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This study is devoted to investigating the regularity criterion of weak solutions of the micropolar
fluid equations in R

3. The weak solution of micropolar fluid equations is proved to be smooth on
(0, T] when the pressure π(x, t) satisfies the following growth condition in the multiplier spaces
Ẋr ,
∫T
0 ‖π(s, ·)‖2/(2−r)

Ẋr /(1 + ln(e + ‖π(s, ·)‖L2)), ds < ∞, and 0 ≤ r ≤ 1. The previous results on
Lorentz spaces and Morrey spaces are obviously improved.

1. Introduction

Consider the Cauchy problem of the three-dimensional (3D)micropolar fluid equations with
unit viscosities

∇ · u = 0,

∂tu −Δu − ∇ ×w +∇π + u · ∇u = 0,

∂tw −Δw − ∇∇ ·w + 2w − ∇ × u + u · ∇w = 0

(1.1)

associated with the initial condition:

u(x, 0) = u0, w(x, 0) = w0, (1.2)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), and w(x, t) = (w1(x, t), w2(x, t), w3(x, t)) are the
unknown velocity vector field and the microrotation vector field. π(x, t) is the unknown
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scalar pressure field. u0 and w0 represent the prescribed initial data for the velocity and
microrotation fields.

Micropolar fluid equations introduced by Eringen [1] are a special model of the non-
Newtonian fluids (see [2–6])which is coupledwith the viscous incompressible Navier-Stokes
model, microrotational effects, andmicrorotational inertia. When themicrorotation effects are
neglected orw = 0, the micropolar fluid equations (1.1) reduce to the incompressible Navier-
Stokes flows (see, e.g., [7, 8]):

∂tu −Δu + (u · ∇)u +∇π = 0,

∇ · u = 0,

u(x, 0) = u0.

(1.3)

That is to say, Navier-Stokes equations are viewed as a subclass of the micropolar fluid
equations.

Mathematically, there is a large literature on the existence, uniqueness and large time
behaviors of solutions of micropolar fluid equations (see [9–15] and references therein);
however, the global regularity of the weak solution in the three-dimensional case is still a big
open problem. Therefore it is interesting and important to consider the regularity criterion of
the weak solutions under some assumptions of certain growth conditions on the velocity or
on the pressure.

On one hand, as for the velocity regularity criteria, by means of the Littlewood-Paley
decomposition methods, Dong and Chen [16] proved the regularity of weak solutions under
the velocity condition:

∇u ∈ Lq
(
0, T ; Ḃ0

p,r

(
R

3
))

(1.4)

with

2
q
+
3
p
= 2,

3
2
< p ≤ ∞, r ≤ 2p

3
. (1.5)

Moreover, the result is further improved by Dong and Zhang [17] in the margin case:

u ∈ L2/(1+r)
(
0, T ;Br

∞,∞
(
R

3
))

, −1 < r < 1. (1.6)

On the other hand, as for the pressure regularity criteria, Yuan [18] investigated the
regularity criterion of weak solutions of the micropolar fluid equations in Lebesgue spaces
and Lorentz spaces:

π ∈ Lq
(
0, T ;Lp

(
R

3
))

, for
2
q
+
3
p
= 2,

3
2
< p < ∞,

π ∈ Lq
(
0, T ;Lp,∞

(
R

3
))

, for
2
q
+
3
p
= 2,

3
2
< p < ∞,

(1.7)

where Lp,∞(R3) is the Lorents space (see the definitions in the next section).
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Recently, Dong et al. [19] improved the pressure regularity of the micropolar fluid
equations in Morrey spaces:

π ∈ Lq
(
0, T ;Ṁp,r

(
R

3
))

, (1.8)

where

2
q
+
3
p
= 2,

3
2
< p ≤ ∞, r ≤ p. (1.9)

Furthermore, Jia et al. [20] refined the regularity from Morrey spaces to Besov spaces:

π ∈ Lq
(
0, T ;Br

p,∞
(
R

3
))

(1.10)

with

2
q
+
3
p
= 2 + r,

3
2 + r

< p < ∞, −1 < r ≤ 1. (1.11)

One may also refer to some interesting results on the regularity criteria of Newtonian and
non-Newtonian fluid equations (see [21–27] and references therein).

The aim of the present study is to investigate the pressure regularity criterion of the
three-dimensional micropolar fluid equations in the multiplier spaces which are larger than
the Lebesgue spaces, Lorentz spaces, and Morrey spaces.

2. Preliminaries and Main Result

Throughout this paper, we use c to denote the constants which may change from line to line.
Lp(R3), Wk,p(R3)with k ∈ Z, 1 ≤ p ≤ ∞ denote the usual Lebesgue space and Sobolev space.
Ḣs(R3), s ∈ R denote the fractional Sobolev space with

∥∥f
∥∥
Ḣs =

(∫

R3
|ξ|2s
∣∣∣f̂
∣∣∣
2
dξ

)1/2

. (2.1)

Consider a measurable function f and define for t ≥ 0 the Lebesgue measure

m
(
f, t
)
:= m

{
x ∈ R

3:
∣∣f(x)

∣∣ > t
}

(2.2)

of the set {x ∈ R
3 : |f(x)| > t}. The Lorentz space is defined by f ∈ Lp,q(R3) if and only if

∥∥f
∥∥
Lp,q =

(∫∞

0
tq
(
m
(
f, t
))q/p dt

t

)1/q

< ∞, for 1 ≤ q < ∞,

∥∥f
∥∥
Lp,∞ = sup

t≥0

(
t
(
m
(
f, t
))1/p)

< ∞, for q = ∞.

(2.3)
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We defined Ṁp,q(R3), 1 ≤ p, q ≤ ∞ the homogeneous Morrey space associated with
norm

∥
∥f
∥
∥
Ṁp,q

= sup
r>0

sup
x∈R3

r3/p−3/q
(∫

|x−y|<r

∣
∣f
(
y
)∣∣qdy

)1/q

< ∞. (2.4)

We now recall the definition and some properties of the multiplier space Ẋr .

Definition 2.1 (see Lemarié-Rieusset [28]). For 0 ≤ r < 3/2, the space Ẋr is defined as the
space of f(x) ∈ L2

loc(R
3) such that

∥
∥f
∥
∥
Ẋr = sup

‖g‖Ḣr ≤1

(∫

R3

∣
∣fg
∣
∣2dx

)1/2

. (2.5)

According the above definition of the multiplier space, it is not difficult to verify the
homogeneity properties. For all x0 ∈ R

3

∥∥f(· + x0)
∥∥
Ẋr =

∥∥f
∥∥
Ẋr ,

∥∥f(λ)
∥∥
Ẋr =

1
λr
∥∥f
∥∥
Ẋr , λ > 0.

(2.6)

When r = 0, it is clear that (see Lemarié-Rieusset [28])

Ẋ0 ∼= BMO, (2.7)

where BMO denotes the homogenous space of bounded mean oscillations associated with
the norm

∥∥f
∥∥
BMO = sup

x∈R3,r>0

1
|Br(x)|

∫

Br(x)

∣∣∣∣∣
f
(
y
) − 1
∣∣Br

(
y
)∣∣

∫

Br(y)
f(z)dz

∣
∣∣∣∣
dy. (2.8)

In particular, the following imbedding (see Lemarié-Rieusset [28])

Lp
(
R

3
)
⊂ Lp,∞

(
R

3
)
⊂ Ṁp,q

(
R

3
)
⊂ Ẋr

(
R

3
)
⊂ Ḃ−r

∞,∞
(
R

3
)
, p =

3
r
> q > 2 (2.9)

holds true.
In order to state our main results, we recall the definition of the weak solution of

micropolar flows (see, e.g., Łukaszewicz [9]).

Definition 2.2. Let T > 0, (u0, w0) ∈ L2(R3), and ∇ · u0 = 0. (u,w) is termed as a weak solution
to the 3Dmicropolar flows (1.1) and (1.2) on (0, T), if (u,w) satisfies the following properties:
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(i) (u,w) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));

(ii) equations (1.1) and (1.2) are valid in the sense of distributions.

Our main results are now read as follows.

Theorem 2.3. Suppose T > 0, (u0, w0) ∈ L2(R3)∩L4(R3), and∇·u0 = 0 in the sense of distributions.
Assume that (u,w) is a weak solution of the 3D micropolar fluid flows (1.1) and (1.2) on (0, T). If the
pressure π(x, t) satisfies the logarithmically growth condition:

∫T

0

‖π(s, ·)‖2/(2−r)
Ẋr

1 + ln(e + ‖π(s, ·)‖L2)
ds < ∞, 0 ≤ r ≤ 1, (2.10)

then the weak solution (u,w) is regular on (0, T].

Thanks to

∫T

0

‖π(s, ·)‖2/(2−r)
Ẋr

1 + ln(e + ‖π(s, ·)‖L2)
ds ≤

∫T

0
‖π(s, ·)‖2/(2−r)

Ẋr ds, (2.11)

it is easy to deduce the following pressure regularity criterion of the three-dimensional
micropolar equations (1.1) and (1.2).

Corollary 2.4. On the substitution of the pressure condition (2.10) by the following conditions:

∫T

0
‖π(s, ·)‖2/(2−r)

Ẋr ds < ∞, 0 ≤ r ≤ 1, (2.12)

the conclusion of Theorem 2.3 holds true.

Remark 2.5. According to the embedding relation (2.9), our results obviously largely improve
the previous results (1.7) and (1.8). Moreover, it seems incomparable with the Besov space
(1.10).

Remark 2.6. Furthermore, since we have no additional growth condition on the microrotation
vector fieldw(x, t), Theorem 2.3 is also valid for the pressure regularity problem of the three-
dimensional Navier-Stokes equations (see, e.g., Zhou [29, 30]).

3. Proof of Theorem 2.3

In order to prove our main results, we first recall the following local existence theorem of the
three-dimensional micropolar fluid equations (1.1) and (1.2).
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Lemma 3.1 (see Dong et al. [19]). Assume 3 < p < ∞ and (u0, w0) ∈ Lp(R3) with ∇ · u0 = 0 in
the sense of distributions. Then there exist a constant T > 0 and a unique strong solution (u,w) of the
3D micropolar fluid equations (1.1) and (1.2) such that

u ∈ BC
(
[0, T);Lp

(
R

3
))

, t1/2∇u ∈ BC
(
[0, T);Lp

(
R

3
))

. (3.1)

By means of the local existence result, (1.1) and (1.2) with (u0, w0) ∈ L2(R3) ∩
L4(R3) admit a unique L4-strong solution (u,w) on a maximal time interval. For the
notation simplicity, we may suppose that the maximal time interval is [0, T). Thus, to prove
Theorem 2.3, it remains to show that

lim
t→ T

(‖u(t)‖4 + ‖w(t)‖4) < ∞. (3.2)

This will lead to a contradiction to the estimates to be derived below. We now begin to follow
these arguments.

Taking the inner product of the second equation of (1.1) with u|u|2 and the third
equation of (1.1) with w|w|2, respectively, and integrating by parts, it follows that

1
4
d

dt
‖u‖4L4 + ‖|u|∇u‖2L2 +

1
2

∥∥∥∇|u|2
∥∥∥
2

L2
=
∫

R3
(∇ ×w) · u|u|2dx −

∫

R3
u · ∇π |u|2dx,

1
4
d

dt
‖w‖4L4 + ‖|w|∇w‖2L2 +

1
2
‖|w|∇ ·w‖2L2 +

∥∥∥∇|w|2
∥∥∥
2

L2
=
∫

R3
(∇ × u) ·w|w|2dx − 2‖w‖4L4 ,

(3.3)

where we have used the following identities due to the divergence free property of the
velocity field u:

∫

R3
(u · ∇u) · u|u|2dx = 0,

∫

R3
(u · ∇w) ·w|w|2dx = 0,

(∇u) ·
(
∇
(
u|u|2

))
= |∇u|2|u|2 + 1

2

∣∣∣∇|u|2
∣∣∣
2
,

(∇w) ·
(
∇
(
w|w|2

))
= |∇w|2|w|2 + 1

2

∣∣∣∇|w|2
∣∣∣
2
,

∫

R3
(∇ ·w)∇ ·

(
w|w|2

)
dx =

∫

R3
|∇ ·w|2|w|2dx +

∫

R3
(∇ ·w)w · ∇|w|2dx

≥ 1
2

∫

R3
|∇ ·w|2|w|2dx − 1

2

∫

R3

∣∣∣∇|w|2
∣∣∣
2
dx.

(3.4)
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Furthermore, applying Young inequality, Hölder inequality, and integration by parts,
we have

∫

R3
(∇ ×w) · u|u|2dx +

∫

R3
(∇ × u) ·w|w|2dx − 2‖w‖4L4

≤ ‖w‖L4‖|u|∇u‖L2‖u‖L4 + ‖u‖L4‖|w|∇w‖L2‖w‖L4 − 2‖w‖44
≤ ‖u‖4L4 + ‖|w|∇w‖2L2 + ‖|u|∇u‖2L2 .

(3.5)

Combining the above inequalities, it follows that

d

dt

(
‖u‖4L4 + ‖w‖4L4

)
+ 2‖|u|∇u‖2L2 + 2

∥∥∥∇|u|2
∥∥∥
2

L2

≤ C
(
‖u‖4L4 + ‖w‖4L4

)
+ C

∣∣∣∣

∫

R3
u · ∇π |u|2dx

∣∣∣∣.

(3.6)

In order to estimate the last term of the right-hand side of (3.6), taking the divergence
operator ∇· to the first equation of (1.1) produces the expression of the pressure:

π = (−Δ)−1∇ · (u · ∇u). (3.7)

Employing Calderón-Zygmund inequality and the divergence free condition of the velocity
derives the estimate of the pressure:

‖π‖Lr ≤ c‖u‖2L2r ,

‖∇π‖Lr ≤ c‖u · ∇u‖Lr , 1 < r < ∞.
(3.8)

Therefore, we estimate the pressure term as

∣∣∣∣−
∫

R3
u · ∇π |u|2dx

∣∣∣∣ ≤
∫

R3
|π ||u|

∣∣∣∇|u|2
∣∣∣dx ≤ 1

2

[∫

R3

∣∣∣∇|u|2
∣∣∣
2
dx +

∫

R3
|π |2|u|2dx

]
. (3.9)

Now we estimate the integral

I =:
∫

R3
|π |2|u|2dx (3.10)
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on the right-hand side of (3.9). By the Hölder inequality and the Young inequality we have

I ≤
∥∥
∥π |u|2

∥∥
∥
L2
‖π‖L2

≤ ‖π‖Ẋr

∥
∥
∥|u|2

∥
∥
∥
Ḣr

‖π‖L2

≤ ‖π‖Ẋr

∥
∥
∥|u|2

∥
∥
∥
1−r

L2

∥
∥
∥∇|u|2

∥
∥
∥
r

L2
‖u‖2L4

≤ ‖π‖Ẋr‖u‖2(2−r)L4

∥
∥
∥∇|u|2

∥
∥
∥
r

L2

≤ ε
∥
∥
∥∇|u|2

∥
∥
∥
2

L2
+ C(ε)‖π‖2/(2−r)

Ẋr ‖u‖4L4 ,

(3.11)

where we have used the following interpolation inequality:

∥∥f
∥∥
Ḣr ≤

∥∥f
∥∥1−r
L2

∥∥∇f
∥∥r
L2 . (3.12)

Hence, combining the above inequalities, we derive

d

dt

(
‖u‖4L4 + ‖w‖4L4

)
+ ‖|u|∇u‖2L2 + ‖|w|∇w‖2L2

≤ C
(
‖u‖4L4 + ‖w‖4L4

)
+ C(ε)‖π‖2/(2−r)

Ẋr ‖u‖4L4 .

(3.13)

Furthermore, we have the second term of the right-hand side of (3.13) rewritten as

C(ε)‖π‖2/(2−r)
Ẋr ‖u‖4L4 ≤ C

(
‖u‖4L4 + ‖w‖4L4

)
‖π‖2/(2−r)

Ẋr

≤ C
‖π(t, ·)‖2/(2−r)

Ẋr

1 + ln(e + ‖π(t, ·)‖L2)

(
‖u‖4L4 + ‖w‖4L4

)
[1 + ln(e + ‖π(t, ·)‖L2)]

≤ C
‖π(t, ·)‖2/(2−r)

Ẋr

1 + ln(e + ‖π(t, ·)‖L2)

(
‖u‖4L4 + ‖w‖4L4

)[
1 + ln

(
e + ‖u(t, ·)‖2L4

)]

≤ C
‖π(t, ·)‖2/(2−r)

Ẋr

1 + ln(e + ‖π(t, ·)‖L2)

(
‖u‖4L4 + ‖w‖4L4

)[
1 + ln

(
e + ‖u‖4L4 + ‖w‖4L4

)]
.

(3.14)

Inserting (3.14) into (3.13) and applying the Gronwall inequality, one shows that

1 + ln
(
‖u‖4L4 + ‖w‖4L4

)
≤
(
1 + ln

(
‖u0‖4L4 + ‖w0‖4L4

))

× exp

⎧
⎨

⎩
CT +

∫T

0

‖π(s, ·)‖2/(2−r)
Ẋr

1 + ln(e + ‖π(s, ·)‖L2)
ds

⎫
⎬

⎭

(3.15)
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which implies

∫

R3

(
|u(t)|4 + |w(t)|4

)
dx < ∞, 0 < t ≤ T. (3.16)

Hence we complete the proof of Theorem 2.3.
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