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An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel
multiobjective programming problem (BLMPP). For such problems, the proposed algorithm
directly simulates the decision process of bilevel programming, which is different from most
traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP
is transformed to solvemultiobjective optimization problems in the upper level and the lower level
interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP
is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto
optimal solutions of the original problem are found. Finally, some numerical examples are given
to illustrate the feasibility of the proposed algorithm.

1. Introduction

Bilevel programming problem (BLPP) arises in a wide variety of scientific and engineering
applications including optimal control, process optimization, game-playing strategy devel-
opment, and transportation problem Thus, the BLPP has been developed and researched
by many scholars. The reviews, monographs, and surveys on the BLPP can refer to [1–11].
Moreover, the evolutionary algorithms (EA) have been employed to address BLPP in papers
[12–16].

However, the bilevel multiobjective programming problem (BLMPP) has seldom been
studied. Shi and Xia [17, 18], Abo-Sinna and Baky [19], Nishizaki and Sakawa [20], and
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Zheng et al. [21] presented an interactive algorithm for BLMPP. Eichfelder [22] presented
a method for solving nonlinear bilevel multiobjective optimization problems with coupled
upper level constraints. Thereafter, Eichfelder [23] developed a numerical method for solving
nonlinear nonconvex bilevel multiobjective optimization problems. In recent years, the
metaheuristic has attracted considerable attention as an alternative method for BLMPP. For
example, Deb and Sinha [24–26] as well as Sinha and Deb [27] discussed BLMPP based on
evolutionary multiobjective optimization principles. Based on those studies, Deb and Sinha
[28] proposed a viable and hybrid evolutionary-local-search-based algorithm and presented
challenging test problems. Sinha [29] presented a progressively interactive evolutionary
multiobjective optimization method for BLMPP.

Particle swarm optimization (PSO) is a relatively novel heuristic algorithm inspired by
the choreography of a bird flock, which has been found to be quite successful in awide variety
of optimization tasks [30]. Due to its high speed of convergence and relative simplicity, the
PSO algorithm has been employed by many researchers for solving BLPPs. For example, Li
et al. [31] proposed a hierarchical PSO for solving BLPP. Kuo and Huang [32] applied the
PSO algorithm for solving bilevel linear programming problem. Gao et al. [33] presented a
method to solve bilevel pricing problems in supply chains using PSO. However, it is worth
noting that the papers mentioned above are only for bilevel single objective problems.

In this paper, an improved PSO is presented for solving BLMPP. The algorithm can
be outlined as follows. The BLMPP is transformed to solve multiobjective optimization
problems in the upper level and the lower level interactively by an improved PSO. And a
set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy.
The above interactive procedure is repeated for a predefined count, and then the accurate
Pareto optimal solutions of the BLMPP will be achieved. Towards these ends, the rest of
the paper is organized as follows. In Section 2, the problem formulation is provided. The
proposed algorithm for solving bilevel multiobjective problem is presented in Section 3. In
Section 4, some numerical examples are given to demonstrate the proposed algorithm, while
the conclusion is reached in Section 5.

2. Problem Formulation

Let x ∈ Rn1 , y ∈ Rn2 , F : Rn1 × Rn2 → Rm1 , f : Rn1 × Rn2 → Rm2 , G : Rn1 × Rn2 → Rp, and
g : Rn1 × Rn2 → Rq. The general model of the BLMPP can be written as follows:

min
x

F
(
x, y

)

s.t. G
(
x, y

) ≥ 0,

min
y

f
(
x, y

)

s.t. g
(
x, y

) ≥ 0,

(2.1)

where F(x, y) and f(x, y) are the upper level and the lower level objective functions,
respectively. G(x, y) and g(x, y) denote the upper level and the lower level constraints,
respectively. Let S = {(x, y)G(x, y) ≥ 0, g(x, y) ≥ 0}, X = {x | ∃ y, G(x, y) ≥ 0, g(x, y) ≥ 0},
S(x) = {y | g(x, y) ≥ 0}, and for the fixed x ∈ X, let S (X) denote the weak efficiency set of
solutions to the lower level problem, the feasible solution set of problem (2.1) is denoted as
IR = {(x, y) | (x, y) ∈ S, y ∈ S(X)}.
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Definition 2.1. For a fixed x ∈ X, if y is a Pareto optimal solution to the lower level problem,
then (x, y) is a feasible solution to the problem (2.1).

Definition 2.2. If (x∗, y∗) is a feasible solution to the problem (2.1) and there are no (x, y) ∈ IR,
such that F(x, y) ≺ F(x∗, y∗), then (x∗, y∗) is a Pareto optimal solution to the problem (2.1),
where “≺” denotes Pareto preference.

For problem (2.1), it is noted that a solution (x∗, y∗) is feasible for the upper level
problem if and only if y∗ is an optimal solution for the lower level problem with x = x∗.
In practice, we often make the approximate Pareto optimal solutions of the lower level
problem as the optimal response feedback to the upper level problem, and this point of view
is accepted usually. Based on this fact, the PSO algorithm may have a great potential for
solving BLMPP. On the other hand, unlike the traditional point-by-point approachmentioned
in Section 1, the PSO algorithm uses a group of points in its operation thus, the PSO can be
developed as a new way for solving BLMPP. In the following, we present an improved PSO
algorithm for solving problem (2.1).

3. The Algorithm

The process of the proposed algorithm is an interactive coevolutionary process for both the
upper level and the lower level. We first initialize population and then solve multiobjective
optimization problems in the upper level and the lower level interactively using an improved
PSO. Afterwards, a set of approximate Pareto optimal solutions for problem 1 is obtained by
the elite strategy which was adopted in Deb et al. [34]. This interactive procedure is repeated
until the accurate Pareto optimal solutions of problem (2.1) are found. The details of the
proposed algorithm are given as follows:

3.1. Algorithm

Step 1. Initialize.

Substep 1.1. Initialize the population P0 withNu particles which is composed by ns = Nu/Nl

subswarms of size Nl each. The particle’s position of the kth (k = 1, 2, . . . , ns) subswarm
is presented as zj = (xj , yj) (j = 1, 2, . . . , nl), and the corresponding velocity is presented
as: vj = (vxj , vyj ) (j = 1, 2, . . . , nl), zj and vj are sampled randomly in the feasible space,
respectively.

Substep 1.2. Initialize the external loop counter t := 0.

Step 2. For the kth subswarm (k = 1, 2, . . . , ns), each particle is assigned a nondomination
rank NDl and a crowding value CDl in f space. Then, all resulting subswarms are combined
into one population which is named as the Pt. Afterwards, each particle is assigned a
nondomination rank NDu and a crowding value CDu in F space.

Step 3. The nondomination particles assigned both NDu = 1 and NDl = 1 from Pt are saved
in the elite set At.
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Step 4. For the kth subswarm (k = 1, 2, . . . , ns), update the lower level decision variables.

Substep 4.1. Initialize the lower level loop counter tl := 0.

Substep 4.2. Update the jth (j = 1, 2, . . . ,Nl) particle’s position and velocity with the fixed xj

and the fixed vj using

vtl+1
yj

= wlv
tl
yj
+ c1lr1l

(
p
pbest
yj

− ztlj

)
+ c2lr2l

(
p
gbest
l − ztlj

)
,

ztl+1j = ztlj + vtl+1
yj

.

(3.1)

Substep 4.3. Consider tl := tl + 1.

Substep 4.4. If tl ≥ Tl, go to Substep 4.5. Otherwise, go to Substep 4.2.

Substep 4.5. Each particle of the ith subswarm is reassigned a nondomination rank NDl

and a crowding value CDl in F space. Then, all resulting subswarms are combined into
one population which is renamed as the Qt. Afterwards, each particle is reassigned a
nondomination rank NDu and a crowding value CDu in F space.

Step 5. Combine population Pt and Qt to form Rt. The combined population Rt is reassigned
a nondomination rank NDu, and the particles within an identical nondomination rank are
assigned a crowding distance value CDu in the F space.

Step 6. Choose half particles from Rt. The particles of rank NDu = 1 are considered first.
From the particles of rank NDu = 1, the particles with NDl = 1 are noted one by one in the
order of reducing crowding distance CDu, for each such particle the corresponding subswarm
from its source population (either Pt or Qt) is copied in an intermediate population St. If a
subswarm is already copied in St and a future particle from the same subswarm is found
to have NDu = NDl = 1, the subswarm is not copied again. When all particles of NDu = 1
are considered, a similar consideration is continued with NDu = 2 and so on till exactly ns

subswarms are copied in St.

Step 7. Update the elite set At. The nondomination particles assigned both NDu = 1 and
NDl = 1 from St are saved in the elite set At.

Step 8. Update the upper level decision variables in St.

Substep 8.1. Initiate the upper level loop counter tu := 0.

Substep 8.2. Update the ith (i = 1, 2, . . . ,Nu) particle’s position and velocity with the fixed yi

and the fixed vi using

vtu+1
xi

= wuv
tu
xi
+ c1ur1u

(
p
pbest
xi

− ztui

)
+ c2ur2u

(
p
gbest
u − ztui

)
,

ztu+1i = ztui + vtu+1
xi

.

(3.2)
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Substep 8.3. Consider tu := tu + 1.

Substep 8.4. If tu ≥ Tu, go to Substep 8.5. Otherwise, go to Substep 8.2.

Substep 8.5. Every member is then assigned a nondomination rank NDu and a crowding
distance value CDu in F space.

Step 9. Consider t := t + 1.

Step 10. If t ≥ T , output the elite set At. Otherwise, go to Step 2.
In Steps 4 and 8, the global best position is chosen at random from the elite set At.

The criterion of personal best position choice is that if the current position is dominated
by the previous position, then the previous position is kept; otherwise, the current position
replaces the previous one; if neither of them is dominated by the other, then we select one
of them randomly. A relatively simple scheme is used to handle constraints. Whenever two
individuals are compared, their constraints are checked. If both are feasible, nondomination
sorting technology is directly applied to decide which one is selected. If one is feasible and
the other is infeasible, the feasible dominates. If both are infeasible, then the one with the
lowest amount of constraint violation dominates the other. Notations used in the proposed
algorithm are detailed in Table 1.

4. Numerical Examples

In this section, three examples will be considered to illustrate the feasibility of the proposed
algorithm for problem (2.1). In order to evaluate the closeness between the obtained Pareto
optimal front and the theoretical Pareto optimal front, as well as the diversity of the obtained
Pareto optimal solutions along the theoretical Pareto optimal front, we adopted the following
evaluation metrics.

4.1. Generational Distance (GD)

This metric used by Deb [35] is employed in this paper as a way of evaluating the closeness
between the obtained Pareto optimal front and the theoretical Pareto optimal front. The
GD metric denotes the average distance between the obtained Pareto optimal front and the
theoretical Pareto optimal front:

GD =

√∑n
i=1 d

2
i

n
, (4.1)

where n is the number of the obtained Pareto optimal solutions by the proposed algorithm
and di is the Euclidean distance between each obtained Pareto optimal solution and the
nearest member of the theoretical Pareto optimal set.
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Table 1: The notations of the algorithm.

xi The ith particle’s position of the upper level problem.

vxi
The velocity of xi.

yj The jth particle’s position of the lower level problem.

vyj
The velocity of yj .

zj The jth particle’s position of BLMPP.

p
pbest
yj

The jth particle’s personal best position for the lower level problem.

p
pbest
xi

The ith particle’s personal best position for the upper level problem.

p
gbest
l

The particle’s global best position for the lower level problem.

p
gbest
u The particle’s global best position for the upper level problem.

Nu The population size of the upper level problem.

Nl The subswarm size of the lower level problem.

t Current iteration number for the overall problem.

T The predefined max iteration number for t.

tu Current iteration number for the upper level problem.

tl Current iteration number for the lower level problem.

Tu The predefined max iteration number for tu.

Tl The predefined max iteration number for tl.

wu Inertia weights for the upper level problem.

wl Inertia weights the lower level problem.

c1u The cognitive learning rate for the upper level problem.

c2u The social learning rate for the upper level problem.

c1l The cognitive learning rate for the lower level problem.

c2l The social learning rate for the lower level problem.

NDu Nondomination sorting rank of the upper level problem.

CDu Crowding distance value of the upper level problem.

NDl Nondomination sorting rank of the lower level problem.

CDl Crowding distance value of the lower level problem.

Pt The tth iteration population.

Qt The offspring of Pt.

St Intermediate population.

4.2. Spacing (SP)

This metric is used to evaluate the diversity of the obtained Pareto optimal solutions by
comparing the uniform distribution and the deviation of solutions as described by Deb [35]:

SP =

∑M
m=1 d

e
m +

∑n
i=1

(
d − di

)2

∑M
m=1 d

e
m + nd

, (4.2)

where di = minj(|Fi
1(x, y) − F

j

1(x, y)| + |Fi
2(x, y) − F

j

2(x, y)|), i, j = 1, 2, . . . , n, d is the mean of
all di, de

m is the Euclidean distance between the extreme solutions in obtained Pareto optimal
solution set and the theoretical Pareto optimal solution set on the mth objective, M is the
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Figure 1: The obtained Pareto optimal front of Example 4.1.

number of the upper level objective function, n is the number of the obtained solutions by
the proposed algorithm.

The PSO parameters are set as follows: r1u, r2u, r1l, r2l ∈ random(0, 1), the inertia weight
wu = wl = 0.7298, and acceleration coefficients with c1u = c2u = c1l = c2l = 1.49618. All results
presented in this paper have been obtained on a personal computer (CPU: AMD Phenom II
X6 1055T 2.80GHz; RAM: 3.25GB) using a C# implementation of the proposed algorithm,
and the figures were obtained using the origin 8.0.

Example 4.1. Example 4.1 is taken from [22]. Here x ∈ R1, y ∈ R2. In this example, the
population size and iteration times are set as follows: Nu = 200, Tu = 200, Nl = 40, Tl = 40,
and T = 40:

min
x

F
(
x, y

)
=
(
y1 − x, y2

)

s.t. G1
(
y
)
= 1 + y1 + y2 ≥ 0

min
y

f
(
x, y

)
=
(
y1, y2

)

s.t. g1
(
x, y

)
= x2 − y2

1 − y2
2 ≥ 0,

− 1 ≤ y1, y2 ≤ 1, 0 ≤ x ≤ 1.

(4.3)

Figure 1 shows the obtained Pareto front of this example by the proposed algorithm. From
Figure 1, it can be seen that the obtained Pareto front is very close to the theoretical Pareto
optimal front, and the average distance between the obtained Pareto optimal front and the
theoretical Pareto optimal front is 0.00026, that is, GD = 0.00026 (see Table 2). Moreover, the
lower SP value (SP = 0.17569, see Table 2) shows that the proposed algorithm is able to obtain
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Table 2: Results of the Generation Distance (GD) and Spacing (SP)metrics for Examples 4.1 and 4.2.

Example GD SP
Example 4.1 0.00026 0.17569
Example 4.2 0.00004 0.00173
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Figure 2: The obtained solutions of Example 4.1.

a good distribution of solutions on the entire range of the theoretical Pareto optimal front.
Figure 2 shows the obtained solutions of this example, which follow the relationship, that is,
y1 = −1 − y2, y2 = −1/2 ± (1/4)

√
8x2 − 4 and x ∈ (1/

√
2, 1). It is also obvious that all obtained

solutions are close to being on the upper level constraint G(x) boundary (1 + y1 + y2 = 0).

Example 4.2. Example 4.2 is taken from [36]. Here x ∈ R1, y ∈ R2. In this example, the
population size and iteration times are set as follows:Nu = 200, Tu = 50,Nl = 40, Tl = 20, and
T = 40.

min
x

F
(
x, y

)
=
(
x2 +

(
y1 − 1

)2 + y2
2 , (x − 1)2 +

(
y1 − 1

)2 + y2
2

)
,

min
y

f
(
x, y

)
=
(
y2
1 + y2

2 ,
(
y1 − x

)2 + y2
2

)
,

− 1 ≤ x, y1, y2 ≤ 2.

(4.4)

Figure 3 shows the obtained Pareto optimal front of this example by the proposed algorithm.
From Figure 3, it is obvious that the obtained Pareto optimal front is very close to the
theoretical Pareto optimal front, the average distance between the obtained Pareto optimal
front and the theoretical Pareto optimal front is 0.00004 (see Table 2). On the other hand, the
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Figure 3: The obtained Pareto optimal front of Example 4.2.
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Figure 4: The obtained solutions of Example 4.2.

obtained Pareto optimal solutions can be distributed uniformly on entire range of theoretical
Pareto optimal front based on the fact that the SP value is lower (SP = 0.00173, see Table 2).
Figure 4 shows the obtained Pareto optimal solutions; they follow the relationship, that is,
x = y1, y1 ∈ [0.5, 1] and y2 = 0.
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Figure 5: The obtained Pareto optimal front of Example 4.3.

Example 4.3. Example 4.3 is taken from [37], in which the theoretical Pareto optimal front is
not given. Here x ∈ R2, y ∈ R3. In this example, the population size and iteration times are
set as follows: Nu = 100, Tu = 50, Nl = 20, Tl = 10, and T = 40:

max
x

F
(
x, y

)
=
(
x1 + 9x2 + 10y1 + y2 + 3x3, 9x1 + 2x2 + 2y1 + 7y2 + 4x3

)
,

s.t. G1
(
x, y

)
= 3x1 + 9x2 + 9y1 + 5y2 + 3y3 ≤ 1039,

G2
(
x, y

)
= −4x1 − x2 + 3y1 − 3y2 + 2y3 ≤ 94,

min
y

f
(
x, y

)
=
(
4x1 + 6x2 + 7y1 + 4y2 + 8y3, 6x1 + 4x2 + 8y1 + 7y2 + 4y3

)
,

s.t. g1
(
x, y

)
= 3x1 − 9x2 − 9y1 − 4y2 ≤ 61,

g2
(
x, y

)
= 5x1 + 9x2 + 10y1 − y2 − 2y3 ≤ 924,

g3
(
x, y

)
= 3x1 − 3x2 + y2 + 5y3 ≤ 420,

x1, x2, y1, y2, y3 ≥ 0.

(4.5)

Figure 5 shows the obtained Pareto optimal front of Example 4.3 by the proposed algorithm.
Figure 6 shows all five constrains for all obtained Pareto optimal solutions and it can be
seen that the G1, g2 and g3 are active constrains. Note that, Zhang et al. [37] only obtained
a single optimal solution x = (146.2955, 28.9394), and y = (0, 67.9318, 0)which lies on the
maximum of the F2 using weighted summethod. In contrast, a set of Pareto optimal solutions
is obtained by the proposed algorithm. However, the fact that the single optimal solution in
[37] is included in the obtained Pareto optimal solutions illustrates the feasibility of proposed
algorithm.
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Figure 6: The constrains of Example 4.3.

5. Conclusion

In this paper, an improved PSO is presented for BLMPP. The BLMPP is transformed to solve
the multiobjective optimization problems in the upper level and the lower level interactively
using the proposed algorithm for a predefined count. And a set of accurate Pareto optimal
solutions for BLMPP is obtained by the elite strategy. The experimental results illustrate
that the obtained Pareto front by the proposed algorithm is very close to the theoretical
Pareto optimal front, and the solutions are also distributed uniformly on entire range of the
theoretical Pareto optimal front. Furthermore, the proposed algorithm is simple and easy to
implement. It also provides another appealing method for further study on BLMPP.
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