2
· · ·
]ᵀ

(4.31)

and the matrix of the unknown constant coefficients xmq


is assumed to be

xmq

 =
[
b
(i)mq

0 b
(e)mq

0 b
(i)mq

1 b
(e)mq

1 · · · b
(i)mq

−1 b
(e)mq

−1 b
(i)mq

 b
(e)mq

 b
(i)mq

+1 b
(e)mq

+1 · · ·
]ᵀ
, (4.32)
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where the symbol “ᵀ” denotes transpose, so as (4.31) and (4.32) be vectors. So again, we can
solve this infinite system (4.29)–(4.32) and obtain the unknown constant coefficients b

(i)mq



and b
(e)mq

 for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , and q = e, o up to any order of accuracy through
cut-off techniques. Once the solution of the system is obtained, the scattered magnetic field
(4.19), defined in the domain (3.3), is given by

Hs
0 = ∇

[√
cosh ζ − cos θ

∞∑
=0

∑
m=0

∑
q=e,o

(
b
(i)mq

 e((2+1)/2)ζ + b
(e)mq

 e−((2+1)/2)ζ
)
Pm
 (cos θ)fmq(ϕ)

]

(4.33)

for every r ∈ V (R3) − {r0}, while for n = 0 there exists no scattered electric field, Es
0 = 0.

Numerical implementation for the static term (4.33) is found in Section 5, where accuracy of
the cut-off technique is discussed.

Let us now concentrate upon the potential problem at n = 2, where a very difficult and
cumbersome manipulation of the boundary value problem (2.20) with (2.23) results into the
dynamic scattered fields Hs

2 and Es
2.

There exist two reasons that are responsible for this difficulty. The first one is the
coupling of the particular model with the zero-order field Hs

0 (static term), while the second
one refers to the extra electric field Es

2, which enters our problem with the corresponding
additional boundary conditions. However, Hs

2 as well as Es
2 terms are of major significance,

since those fields provide purely imaginary-valued field components within the conductive
medium, as seen from (2.17), (2.18) and contribute to at least most of the imaginary-
valued (quadrature) part of the magnetic field Hs and to the entire imaginary term of
the corresponding electric field Es. Indeed, only the real-valued (in-phase) part of Hs

is essentially made of the static contribution Hs
0. The mathematical problem to solve is

summarized by (2.20) and (2.23), which in terms of the normal unit vector ζ̂ provided by
expression (3.7) becomes

Hs
2 = Φs

2 +
1
2
(
rΦs

0

)
with ΔΦs

2 = 0, ΔΦs
0 = 0, where ζ̂ ·

(
Hi

2 +Hs
2

)
= 0 on ζ = ζs ≡ −ζ1, ζ2,

(4.34)

Es
2 =

1
σ
∇ ×Hs

2 =
1
σ

(
∇ ×Φs

2 +
1
2
∇Φs

0 × r
)
, where ζ̂ ×

(
Ei
2 + Es

2

)
= 0 on ζ = ζs ≡ −ζ1, ζ2,

(4.35)

where the second equality for the scattered electric field in (4.35) comes from immediate
application of identity (A.4). Even though the divergence-free character of Es

2 is obvious, this
is not the case for the scattered magnetic field Hs

2, where we have

∇ ·Hs
2 = 0 =⇒ 2∇ ·Φs

2 + 3Φs
0 +
(
r · ∇Φs

0

)
= 0, (4.36)

which is a consequence of direct application of identity (A.3) onto (4.34) using ∇ · r = 3.
Result (4.36) stands for the extra condition that must be satisfied in addition with the three
(one scalar and two components of a vector) boundary conditions in (4.34) and (4.35). As
readily shown in relation (4.34), the scattered magnetic field at order n = 2 consists of two
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sets of functions. For the particular solution of the form 2−1(rΦs
0), it is ensured from identity

(A.11) as well as from the harmonic character of position vector r and potential Φs
0 that

Δ
(
rΦs

0

)
= 2∇Φs

0 ≡ 2Hs
0, (4.37)

since ∇ ⊗ r = Ĩ, where coupling with the n = 0 solution is exhibited for the nonharmonic part
of the field Hs

2. Hence, from (4.18) and (4.19) and in terms of the already calculated constant

coefficients b(i)mq

 , b
(e)mq

 for  ≥ 0, m = 0, 1, 2, . . . , , and q = e, o via the system (4.29)–(4.32)
we write the potential Φs

0 as

Φs
0 =
√
cosh ζ − cos θ

∞∑
=0

∑
m=0

∑
q=e,o

(
b
(i)mq


e(+1/2)ζ + b

(e)mq


e−(+1/2)ζ

)
Pm
 (cos θ)fmq(ϕ) (4.38)

for r ∈ V (R3) − {r0}. Additionally, the second set of functions of the dynamic field Hs
2 is built

up from the harmonic character ofΦs
2 for internal and external domains, that is,

Φs
2 =
√
cosh ζ − cos θ

∞∑
=0

∑
m=0

∑
q=e,o

(
h(i)mq

 e(+1/2)ζ + h(e)mq

 e−(+1/2)ζ
)
Pm
 (cos θ)fmq(ϕ), (4.39)

where

h

(
i
e

)
mq

 = c

(
i
e

)
mq

 x̂1 + d

(
i
e

)
mq

 x̂2 + e

(
i
e

)
mq

 x̂3 for  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , q = e, o
(4.40)

denote the vector character of the unknown constant coefficients h

(
i
e

)
mq


, given through the

scalar ones for  ≥ 0, m = 0, 1, 2, . . . , , and q = e, o. Thus, according to expansions (4.38) and
(4.39) and in terms of the bispherical representation of the position vector

r =
3∑
i=1

xix̂i = − c

cosh ζ − cos θ

(
sinh ζ cos θζ̂ + cosh ζ cos θθ̂

)
(4.41)

for every ζ ∈ R and θ ∈ [0, π], the full solution (4.34) for the scattered magnetic field is
expressed as

Hs
2 =
√
cosh ζ − cos θ

×
∞∑
=0

∑
m=0

∑
q=e,o

⎡
⎣
⎛
⎝h(i)mq


+
b
(i)mq



2
r

⎞
⎠e(+1/2)ζ +

⎛
⎝h(e)mq


+
b
(e)mq



2
r

⎞
⎠e−(+1/2)ζ

⎤
⎦

× Pm
 (cos θ)fmq(ϕ),

(4.42)
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while the scattered electric field (4.35) assumes the form

Es
2 =

1
σ

∞∑
=0

∑
m=0

∑
q=e,o

⎡
⎣∇
(√

cosh ζ − cos θe(+1/2)ζPm
 (cos θ)fmq(ϕ)

)
×
⎛
⎝h(i)mq


+
b
(i)mq



2
r

⎞
⎠

+∇
(√

cosh ζ − cos θe−(+1/2)ζPm
 (cos θ)fmq(ϕ)

)

×
⎛
⎝h(e)mq


+
b
(e)mq



2
r

⎞
⎠
⎤
⎦,

(4.43)

by straightforward application of identity (A.4), since ∇ × r = 0. Obviously, both
electromagnetic fields for n = 2 are defined in the domain V (R3) − {r0} (see (3.3)). In this
part of the calculations we are forced to work within the purely bispherical geometry. Thus,
we represent the fields (4.42) and (4.43) in bispherical coordinates and in order to accomplish

it we have to introduce the bispherical image of the constant coefficients h

(
i
e

)
mq

 , which for
the prescribed ζ ∈ (−ζ1, ζ2), θ ∈ [0, π] and ϕ ∈ [0, 2π) is

h

(
i
e

)
mq

 =
1

cosh ζ − cos θ

×
{[

− sinh ζ sin θ

(
c

(
i
e

)
mq

 cosϕ + d

(
i
e

)
mq

 sinϕ

)
− e

(
i
e

)
mq

 (cosh ζ cos θ − 1)

]
ζ̂

+

[
(cosh ζ cos θ − 1)

(
c

(
i
e

)
mq


cosϕ + d

(
i
e

)
mq


sinϕ

)
− e

(
i
e

)
mq


sinh ζ sin θ

]
θ̂

+

[
(cosh ζ − cos θ)

(
−c
(
i
e

)
mq


sinϕ + d

(
i
e

)
mq


cosϕ

)]
ϕ̂

}
,

(4.44)

where  = 0, 1, 2, . . . , m = 0, 1, 2, . . . , , and s = e, o. In order to derive expression (4.44),
we used the unit normal vectors of the system (3.7)–(3.9) inserted into the Cartesian form

(4.40). The three sets c

(
i
e

)
mq


, d

(
i
e

)
mq


, and e

(
i
e

)
mq


of scalar constant coefficients for  ≥ 0,

m = 0, 1, 2, . . . , , and q = e, o, which have been introduced above, have to be calculated in
accordance with the incident field data (2.11) and (2.13), with the particular solution 2−1(rΦs

0)
and with the boundary conditions (4.34) and (4.35), provided that the imposed condition of
divergence-free scattered magnetic field (4.36) is ensured.

Obviously, the field problem for n = 2 has an enormous additional physical difficulty,
which is inherited from corresponding mathematical complexity.

Thus, the analytical procedure to follow for the evaluation of the unknown constant
coefficients and considered below only emphasizes the main steps, due to the large amount
of calculations to perform. We must obtain one double-set relation from boundary condition
(4.34) concerning the ζ-component and two double-set relations from boundary condition
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(4.35), which correspond to the θ, ϕ-components. The double-set configuration refers to the
two particular impenetrable surfaces of the two spherical bodies at S1 : ζ = ζs ≡ −ζ1 and S2 :
ζ = ζs ≡ ζ2, which offers, finally, six boundary expressions, three for the interior coefficients
and three for the exterior coefficients given in (4.40). In that sense, we apply the boundary
conditions (4.34) and (4.35) to the total electromagnetic fields and in view of (4.41)–(4.44), as
well as in view of the second-equality form of the incident fields (2.11) and (2.13), we reach
in cumbersome fashion the following six relations for the constant coefficients:

∞∑
=0

∑
m=0

∑
q=e,o

[
f
(i)mq,κ

,c

(
ζs, θ, ϕ

)
c
(i)mq


+ f

(i)mq,κ

,d

(
ζs, θ, ϕ

)
d
(i)mq


+ f

(i)mq,κ

,e

(
ζs, θ, ϕ

)
e
(i)mq



+f (e)mq,κ

,c

(
ζs, θ, ϕ

)
c
(e)mq


+ f

(e)mq,κ

,d

(
ζs, θ, ϕ

)
d
(e)mq


+ f

(e)mq,κ

,e

(
ζs, θ, ϕ

)
e
(e)mq



]

=
∞∑
=0

∑
m=0

∑
q=e,o

g
mq,κ



(
ζs, θ, ϕ; r0

)
for κ = 1, 2, 3, ζs ≡ −ζ1, ζ2,

(4.45)

where θ ∈ [0, π], ϕ ∈ [0, 2π), and r0 = (ζ0, θ0, ϕ0). We must point out that we have
omitted many steps, which contain many (unnecessary to be shown) complicated analytical
manipulations, until the form (4.45) is accomplished and we were forced to define certain
analytical quantities frequently used to our calculations. The leading functions of the
unknown constant coefficients and the constant functions on the right-hand side of (4.45)
are defined as follows for κ = 1:

f
(i)mq,1
,c

(
ζs, θ, ϕ

)
= 2 sinh ζse

((2+1)/2)ζs sin θ cosϕ Y
mq



(
θ, ϕ
)
,

f
(e)mq,1
,c

(
ζs, θ, ϕ

)
= e−(2+1)ζsf (i)mq,1

,c

(
ζs, θ, ϕ

)
,

f
(i)mq,1
,d

(
ζs, θ, ϕ

)
= 2 sinh ζse

((2+1)/2)ζs sin θ sinϕ Y
mq



(
θ, ϕ
)
,

f
(e)mq,1
,d

(
ζs, θ, ϕ

)
= e−(2+1)ζsf (i)mq,1

,d

(
ζs, θ, ϕ

)
,

f
(i)mq,1
,e

(
ζs, θ, ϕ

)
= 2(cosh ζs cos θ − 1)e((2+1)/2)ζsYmq



(
θ, ϕ
)
,

f
(e)mq,1
,e

(
ζs, θ, ϕ

)
= e−(2+1)ζsf (i)mq,1

,e

(
ζs, θ, ϕ

)
,

g
mq,1


(
ζs, θ, ϕ; r0

)
= (cosh ζs − cos θ)S(ζs, ζ0)ζ̂

(
ζs, θ, ϕ

)

·
[
M

mq

 (ζs; r0)r0 − ρ
mq

 (ζs; r0)
m
4π

]
Y

mq



(
θ, ϕ
)

+ c sinh ζs cos θ
[
S(ζs; ζ0)M

mq

 (ζs; r0) − B
mq

 (ζs)
]
Y

mq



(
θ, ϕ
)
,

(4.46)
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while for κ = 2 it is readily obtained

f
(i)mq,2
,c

(
ζs, θ, ϕ

)
=
[
2 sinh ζs sin θP

mq



(
ζs, θ, ϕ

)
e((2+1)/2)ζs + h,+(ζs, θ)f
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Finally, the κ = 3 case is structured by the functions
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All definitions (4.46)–(4.48) hold true for every ζs ≡ −ζ1, ζ2 with ζ0 /= ζs, θ ∈ [0, π], and ϕ ∈
[0, 2π), the unit normal vectors ζ̂(ζs, θ, ϕ), θ̂(ζs, θ, ϕ), and ϕ̂(ϕ) are provided via expressions
(3.7)–(3.9), the ad hoc function ρ

mq

 (ζs; r0) admits the form (3.17) with (3.14) and (3.18), the

magnetic dipole source m is given by (2.2), and the constant coefficients b
(i)mq


and b

(e)mq


for  ≥ 0, m = 0, 1, 2, . . . , , and q = e, o are taken from the solution of the zero-order
problem (4.29)–(4.32). On the other hand, the rest of helpful functions, in the aforementioned
formulae, are
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The form of conditions (4.45) is certainly not appropriate to apply orthogonality rules
neither in the θ-dependence via (A.19) nor in the ϕ-dependence. Even though it would
be appropriate to construct this set of boundary conditions in a suitable form by using
extensively the pertinent recurrence relations (A.20)–(A.27), it seems this effort is futile,
since it is impossible by the nature of the mathematics used here to reach a form
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∑∞
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∑

q=e,o(const.)P
m
 (cos θ)fmq(ϕ) for (4.45). That is, we cannot proceed in the same

manner as in the previous n = 3 and n = 0 cases. So, we have handled numerically
the boundary conditions (4.45), in order to obtain the six scalar constant coefficients
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for every  ≥ 0, m = 0, 1, 2, . . . , , and q = e, o, after some cumbersome numerical code
elaboration. Consequently, we evaluate the scattered magnetic field (4.42), which satisfies
the extra relation (4.36) and the corresponding scattered electric field (4.43) up to a certain
level of numerical accuracy, as seen next.

5. Numerical Results and Discussion

The bispherical coordinate system yields the appropriate environment for solving scattering
problems by two spheres. However, this is true only when the low-frequency hypothesis
is considered, since we are faced with boundary value problems of Laplace’s equation,
which accepts R-separation of variables [18] in the bispherical geometry, while Helmholtz’s
equation does not. For this reason, problems similar to our case adopt this fitting system to
obtain analytical results for the corresponding fields. Nevertheless, it not always easy and
feasible to pursue fully analytical solutions in closed forms without computational error, or
the derived closed formulae do not have the required accuracy, even in the low-frequency
realm. Although the electromagnetic fields in the present investigation have been obtained
for n = 0, 2, 3 (there is no first-order field and higher-order terms are not of substantial
interest) in a closed analytical form of infinite series in terms of the bispherical harmonic
eigenexpansions, they are not given in fully compact fashion. Indeed, the constant coefficients
are evaluated up to a certain order of accuracy via cut-off techniques (for the case of the zero-
order static term and the third-order field) or via a direct numerical solution of the boundary
condition (for the second-order term). Accuracy is controlled by the sum of terms taken in
each case, which inherits the semianalytical terminology and character to our method.

For that reason, we adopt the appropriate bispherical geometry to describe two
different perfectly conducting (σbody → +∞) spheres of radii α1, α2 and we show numerical
results about the scattered magnetic field Hs ≡ H given by (2.17), in view of solutions (4.17),
(4.33), and (4.42). The centers of the two spheres are on the x3-axis at distance d > α1 + α2,
while embedded in a homogeneous infinite space of magnetic permeability μ = 4π ·10−7 F/m
and of electric conductivity σ = 2 · 10−3 S/m. A magnetic dipole as (2.2), that is, m = m3x̂3
of strength m3 = 4π · 103 A · m2, is located nearby at (x10, x20, x30) and illuminates the two
spheres at the low frequency of 500Hz, while the magnetic field is measured along a line (a
borehole) at (x1p, x2p, x3p). We provide illustrations for the real and the imaginary parts of the
approximated scattered magnetic field in units [A/m], where the radii and all distances are
in meters [m].

The case of two spheres of equal radii is considered in Figure 2, where in accordance
with the position of the dipole, the results are symmetric with respect to the line x3 = 0,
as expected. Two similar cases are then examined, with spheres of different radii placed at
reasonable distance (Figure 3) or located very close, almost touching (Figure 4). In the first
set of graphs we observe a small shift of the lines to the x3 > 0 space, where the large sphere
exists, while in the second set there is no significant change, meaning that even for extreme
situations we obtain similar results.

The series solution obtained for the evaluation of H converges relatively fast as
 → +∞, while it must be pointed out that a few terms of the series expansions  ∼= 15−25 are
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Figure 2: The real and the imaginary parts of the approximated low-frequency scattered magnetic field
H for the orders n = 0, 2, 3. The two spheres have equal radii α1 = α2 = 25m and their centers are at
d = 75m. The magnetic dipole is located at (x10, x20, x30) = (200m, 0m, 0m) and the measurement line
probe is placed at (x1p, x2p, x3p) = (0m, 200m, [−400, 400]m), obtaining the field on the x3-axis.
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Figure 3: The real and the imaginary parts of the approximated low-frequency scattered magnetic field
H for the orders n = 0, 2, 3. The two spheres have different radii α1 = 25m and α2 = 50m, while their
centers are at the somewhat far distance d = 100m. The magnetic dipole is located at (x10, x20, x30) =
(200m, 0m, 0m) and the measurement line probe is placed at (x1p, x2p, x3p) = (0m, 200m, [−400, 400]m),
obtaining the field on the x3-axis.
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Figure 4: The real and the imaginary parts of the approximated low-frequency scattered magnetic field
H for the orders n = 0, 2, 3. The two spheres have different radii α1 = 25m and α2 = 50m, while their
centers are very close (d = 76m). The magnetic dipole is located at (x10, x20, x30) = (200m, 0m, 0m) and
the measurement line probe is placed at (x1p, x2p, x3p) = (0m, 200m, [−400, 400]m), obtaining the field on
the x3-axis.
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enough for determining the scattered magnetic field within a very good accuracy. Moreover,
the number of the adequate terms to obtain a specific accuracy depends upon the distance of
the two spheres. As expected, the closer the spheres are, themore terms are needed for achiev-
ing the same order of accuracy and vice versa. In addition, for a given accuracy and a given
relative distance of the centers of the two spheres, the number of terms needed to converge
depends on their ratio of radii, whichmeans an increase of  as this ratio increases. Here, let us
notice that the above calculations concern theH field. If we would like to check the numerical
behavior of the discrete scattered fields for every order separately, we would realize that
the terms needed for convergence of the second-order field, where the numerical procedure
followed is different, are less numerous than the corresponding necessary number of terms
for the cases the zero-order and third-order fields, where the cut-off method is applied.

Finally, let us remark that the effectiveness of the bispherical system in producing
analytic or semianalytic results for low-frequency scattering boundary value problems, could
serve to obtain more analytical results as a reference tool for more brute-force numerical
codes.

6. Conclusions

The large amount of vector data, the electromagnetic and geometrical complexity of the
Earth, the many configurations of sources and receivers, the uncertainty resulting from
datasets containing both the contribution of the primary field (observed if the ore bodies
were, hypothetically, taken out), and the contribution of the secondary field (resulting from
the interaction of this primary field with the ore bodies) explain the continuous interest of
elaborating analytical and numerical methods to solve forward and inverse electromagnetic
scattering problems.

One of the main goals of the present investigation is to obtain an analytical
approximation of the low-frequency behavior of the magnetic and electric fields scattered
by two perfectly conducting spheres located close to each other (so as not to be considered
as two remote objects), illuminated by a time harmonic magnetic dipole. The bispherical
geometry matches the particular physical problem of obstacles of smooth surface and
arbitrary proportions. As for the assumption of perfectly conducting spherical bodies it
is realistic in view of the high conductivity of most mineral ores, their huge conductivity
ratio with their surrounding medium, and the low operation frequencies. Hence, we are
confronted with a near-field problem, where planar skin depths are significantly larger
than the source-body or the body-sensor distances and only diffusion phenomena occur
(conduction currents are predominant).

The approximation obtained is a low-frequency expansion of the electromagnetic
fields up to the third order, since terms of higher order are not of substantial interest and they
do not contribute in much sense to the field. The zero-order static term provides a very good
approximation concerning the real part of the magnetic field, while the second-order term
contributes to the main behavior of its imaginary part. The third-order term stands for a very
small correction to both the real and the imaginary parts of the magnetic field, whereas there
exist no first-order fields as a consequence of lack of the corresponding incident fields. As for
the contribution to the electric field, it comes only from the second-order term, resulting into
a pure imaginary form of this field.

Present investigations confirm that simple models as ours appear reliable when used
to model the response of two general spheres to a localized vector source in a homogeneous
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conductive medium both for low-contrast cases and high-contrast cases. Our devised
modeling tools are based on a rigorous low-frequency analysis of the electromagnetic fields,
where both their real and imaginary parts are of equivalent significance in the development
of a reliable model, while further numerical elaboration or implementation in view of a future
inversion scheme has been presented. In view of this aspect, mathematical and computational
work is currently in progress in several directions, such as different and more complicated
geometries or creation of complicated and time-consuming inversion algorithms.

Appendix

Mathematical Material

For a more complete and detailed analysis on the bispherical harmonic eigenfunctions than
the one presented in Section 3, one can refer to [14]. On the other hand, to make this work
complete and independent, we provide some material and related properties, which have
been used during our calculations and can also be found in [14].

Let us initially introduce some useful identities. If we denote by u, v, and f, g two
scalar and two vector fields, respectively, and if we define by S̃ a dyadic, then the basic vector
differential identities involve the action of the gradient and the Laplace’s operators on certain
expressions, that is,

∇(uv) = u∇v + v∇u, (A.1)

∇ ⊗ (uf) = u(∇ ⊗ f) +∇u ⊗ f, (A.2)

∇ · (uf) = u∇ · f +∇u · f, (A.3)

∇ × (uf) = u∇ × f +∇u × f, (A.4)

∇(f · g) = (∇ ⊗ f) · g + (∇ ⊗ g) · f, (A.5)

∇ · (f ⊗ g) = (∇ · f)g + f · (∇ ⊗ g), (A.6)

∇ × ∇ × f = ∇(∇ · f) −Δf, (A.7)

∇ · (∇ ⊗ f) = Δf, (A.8)

∇ · (∇ ⊗ f)ᵀ = ∇(∇ · f), (A.9)

∇ ⊗
(
S̃ · f
)
=
(
∇ ⊗ S̃

)
· f + (∇ ⊗ f) · S̃ᵀ, (A.10)

Δ(uf) = fΔu + uΔf + 2∇u · (∇ ⊗ f), (A.11)

Δ(f · g) = f ·Δg + g ·Δf + 2(∇ ⊗ f)ᵀ : (∇ ⊗ g), (A.12)

where the symbols “⊗”, “:”, and “ᵀ” denote juxtaposition, double inner product, and
transposition, respectively, while S̃

ᵀ stands for the inverted dyadic. Proofs of identities (A.1)–
(A.12) are based on classical analysis by expanding the vectors f, g, and the dyadic S̃ in
Cartesian coordinates.
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Next, we define the special functions used in this work. In terms of the angular
dependence θ, within the interval [0, π], we introduce the associated Legendre functions of
the first Pm


and of the second Qm


kind [14], which are linear and independent solutions of

the associated Legendre differential equation

(
1 − cos2θ

)
y′′(cos θ) − 2 cos θy′(cos θ) +

[
( + 1) − m2

1 − cos2θ

]
y(cos θ) = 0, θ ∈ (0, π),

(A.13)

where the prime denotes derivation with respect to the cos θ, while  = 0, 1, 2, . . . and m =
0, 1, 2, . . . , . These functions are defined as follows:

Pm
 (cos θ) =

(
1 − cos2θ

)m/2 dm

d(cos θ)m
P(cos θ), θ ∈ (0, π), (A.14)

whereas the Legendre polynomials P are furnished by the Rodrigues formula

P(cos θ) =
1

2!
d

d(cos θ)
(
cos2θ − 1

)
, θ ∈ (0, π), (A.15)

for every  = 0, 1, 2, . . . and m = 0, 1, 2, . . . , . Equivalently, for the same values of  and m,

Qm
 (cos θ) =

(
1 − cos2θ

)m/2 dm

d(cos θ)m
Q(cos θ), θ ∈ (0, π), (A.16)

and here the Legendre functions of the second kind appear in the form

Q(cos θ) = P(cos θ)Q0(cos θ) −
[/2]∑
i=1

(2 − 4i + 3)
(2i − 1)( − i + 1)

P−2i+1(cos θ), θ ∈ (0, π), (A.17)

with

Q0(cos θ) =
1
2
ln

1 + cos θ
1 − cos θ

, θ ∈ (0, π). (A.18)

The functions Pm
 for θ ∈ (0, π) and  ≥ 0, m ≤  satisfy the orthogonality relation

(
Pm
 (cos θ), Pm

′ (cos θ)
)
=
∫+1

−1
Pm
 (cos θ)Pm

′ (cos θ)d(cos θ)

=
2

2 + 1
( +m)!
( −m)!

δ′ ,  ≥ 0, ′ ≥ 0,

(A.19)
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with δ′ being the Kronecker delta and m = 0, 1, 2, . . . , . This integral becomes singular for
the set of functions Qm


for θ ∈ (0, π) and  ≥ 0, m ≤ . The associated Legendre functions of

the first kind satisfy

(2 + 1) cos θPm
 (cos θ) = ( +m)Pm

−1(cos θ) + ( −m + 1)Pm
+1(cos θ), θ ∈ (0, π), (A.20)

while

(2 + 1)sin2θ
dPm

 (cos θ)
d(cos θ)

= ( + 1)( +m)Pm
−1(cos θ) − ( −m + 1)Pm

+1(cos θ), θ ∈ (0, π),

(2 + 1) sin θPm
 (cos θ) = ( +m)( +m − 1)Pm−1

−1 (cos θ) − ( −m + 1)( −m + 2)Pm−1
+1 (cos θ)

= Pm+1
+1 (cos θ) − Pm+1

−1 (cos θ), θ ∈ (0, π).
(A.21)

Those recurrence relations hold true also for the associated Legendre functions of the second
kind Qm

 , θ ∈ (0, π) for the values of  = 0, 1, 2, . . . andm = 0, 1, 2, . . . , . By definition,

Pl
κ(cos θ) ≡ 0, l > κ, P l

κ(cos θ) = Ql
κ(cos θ) ≡ 0, l < 0, κ < 0, θ ∈ (0, π), (A.22)

while

Pm
 (±1) = 0, m/= 0, P(1) = 1, P(−1) = (−1),  ≥ 0. (A.23)

As far as the trigonometric functions sinmϕ and cosmϕ are concerned for ϕ ∈
[0, 2π), 0 ≤ m ≤  and  = 0, 1, 2, . . ., which are used in this paper, the following expressions
hold true:

sinϕ sinmϕ =
1
2
[
cos(m − 1)ϕ − cos(m + 1)ϕ

]
, (A.24)

cosϕ cosmϕ =
1
2
[
cos(m − 1)ϕ + cos(m + 1)ϕ

]
, (A.25)

cosϕ sinmϕ =
1
2
[
sin(m + 1)ϕ + sin(m − 1)ϕ

]
, (A.26)

sinϕ cosmϕ =
1
2
[
sin(m + 1)ϕ − sin(m − 1)ϕ

]
, (A.27)

where ϕ ∈ [0, 2π) stands for the azimuthal angle, taken for the first period of the
trigonometric circle, while the orthogonality here is obvious for functions sinmϕ and cosmϕ.
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In terms of the hyperbolic functions sinh ζ and cosh ζ defined for ζ ∈ (−∞,+∞), the
exponential functions introduced in our work are well known and they can be taken also by
their hyperbolic form, that is,

sinh
(
2 + 1

2
ζ

)
=

e((2+1)/2)ζ − e−((2+1)/2)ζ

2
, cosh

(
2 + 1

2
ζ

)
=

e((2+1)/2)ζ + e−((2+1)/2)ζ

2
,

(A.28)

with

tanh
(
2 + 1

2
ζ

)
=

1
coth(((2 + 1)/2)ζ)

=
sinh(((2 + 1)/2)ζ)
cosh(((2 + 1)/2)ζ)

, (A.29)

where  = 0, 1, 2, . . . and ζ ∈ (−∞,+∞).
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