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The prediction of the aero-engine performance parameters is very important for aero-engine
condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine
exhaust temperature (EGT) time series which come from actual air-borne ACARS data is
reconstructed through selecting some suitable nearby points. The partial least square (PLS) based
on the cubic spline function or the kernel function transformation is adopted to obtain chaotic
predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic
prediction algorithm based on biweight kernel function transformation has significant advantage
in overcoming multicollinearity of the independent variables and solve the stability of regression
model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares
(OLS) method and 10.38 percent less than that of the linear PLS approach. At the same time, the
forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

1. Introduction

Aeroengine conditionmonitoring is applied as a better way to estimate aero-engine condition
and reliability amongst most of the commercial airlines [1, 2]. Predicting and detecting
abnormal behavior of main aeroengine performance parameters is of great importance in
the aeroengine condition monitoring. With the development of modern industry, one typical
aeroengine becomes a more and more integrative and complex system, of which working
condition and fault are very difficult to predict and judge, and the influence and harm
caused by system faults are also more serious than ever. Therefore, there will be a growing
demand for effective prediction methods of long-term trend of aeroengine system to predict
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abnormal behavior of significant performance parameters and potential faults. Then we can
take preventive maintenance measure to avoid faults occurrence, shorten aircraft down time,
thereby reducing maintenance cost and improving aeroengine life.

The aeroengine system is a complex system with nonlinear and dynamic chaos action,
so it is difficult to establish an exact analytic mathematical model of performance parameters.
As a result, analysis usually depends on time series obtained from observation. But in
practical monitoring the availability of obtaining characteristic data is very limited, and
one fault usually shows various changes in performance parameters, and a same change
may result from different faults [3, 4]. However, extracting multiple fault characteristic of
parameters usually brings complexity and redundancy, which may bring difficulty for the
following prediction. The theory of chaotic prediction is a mathematics method to deal with
inexactness, uncertainty, and incompletion, which is remarkable efficiency in aspects of data
reduction and feature extraction.

Studies on chaos prediction can be traced back to Parker and Chua (1989) [5]. More
sophisticated approaches of nonlinear chaotic time series prediction mainly rely on neural
network [6], support vector theory [7], fuzzy rules [8], a simple least square algorithm
[9]. In recent years, considerable interest has been aroused in the study of nonlinear chaos
prediction with the actual observation of aeroengine dynamic system [10, 11]. These papers
summarize the prediction model of nonlinear chaos system based on ordinary least squares
(OLS); however, there are some practical problems in those models such as serious multi-
collinearity and poor robustness of regression function.

Partial least squares (PLS) can overcome information overlaps caused by multi-
collinearity since it adopts canonical correlation analysis, which improves accuracy of
nonlinear system modeling [12]. What is more, PLS adopts cross validity method, which
rejects redundancy principal component and enhances regression equations robustness.
Hence, in our investigation the designed chaotic algorithm is based on the nonlinear partial
least squares (NPLS) regression and the prediction research on the time series.

2. Data Pretreatment

Typical aeroengine performance parameters are exhaust gas temperature (EGT), low-spool
rotor speed (NI), high-spool rotor speeds (N2), and fuel flow (WF) [13]. These four
measurements are often called the four basic parameters, which can be recorded in the air-
borne equipment on most new and old aeroengines. Note that we take the most important
performance parameter, EGT, as example to analyze in this paper; the other parameters can
be fitted in the same method.

2.1. Similarly Correcting EGT Sequence

According to operating principle of the aeroengine, the data of main performance parameters
of the same aeroengine in different external flight conditions such as the external atmosphere
total temperature, total pressure, MACH numbers are quite different, so the original engine
exhaust temperature EGT data usually cannot be directly used for comparison analysis. To
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solve this problem, similar theory is adopted to eliminate the influence of external conditions
on the aeroengine EGT sequence [14].

EGTcor =
EGTobs

θT2
, (2.1)

where EGTobs is the original EGT data, EGTcor is the corrected value of EGTobs, θT2 = (TAT +
273.15)/288.15, TAT is the total air temperature.

2.2. Eliminating Outliers According to Layida Criterion

If outliers exist in the data, they will seriously affect the prediction accuracy of an algorithm.
Layida criterion is the most commonly used for discrimination outliers, of which the
precondition is that there is sufficient data [15]. For time series {Xi}(i = 1, . . . , n), if n is large
enough (normally n > 80), and only random disturbance exists in all data. Assume that the
random time series is following a normal distribution whose mean is μ and deviation is σ2,
so the probability that the deviation (Xi − μ) falls in ±3σ ranges is about 0.3%. According to
Layida criterion, if the absolute deviation of a time series data Xi(i = 1, . . . , n) is larger than
3σ, then Xi can be judged as an outlier and should be removed.

Let the number of sample beN, the observed value of time series is {xi}(i = 1, . . . ,N),
the sample mean and standard deviation is x and S, respectively. If the sample point xi meets
|xi−x| > 3S, then xi is an outlier which will be eliminated. x and S should be computed again
after all the outliers are removed.

3. Chaos Prediction Model Based on Nonlinear Partial Least Squares
(PLS) Regression

Suppose observed time series is {xn}(n = 1, 2, . . . ,N), the chaotic phase space sn is
reconstructed by [16].

sn =
(
xn, xn−τ , . . . , xn−(m−1)τ

) ∈ Rm, n = (m − 1)τ + 1, (m − 1)τ + 2, . . . ,N, (3.1)

where τ is the delay time, m is the embedding dimension and N is the length of the time
series.

3.1. Characterizing Chaos through Lyapunov Exponents

Through the years, the existence of chaos has been characterized in time series by means of
several methods, among others: analysis of Fourier spectra, fractal power spectra, entropy,
fractal dimension, and calculation of Lyapunov exponents. However, several of these
methods have proven not to be very efficient [16]. The Lyapunov exponents provide all the
information about the local and global complexity of chaos, therefore the measurement of
Lyapunov exponents has been an effective method to judge whether a time series is caused
by a chaotic dynamical system.

The Lyapunov exponents λ1, λ2, . . . , λd are the average rates of expansion (λi > 0) or
contraction (λi < 0) near a limit set of a dynamical system [16]. In fact, the LE is a quantitative
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measure of the divergence of several trajectories in the system. There is one LE for each
direction in the d-dimensional phase space where the system is embedded. The variable d
represents the Lyapunov dimension or phase space dimension. The LE does not change when
the initial conditions of a trajectory are modified or when some perturbation occurs in the
system. If at least one LE is positive, the system presents chaotic motion [17]; hence if chaos
exists in a dynamical system, the largest Lyapunov exponent must be positive.

We will calculate the largest Lyapunov exponents according to the algorithm offered
by Wolf et al. (1985) [17]; the numerical results are shown in Table 1.

3.2. Chaos Prediction Model

Let state vector at time T be sT , we obtain the nearest neighbor points sα1 , sα2 , . . . , sαK by
calculating the Euclidean distance between the target points sT and any one of reconstruction
vectors [18], where

sαi =
(
xαi , xαi−τ , . . . , xαi−(m−1)τ

)
, i = 1, 2, . . . , K. (3.2)

Let X be the sample matrix of reconstructed variable,

X =

⎡

⎢⎢⎢
⎣

xα1 xα1−τ · · · xα1−(m−1)τ
xα2 xα2−τ · · · xα2 −(m−1)τ
...

...
...

...
xαK xαK−τ · · · xαK−(m−1)τ

⎤

⎥⎥⎥
⎦

∈ RK×m. (3.3)

Let y be the prediction variable, then the nonlinear chaos predictionmodel is described
as

y = f(x1, x2, . . . , xm), (3.4)

where xi is the ith column of X, i = 1, 2, . . . , m, y = [xα1+p , xα2+p, . . . , xαK+p] ∈ RK, p is the
length of prediction step.

In practice, the observed data sets of independent variable and dependent variable
can usually be obtained. However, the model form of their relations is unknown especially in
case of higher dimensions, and the problem becomesmore complicatedwhen the relationship
between the dependent variable and independent variables is nonlinear. Usually (3.4) is fitted
by additive model or multiplicative model. For the sake of computation convenience, we
consider the addition model of each independent variable; that is,

y = f1(x1) + f2(x2) + · · · + fm(xm) + ε. (3.5)

At present, the nonlinear relationship between the original variable usually is into a
quasi-linear relationship, after then, the prediction model is established by an effective linear
theory method. Spline function and kernel function are commonly used in the transformation
of the basic functions.
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Table 1: Comparative analysis of the optimal results based on various forecasting methods.

Forecasting method Embedding
dimension (m) Delay time (τ) Subset

numbers
Largest Lyapunov

exponent NMSE

Cubic spline interpolation 9 3 5 0.25 0.6400
Uniform kernel 8 19 2 0.16 0.5529
Epanechnikov kernel 8 19 2 0.17 0.5529
Bi-weight kernel 8 19 2 0.38 0.5431
Tri-weight kernel 9 3 5 0.29 0.5918
Gaussian kernel 3 10 4 0.32 0.6325
PLS 9 3 0 0.15 0.6469
OLS 30 16 0 0.098 0.7081

(1) Cubic Spline Function Transformation

Let f̂j(xj)(j = 1, 2, . . . , m) be the cubic spline fitting function, then,

y = β0 + f̂1(x1) + f̂2(x2) + · · · + f̂m(xm) + ε, (3.6)

where

f̂j
(
xj

)
=

Mj+2∑

l=0

βj,lΩ3

(
xj − ξj,l−1

hj

)

, (3.7)

Ω3

(
xj − ξj,l−1

hj

)

= zj,l =
1

3!h3
j

4∑

k=0

(−1)k
(
4
k

)
(
xj − ξj,l−3+k

)3
, (3.8)

ξj,l−1 = min
(
xj

)
+ (l − 1)hj ,

hj =
max

(
xj

) −min
(
xj

)

Mj

(
l = 0, 1, . . . ,Mj + 2

)
,

(3.9)

where β0, βj,l are the model parameters to be determined; ξj,l−1, hj ,Mj are range points,
segment length and section number are divided on the variable xj , respectively.

The minimum observed value of variables is recorded as min(xj) and the maximum as
max(xj), then the nonlinear prediction function relationship between independent variables
and dependent variable can be transformed as the following equation:

y = β0 +
m∑

j=1

f̂j
(
xj

)
+ ε = β0 +

p∑

j=1

Mj+2∑

l=0

βj,lΩ3

(
xj − εj,l−1

hj

)

+ ε. (3.10)

Equations (3.6)–(3.8) show that the relationship between y and zj,l is linear, and the
relationship between xj and zj,l is nonlinear, so the chaos prediction model with cubic spline
function transformation is a quasi-linear regression model (see in (3.10)).
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(2) Kernel Function Transformatio

The principle of Kernel function transformation is same as spline function transforma-
tion; that is, a kernel function transformation based on one dimensional nonlinear function
fj(xj), and the cubic spline function{Ω3((xj − ξj,l−1)/hj)(l = 0, 1, . . . ,Mj + 2)} is replaced by
basic function {K((xj −ξj,l−1)/hj)(l = 0, 1, . . . ,Mj +2)}. Thus, the chaos prediction model with
kernel function transformation is as follows [19]:

ŷ = β0 +
p∑

j=1

f̂j
(
xj

)
= β0 +

p∑

j=1

Mj+2∑

l=0

βj,lK

(
xj − ξj,l−1

hj

)

. (3.11)

The commonly used kernel functions include uniform kernel function, Epanechnikov
kernel function, biweight kernel function, tri-weight kernel function and Gaussian kernel
function.

3.3. Nonlinear Partial Least Squares Regression (NPLS)

However, there exist some problems when establishing the above quasi-linear regression
model based on ordinary least squares method, because the dimension of regression model
will increase significantly after a function change, which may lead to the result that the
number of sample points is less than the number of transformed variables; on the other
hand, the data of reconstructed variable x1, x2, . . . , xm are come from the same series, and
the nonlinear correlation exists between each other. So it is not appropriate to employ the
ordinary least squares method to estimate the model parameters when the multicollinear
relationship among the new transformed independent variables is found. One of the effective
methods to solve this problem is to use partial least squares method (PLS) to estimate
parameter of the predictive model.

In this paper, a modified chaos prediction approach based on nonlinear PLS regression
with basic function transformation is developed. The cubic spline function and various kernel
function transformation are used in our model, and the comparative analysis between them
is presented in Section 5.

3.4. Prediction Evaluation

Normally, prediction accuracy is evaluated by the mean squared error MSE,

MSE =
1
P

P∑

p=1

(
xT+p − x̂T+p

)2
, (3.12)

where x̂T+p is predict value, xT+p is observed value. However MSE is concerned with the
order of the magnitude of the observed data. In this paper, the normalized mean square error
NMSE is used as the evaluation criterion of prediction.

NMSE =
MSE
σ2

, (3.13)
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where σ2 is sample variance of the prediction sequence. Our investigation adopts the mean
of 20 predicted values NMSE in order to overcome contingency.

4. Algorithm and Algorithm Flowchart

Step 1. The observational data of aeroengine performance parameter EGT are collected and
similarly corrected, and then the outliers are removed according to Layida criterion.

Step 2. For the selected embedding dimension m (1 ≤ m ≤ m max) and delay time τ(1 ≤
τ ≤ τ max), the chaos phase space on pretreated EGT time series is reconstructed, and
the appropriate nearby points are selected to construct independent variable matrix X and
dependent variable vector y.

Step 3. Choose section number M (1 ≤ M ≤ M max); each row vector xj(j = 1, 2, . . . , m) in
independent variable matrix X is transformed to Zj by various basis function transformation
such as (3.8), then

Zj =
(
zj,0, zj,1, . . . , zj,M+2

)
. (4.1)

Step 4. The new independent variable Zj and dependent variable y are standardized and
marked as (Z̃, ỹ) = (Z̃1, Z̃2, . . . , Z̃m, ỹ), so the prediction model is described as

ỹ =
p∑

j=1

M+2∑

l=0

αj,lz̃j,l + ε, (4.2)

where αj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2) are the parameter of regression model (4.2),
ε is the stochastic error and follows the normal distribution with zero mean and the same
variance.

Step 5. The partial least squares (PLS) is applied to build regression model (4.2). The number
of appropriate PLS components is extracted by effective cross-method [20]; estimate the
regression coefficients αj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2), and obtain the regression
coefficients β0,βj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2) of original model (3.5) by returning αj,l.

Step 6. If estimation of prediction model for all the combination ofM are completed, then go
to step 7, otherwise go to step 3.

Step 7. Calculate the predicted value according to prediction function (3.6) and calculate the
corresponding predicted NMSE.

Step 8. If the calculation of the combination of all the embedding dimensionm and delay time
τ is completed, then go to step 9, otherwise go to step 2.

Step 9. Find out the optimal prediction model with the smallest NMSE, and obtain the
corresponding dimension m, delay time τ and section number M.

Algorithm flow chart is shown in Figure 1.
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Figure 1: Algorithm flowchart.

5. Results and Analysis

The in-the-wing ACARS data of four PW4077D aeroengines have been collected for one year,
and about 1400 EGT data of each engine were selected to form a time series used in numerical
example analysis.

The maxim value of embedding dimension m max, the delay time τ max, and the
segment number M max in the above algorithm are estimated after a large amount of
experiment. In our research, the range of m is among 1–30, τ is 1–20, M is 1–8, respectively.
The cubic spline function and five kernel function introduced in Section 2 are employed for
transformation, and we minimize chaotic prediction NMSE based on PLS algorithm.
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Table 2: The optimal results after selecting independent variable by Bootstrap method based on NPLS.

Forecasting method Embedding
dimension (m)

Delay time
(τ)

Subset
numbers NMSE

Cubic spline interpolation 9 3 5 0.6480
Uniform kernel 28 6 4 0.5753
Epanechnikov kernel 9 3 7 0.5917
Bi-weight kernel 8 19 2 0.5606
Triweight kernel 9 3 5 0.5786
Gaussian kernel 3 10 4 0.6510
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Figure 2: Comparison of original values and predictive values.

The numerical results of the first engine are shown in Table 1, in which line 1 to line 6
show the prediction results based on various NPLS, line 7 to line 8 show the prediction results
based on the common PLS and OLS.

As can be seen in Table 1, all the largest Lyapunov exponents are positive and it
is clarified that the nonlinear and chaotic natures exist in EGT sequence. The first seven
NMSE calculated based on PLS are all less than that based on OLS, which indicates that
there is an obvious advantage of PLS over OLS in fitting chaotic prediction models. The
NMSE of PLS based on various nonlinear transform methods is even less than that of free
transformed PLS, and it indicates that there is a greater advantage of chaotic prediction based
on PLS in forecasting aeroengine EGT. PLS prediction algorithm based on biweight Kernel
transformation is the optimal chaotic prediction algorithm, estimated optimal embedding
dimension is 8, the delay time is 19, and the number of nonlinear transformation section is 2.

PLS regression model includes all of the original selected variables, and there is
multi-collinearity in the independent variables, which can affect the prediction accuracy.
The model parameters estimated based on PLS is of a pretty complex nonlinear character,
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so the independent variables cannot be selected by the parameter test of linear methods.
In this paper, the nonparametric statistical method (Bootstrap [20]) is adopted to select the
independent variables transformed with kernel function and Cubic spline function, and to
find the minimum NMSE; the optimal results of the first engine are shown in Table 2.

Table 2 shows the predictive results based on various NPLS algorithm after selecting
independent variable by Bootstrap method. Only the optimal predictive NMSE based on
triweight Kernel function transformation decreases, and the minimum NMSE in Table 2 is
larger than that in Table 1; it indicates that better NMSE cannot be achieved by Bootstrap test
for selecting independent variables.
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Figure 2 shows the comparison of the prediction values based on OLS, PLS, and
biweight Kernel transformation chaos algorithm with the original value. The PLS algorithm
based on biweight Kernel function transformation has the optimal NMSE in Figure 2.
However, not all of the predictive value has the minimum forecast NMSE.

The deviation between the predictive value and original value based on the above
three algorithms are shown in Figure 3. The fluctuations of the deviations curve based on
biweight Kernel method with the optimal NMSE is the smallest, and larger predicted error is
not appeared in its deviation sequence.
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Table 3: Optimal results of three engines based on various forecasting methods.

Forecasting method Second aeroengine Third aeroengine Fourth aeroengine

m τ Subset
numbers

NMSE m τ Subset
numbers

NMSE m τ Subset
numbers

NMSE

Cubic spline interpolation 8 5 4 0.6041 9 2 5 0.3354 17 3 5 0.3800

Uniform kernel 12 2 4 0.5411 7 2 2 0.3741 10 3 4 0.3529

Epanechnikov kernel 12 2 4 0.5706 9 2 2 0.3417 17 3 4 0.3329

Bi-weight kernel 12 2 4 0.5143 9 2 2 0.2574 17 3 4 0.2431

Triweight kernel 11 3 3 0.5717 9 3 4 0.2805 19 5 5 0.3918

Gaussian kernel 5 9 3 0.5675 14 2 4 0.4521 17 2 3 0.4325

PLS 26 3 0 0.6876 17 3 0 0.4688 28 3 0 0.4192

OLS 12 7 0 0.7515 8 11 0 0.5742 16 7 0 0.4937

Through the numerical results of the first engine we also find that the search range of
designed algorithm is enormous and it takes a long time, so we hope to further reduce search
range and the algorithm complexity. The percentages of the number of NMSE in Table 1
which falls in [min (NMSE),min (NMSE) + 0.03] are statistically analyzed, and the results
are shown in Figures 4, 5 and 6.

As can be seen from Figure 4 to Figure 6, the percentage of NMSE falling in
[min(NMSE),min(NMSE) + 0.03] is lower for different value of m, τ , M, which indicates
that the probability of obtaining suboptimal solution by our algorithm is very low, and also
illustrates that the selection of variables is of significant importance to improve the prediction
accuracy. From Figure 4 we can see that when the dimension of predicted model is over 15,
there is no optimal NMSEwhich falls within the range above mentioned, So the range ofm in
the algorithm can be selected among ranging from 1 to 15. Figures 5 and 6 also show that the
predicted NMSE distribution of various delay time and section number are more dispersed,
so the search range of τ and M cannot be minimized.

The brief computational results of the other three engines are as in Table 3.
From the above calculation results we can see that the algorithm based on various

nonlinear PLS (Cubic Spline Interpolation, Uniform Kernel, Epanechnikov Kernel, biweight
Kernel, Tri-weight Kernel, and Gaussian Kernel) is superior to that based on PLS, and the
algorithm based on PLS is superior to that based on OLS. The results in Tables 1 and 3
show that the predictive results derived from the algorithm based on biweight Kernel are
the optimal among the four aeroengines. And there are no significant difference between the
first aeroengines and the second aeroengines in the same aircraft in predictive NMSE, so we
can conclude that the proposed algorithm is stable for predicting the aeroengine parameter
EGT.

Tables 1 and 3 also show that the optimal values of the embedding dimension (m),
delay time (τ), subset numbers (M) searched by various NPLS algorithm are approximately
the same, but they are quite different among the four aeroengines.

6. Conclusion

The chaos prediction model based on NPLS through Kernel function or Cubic Spline function
transformation is developed and is applied in predicting the aeroengine performance
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parameters EGT. Numerical results show that the proposed model is able to effectively
predict the performance parameter EGT with a higher degree of accuracy. The optimal
embedding dimension is 8, the delay time is 19, and the number of segments is 2. NPLS
chaotic prediction algorithm based on biweight Kernel function transformation is the optimal
EGT prediction algorithm because of the smallest predictive NMSE. Our prediction NMSE is
16.5 percent less than that of the traditional linear least squares (OLS) method and 10.38
percent less than that of the linear PLS approach. The NPLS algorithm of chaotic prediction
with selection variables through Bootstrap test fails to make NMSE further reduced. And
we find that reducing calculation time complexity by lessening search range of embedding
dimension will not affect the prediction accuracy of EGT. It is proved that the proposed
algorithm is robust by the predictive results from four aeroengines.

In particular, the conservative baselines of main aeroengine performance parameters
are given in ECM program provided by jet engine manufacturers [14]. Set the baseline value
of EGT be EGTbase, the deviation between EGTcor and EGTbase can be defined as

ΔEGT = EGTcor − EGTbase. (6.1)

The trend plot of the deviation (ΔEGT) sequence in continuous flights is routinely
used by airlines for the performance monitoring and diagnostics [13]. On the basis of our
prediction algorithm, the EGTcor of upcoming flights can be predicted, and then a layout
for trending of the deviation of main performance parameters for upcoming flights can
be provided. Experienced power maintainer or engineer look at a given trend shift in the
measurement deviations can identify significant behavior disparities, evaluate the aeroengine
condition, and isolate the faulty module or component using the ECM trend plot reports and
related PW4000 fingerprint.

In summary, accurately forecasting the aeroengine performance parameters is of
great importance in the aeroengine condition monitoring. The anomalies of the aeroengine
performance parameters can be detected in time by the predictive value calculated from
our algorithm, then maintenance measures are taken early to prevent the aeroengine from
failure effectively, which assists to reduce aircraft down time, and improve the reliability of
the aeroengine.
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