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We discuss the initial value problem for the nonlinear fractional differential equation L(D)u =
f(t, u), t ∈ (0, 1], u(0) = 0, where L(D) = Dsn − an−1Dsn−1 − · · · − a1D

s1 , 0 < s1 < s2 < · · · < sn < 1,
and aj < 0, j = 1, 2, . . . , n − 1, Dsj is the standard Riemann-Liouville fractional derivative and
f : [0, 1] × R → R is a given continuous function. We extend the basic theory of differential
equation, the method of upper and lower solutions, and monotone iterative technique to the initial
value problem. Some existence and uniqueness results are established.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
noninteger order, so fractional differential equations have wider application. Fractional
differential equations have gained considerable importance; it can describemany phenomena
in various fields of science and engineering such as control, porous media, electrochemistry,
viscoelasticity, and electromagnetic.

In the recent years, there has been a significant development in fractional calculus
and fractional differential equations; see Kilbas et al. [1], Miller and Ross [2], Podlubny [3],
Baleanu et al. [4], and so forth. Research on the solutions of fractional differential equations is
very extensive, such as numerical solutions, see El-Mesiry et al. [5] andHashim et al. [6], mild
solutions, see Chang et al. [7] and Chen et al. [8], the existence and uniqueness of solutions
for initial and boundary value problem, see [9–30], and so on.
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With the deep study,many papers that studied the fractional equations containedmore
than one fractional differential operator; see [16–20].

Babakhani and Daftardar-Gejji in [16] considered the initial value problem of nonlin-
ear fractional differential equation

L(D)u = f(t, u), u(0) = 0, 0 < t < 1. (1.1)

By using Banach fixed point theorem and fixed point theorem on a cone some results of
existence and uniqueness of solutions are established.

Zhang in [17] studied the singular initial value problem for fractional differential
equation by nonlinear alternative of Leray-Schauder theorem:

L(D)u = f(t, u), t1−snu(t)|t=0 = 0, 0 < t ≤ 1. (1.2)

In above two equations, L(D) is defined L(D) := Dsn − an−1Dsn−1 − · · · − a1D
s1 , where

0 < s1 < s2 < · · · < sn < 1, and aj > 0, j = 1, 2, . . . , n − 1, Dsj is the standard Riemann-Liouville
fractional derivative.

McRae in [14] studied the initial value problem by the method of upper and lower
solutions and monotone iterative technique:

Dqu = f(t, u), t ∈ (t0, T], 0 < q < 1,

u(t0) = u0 = u(t)(t − t0)1−q|t=t0 .
(1.3)

In this paper, we use similar method as in [16] to consider the initial value problem:

L(D)u = f(t, u), t ∈ (0, 1],

u(0) = 0,
(1.4)

where L(D) = Dsn−an−1Dsn−1−· · ·−a1D
s1 , 0 < s1 < s2 < · · · < sn < 1, and aj < 0, j = 1, 2, . . . , n−1,

Dsj is the standard Riemann-Liouville fractional derivative and f : [0, 1] × R → R is a given
continuous function.



Abstract and Applied Analysis 3

Since f is assumed continuous, the IVP (1.4) is equivalent to the following Volterra
fractional integral equation:

u(t) =
n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sn−1−1u(s)ds +

1
Γ(sn)

∫ t

0
(t − s)sn−1f(s, u(s))ds. (1.5)

In Section 2, we give some definitions and lemmas that will be useful to our main
results. In Section 3, we will use the basic theory of differential equation, the method of
upper and lower solutions, and monotone iterative technique to investigate the initial value
problem (1.4), and some existence and uniqueness results are established. In Section 4, an
example is presented to illustrate the main results.

2. Preliminaries

In this section, we need the following definitions and lemmas that will be useful to our main
results. These materials can be found in the recent literatures; see [1, 11, 16].

Definition 2.1 (see [1]). Let Ω = [a, b](−∞ < a < b < +∞) be a finite interval on the real axis
R. The Riemann-Liouville fractional integrals Iαa+f and Iα

b−f of order α > 0 are defined by

Iαa+f(x) =
1

Γ(α)

∫x

a

(x − t)α−1f(t)dt, x > a,

Iαb−f(x) =
1

Γ(α)

∫b

x

(x − t)α−1f(t)dt, x < b,

(2.1)

respectively. Here Γ(α) is the Gamma function. These integrals are called the left-sided and
the right-sided fractional integrals. We denote Iα0+f(x) by Iαf(x) in the following paper.

Definition 2.2 (see [1]). Let Ω = [a, b] (−∞ < a < b < +∞) be a finite interval on the real axis
R. The Riemann-Liouville fractional derivativesDα

a+f andDα
b−f of order α > 0 are defined by

Dα
a+f(x) =

(
d

dx

)n(
In−αa+

)
f(x) =

1
Γ(n − α)

(
d

dx

)n ∫x

a

(x − t)n−α−1f(t)dt, x > a,

Dα
b−f(x) =

(
− d

dx

)n(
In−αb−

)
f(x) =

1
Γ(n − α)

(
− d

dx

)n ∫b

x

(x − t)n−α−1f(t)dt, x < b,

(2.2)

respectively, where n = [α] + 1, [α] means the integral part of α. These derivatives are called
the left-sided and the right-sided fractional derivatives. We denoteDα

0+f(x) byDαf(x) in the
following paper.
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Definition 2.3. Letting v,w ∈ C([0, 1],R) be locally Hölder continuous with exponent sn <
λ < 1, we say that w is an upper solution of (1.4) if

L(D)w ≥ f(t,w),

w(0) ≥ 0,
(2.3)

and v is a lower solution of (1.4) if

L(D)v ≤ f(t, v),

v(0) ≤ 0.
(2.4)

Next, we will list the following lemma from [11] that is useful for our main results.

Lemma 2.4 (see [11, Lemma 2.1]). Let m ∈ C([0, 1],R) be locally Hölder continuous with
exponent q < λ < 1 such that for any t1 ∈ (0, 1], we have

m(t1) = 0, m(t) ≤ 0 for 0 ≤ t ≤ t1. (2.5)

Then it follows that Dqm(t1) ≥ 0.

Corollary 2.5. Let m ∈ C([0, 1],R) be locally Hölder continuous with exponent sn < λ < 1 such
that for any t1 ∈ (0, 1], we have

m(t1) = 0, m(t) ≤ 0 for 0 ≤ t ≤ t1. (2.6)

Then it follows that L(D)m(t1) ≥ 0 provided aj < 0, j = 1, 2, . . . , n − 1.

Lemma 2.6. Let {uε(t)} be a family of continuous functions on [0, 1], for each ε > 0, where
L(D)uε(t) = f(t, uε(t)), uε(0) = 0 and |f(t, uε(t))| ≤ M for 0 ≤ t ≤ 1. Then the family {uε(t)} is
equicontinuous on [0, 1].

Proof. Since {uε(t)} is a family of continuous functions on [0, 1], there exists l > 0 such that
|uε(t)| ≤ l for 0 ≤ t ≤ 1.

Let δ < min{(∑n−1
j=1 εΓ(sn−sj +1)/(4l|aj |))1/(sn−sn−1), (εΓ(sn+1)/(4M))1/sn}. For 0 ≤ t1 <

t2 ≤ 1, t2 − t1 < δ, we get

|uε(t2) − uε(t1)| =
∣∣∣∣∣∣

n−1∑

j=1

Isn−sj aju(t2) −
n−1∑

j=1

Isn−sj aju(t1) + Isnf(t2, u(t2)) − Isnf(t1, u(t1))

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t1

0

[
(t2 − s)sn−sj−1 − (t1 − s)sn−sj−1

]
u(s)ds

+
n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t2

t1

(t2 − s)sn−sj−1u(s)ds +
1

Γ(sn)

∫ t2

t1

(t2 − s)sn−1f(s, u(s))ds
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+
1

Γ(sn)

∫ t1

0

[
(t2 − s)sn−1 − (t1 − s)sn−1

]
f(s, u(s))ds

∣∣∣∣∣∣

≤
n−1∑

j=1

l
∣∣aj

∣∣

Γ
(
sn − sj

)
∫ t1

0

[
(t1 − s)sn−sj−1 − (t2 − s)sn−sj−1

]
ds

+
n−1∑

j=1

l
∣∣aj

∣∣

Γ
(
sn − sj

)
∫ t2

t1

(t2 − s)sn−sj−1ds +
M

Γ(sn)

∫ t2

t1

(t2 − s)sn−1ds

+
M

Γ(sn)

∫ t1

0

[
(t1 − s)sn−1 − (t2 − s)sn−1

]
ds

=
n−1∑

j=1

l
∣∣aj

∣∣

Γ
(
sn − sj + 1

)
(
t
sn−sj
1 − t

sn−sj
2

)
+

n−1∑

j=1

2l
∣∣aj

∣∣

Γ
(
sn − sj + 1

) (t2 − t1)sn−sj

+
M

Γ(sn + 1)
(
tsn1 − tsn2

)
+

2M
Γ(sn + 1)

(t2 − t1)sn

≤
n−1∑

j=1

2l
∣∣aj

∣∣

Γ
(
sn − sj + 1

) (t2 − t1)sn−sn−1 +
2M

Γ(sn + 1)
(t2 − t1)sn

≤ ε

2
+
ε

2
= ε.

(2.7)

Thus, {uε(t)} is equicontinuous on [0, 1].

Lemma 2.7 (see [16, Theorem 4.2]). Let f : [0, 1] × R → R be continuous and Lipschitz with
respect to second variable with Lipschitz constant L. Let aj satisfy

0 <
L

Γ(sn + 1)
+

n−1∑

j=1

∣∣aj

∣∣

Γ
(
sn − sj + 1

) < 1. (2.8)

Then IVP (1.4) has a unique solution.

Lemma 2.8. Let v,w ∈ C([0, 1],R) be locally Hölder continuous with exponent q < λ < 1, f ∈
C([0, 1] × R,R) and

L(D)w ≥ f(t,w), L(D)v ≤ f(t, v), 0 < t ≤ 1 (2.9)

one of the nonstrict inequalities being strict. Then v(0) < w(0) implies v(t) < w(t), 0 ≤ t ≤ 1.

Proof. Suppose that v(t) < w(t), 0 ≤ t ≤ 1 is not true. We suppose the inequality L(D) >
f(t,w(t)). Letting m(t) = v(t) −w(t), there exists 0 < t1 ≤ 1 such that m(t) ≤ 0, 0 ≤ t ≤ t1, and
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m(t1) = 0. Then by Corollary 2.5, we can obtain L(D)m(t1) ≥ 0. From the conditions and the
definition of m(t), we have

f(t1, v(t1)) ≥ L(D)v(t1) ≥ L(D)w(t1) > f(t1, w(t1)). (2.10)

This is a contradiction to v(t1) = w(t1). The proof is complete.

Lemma 2.9. Assume that the conditions of Lemma 2.8 hold with nonstrict inequalities (2.3) and
(2.4). Furthermore, suppose that

f(t, x) − f
(
t, y

) ≤ N
(
x − y

)
, where x ≥ y, N > 0. (2.11)

Then v(0) ≤ w(0) implies v(t) ≤ w(t), 0 ≤ t ≤ 1 provided N < 1/Γ(1 − sn) −
∑n−1

j=1 aj/Γ(1 − sj).

Proof. Let wε(t) = w(t) + ε. For small ε > 0, we have

wε(0) > w(0), wε(t) > w(t), 0 ≤ t ≤ 1. (2.12)

Then, from (2.11) and (2.12) we get

L(D)wε(t) = L(D)w(t) + L(D)ε

= f(t,w(t)) + ε

⎡

⎣ t−sn

Γ(1 − sn)
−

n−1∑

j=1

ajt
−sj

Γ
(
1 − sj

)

⎤

⎦

≥ f(t,wε(t)) −Nε + ε

⎡

⎣ t−sn

Γ(1 − sn)
−

n−1∑

j=1

ajt
−sj

Γ
(
1 − sj

)

⎤

⎦

≥ f(t,wε(t)) −Nε + ε

⎡

⎣ 1
Γ(1 − sn)

−
n−1∑

j=1

aj

Γ
(
1 − sj

)

⎤

⎦

> f(t,wε(t)), 0 < t ≤ 1.

(2.13)

Applying Lemma 2.8, we obtain v(t) < wε(t), 0 ≤ t ≤ 1. By the arbitrariness of ε > 0, we can
conclude that v(t) ≤ w(t). The proof is complete.

Corollary 2.10. The function f(t, u) = σ(t)u, where σ(t) ≤ N, is admissible in Lemma 2.9 to yield
v(t) ≤ 0 on 0 ≤ t ≤ 1.

3. Main Results

In this section, we establish the existence and uniqueness criteria of solutions for initial value
problem (1.4).
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Theorem 3.1. Assume that f ∈ C(R0,R), where R0 = {(t, u) : 0 ≤ t ≤ 1, |u(t)| ≤ b} and |f(t, u)| ≤
M. Then IVP (1.4) possesses at least one solution u(t) on 0 ≤ t ≤ α, where α = min{1, (bΓ(1 +
sn)/(2M))1/sn , (

∑n−1
j=1 Γ(sn − sj + 1)/(2|aj |))1/(sn−sn−1)}.

Proof. Let u0(t) be a continuous function on [−δ, 0], δ > 0, such that u0(0) = 0, |u0(t)| ≤ b and
|L(D)u0(t)| ≤ M, where D

sj
0−u0(t), j = 1, 2, . . . , n − 1 are the continuous fractional derivatives.

For 0 < ε ≤ δ, we define the function uε(t) = u0(t) on [−δ, 0] and

uε(t) =
1

Γ(sn)

∫ t

0
(t − s)sn−1f(s, uε(s − ε))ds +

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1uε(s − ε)ds

(3.1)

on [0, α1], where α1 = min{ε, α}. We observe that Dsjuε(t), j = 1, 2, . . . , n exist for t ∈ [0, α1]
and

|uε(t)| ≤ 1
Γ(sn)

∫ t

0
(t − s)sn−1

∣∣f(s, uε(s − ε))
∣∣ds +

n−1∑

j=1

∣∣aj

∣∣

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1|uε(s − ε)|ds

≤ M

Γ(sn)

∫ t

0
(t − s)sn−1ds +

n−1∑

j=1

b
∣∣aj

∣∣

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1ds

=
M

Γ(sn + 1)
tsn +

n−1∑

j=1

b
∣∣aj

∣∣

Γ
(
sn − sj + 1

) tsn−sj

≤ M

Γ(sn + 1)
αsn +

n−1∑

j=1

b
∣∣aj

∣∣

Γ
(
sn − sj + 1

)αsn−sn−1

≤ b

2
+
b

2
= b.

(3.2)

If α1 < α, we can employ (3.1) to extend uε(t) as a continuously fractional differentiable
function on [−δ, α2], α2 = min{α, 2ε} such that uε(t) ≤ b holds. Continuing this process, we
can define uε(t) over [−δ, α] so that uε(t) ≤ b; it has a continuous fractional derivative and
satisfies (3.1) on the same interval [−δ, α]. Furthermore, |L(D)uε(t)| ≤ M, since |f(t, uε(t −
ε))| ≤ M on R0. Therefore, from Lemma 2.6, the family {uε(t)} is an equicontinuous and
uniformly bounded function. An application of Ascoli-Arzela Theorem shows the existence
of a sequence {εn} such that ε1 > ε2 > · · · > εn → 0 as n → ∞, and u(t) = limn→∞uεn(t)
exists uniformly on [−δ, α]. Due to f being uniformly continuous, we can obtain f(t, uεn(t −
εn)) which uniformly tends to f(t, u(t)), and uεn(t − εn) uniformly tends to u(t) as n → ∞.
Therefore, term by term, integration of (3.1)with ε = εn, α1 = α yields

u(t) =
1

Γ(sn)

∫ t

0
(t − s)sn−1f(s, u(s))ds +

n−1∑

j=1

aj

Γ
(
sn − sj

)
∫ t

0
(t − s)sn−sj−1u(s)ds. (3.3)

This proves that u(t) is a solution of IVP (1.4) and the proof is complete.
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Theorem 3.2. Let v,w ∈ C([0, 1],R) be lower and upper solutions of the IVP (1.4) which are locally
Hölder continuous with exponent sn < λ < 1 such that v(t) ≤ w(t), t ∈ [0, 1] and f ∈ C(Ω,R),
where Ω = {(t, u) : v(t) ≤ u(t) ≤ w(t), t ∈ [0, 1]}. Furthermore, suppose that

⎛

⎝
n−1∑

j=1

Γ
(
sn − sj + 1

)

2
∣∣aj

∣∣

⎞

⎠
1/(sn−sn−1)

≥ 1. (3.4)

Then there exists a solution u(t) of IVP (1.4) satisfying v(t) ≤ u(t) ≤ w(t) on [0, 1].

Proof. For the need of proof, we define function p(t, u) : [0, 1] × R → R as

p(t, u) = max{v(t),min{u,w(t)}}. (3.5)

Therefore, f(t, p(t, u)) defines a continuous extension of f to [0, 1] ×Rwhich is also bounded
because f is bounded onΩ. Then by Theorems 3.1 and 3.2, we can obtain that the initial value
problem

L(D)u = f
(
t, p(t, u)

)
, t ∈ (0, 1],

u(0) = 0,
(3.6)

has a solution on [0, 1].
Clearly, from the definition of function p(t, u), we know that if IVP (3.6) exits a solution

u(t) satisfying v(t) ≤ u(t) ≤ w(t) on [0, 1], then u(t) is also a solution of IVP (1.4). In the
following, we will prove that the solution u(t) of IVP (3.6) satisfies v(t) ≤ u(t) ≤ w(t) on
[0, 1].

For any ε > 0, we consider

wε(t) = w(t) + ε, vε(t) = v(t) − ε. (3.7)

Then, we get

wε(0) = w(0) + ε, vε(0) = v(0) − ε. (3.8)

Therefore, it follows that vε(0) < u(0) < wε(0). Next, we will show that vε(t) < u(t) < wε(t),
t ∈ [0, 1]. Suppose that it is not true. Then there exists t1 ∈ (0, 1] such that

u(t1) = wε(t1), vε(t) < u(t) < wε(t), 0 ≤ t < t1. (3.9)
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Therefore, u(t1) > w(t1), p(t1, u(t1)) = w(t1) and v(t1) ≤ p(t1, u(t1)) ≤ w(t1). Letting m(t) =
u(t) − wε(t), we have m(t1) = 0 and m(t) ≤ 0, 0 ≤ t ≤ t1. Then from Corollary 2.5, we can
obtain L(D)m(t1) ≥ 0 and

f(t1, w(t1)) = f
(
t1, p(t1, w(t1))

)

= L(D)u(t1) ≥ L(D)wε(t1)

= L(D)w(t1) + L(D)ε(t1)

= L(D)w(t1) + ε

⎡

⎣ t−sn1

Γ(1 − sn)
−

n−1∑

j=1

ajt
−sj
1

Γ
(
1 − sj

)

⎤

⎦

> L(D)w(t1) = f(t1, w(t1)),

(3.10)

which is a contradiction. The other case vε(t) < u(t) can be proved similarly.
Hence, we get vε(t) < u(t) < wε(t) on [0, 1]. Letting ε → 0, we obtain v(t) ≤ u(t) ≤

w(t) on [0, 1]. The proof is complete.

Now, we will give the existence of maximal and minimal solutions of initial value
problem (1.4).

Theorem 3.3. Let f ∈ C([0, 1] × R,R), v0, w0 be lower and upper solutions of (1.4) such that
v0 ≤ w0 on [0, 1]. Furthermore, suppose that

f(t, x) − f
(
t, y

) ≥ −N(
x − y

)
, for v0 ≤ y ≤ x ≤ w0, N ≥ 0, (3.11)

and aj satisfy

0 <
N

Γ(sn + 1)
+

n−1∑

j=1

∣∣aj

∣∣

Γ
(
sn − sj + 1

) < 1. (3.12)

Then there exist monotone sequences {vn} and {wn} such that vn → ρ, wn → r as n → ∞
uniformly on [0, 1], where ρ and r are minimal and maximal solutions of IVP (1.4), respectively.

Proof. For any η ∈ C([0, 1],R) satisfying v0 ≤ η ≤ w0, we consider the following linear
fractional differential equation:

L(D)u = f
(
t, η

) −N
(
u − η

)
, t ∈ (0, 1],

u(0) = 0.
(3.13)

Obviously, the right hand side of (3.13) satisfies the Lipschitz condition. From (3.11) and
Lemma 2.7, it is clear that for every η, there exists a unique solution u of (3.13) on [0, 1].
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Define the operator T by Tη = u and use it to construct the sequences {vn}, {wn}. We need to
prove the following propositions hold:

(i) v0 ≤ Tv0, w0 ≥ Tw0;

(ii) T is a monotone operator on the segment

〈v0, w0〉 = {u ∈ C([0, 1],R) : v0 ≤ u ≤ w0}. (3.14)

To prove (i), let Tv0 = v1, where v1 is the unique solution of (3.13)with η = v0. Letting
p = v0 − v1, we have

L(D)p = L(D)v0 − L(D)v1 ≤ f(t, v0) −
[
f(t, v0) −N(v1 − v0)

]
= −Np,

p(0) = v0(0) − v1(0) ≤ 0.
(3.15)

By Corollary 2.10, we can obtain that p(t) ≤ 0 on [0, 1], that is, v0 ≤ Tv0.
Similarly, we can get w0 ≥ Tw0.
To prove (ii), let η1, η2 ∈ 〈v0, w0〉 such that η1 ≤ η2. Assume that u1 = Tη1 and u2 = Tη2.

Setting p = u1 − u2, then using the condition (3.11), we have

L(D)p = L(D)u1 − L(D)u2 = f
(
t, η1

) −N
(
u1 − η1

) − [
f
(
t, η2

) −N
(
u2 − η2

)]

≤ −N(
η1 − η2

) −N
(
u1 − η1

)
+N

(
u2 − η2

)
= −Np,

p(0) = u1(0) − u2(0) = 0.

(3.16)

From Corollary 2.10, we can obtain that p(t) ≤ 0 on [0, 1], which implies Tη1 ≤ Tη2. And (ii)
is proved.

Therefore, we can define the sequences vn = Tvn−1, wn = Twn−1. From the previous
discussion, we can get

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w1 ≤ w0 on [0, 1]. (3.17)

Clearly, the sequences {vn}, {wn} are uniformly bounded on [0, 1]. From (3.13), we
have |L(D)vn|, |L(D)wn| which are also uniformly bounded. By Lemma 2.6, we know that
{vn}, {wn} are equicontinuous on [0, 1]. Then applying Ascoli-Arzela Theorem, there exist
subsequences {vnk}, {wnk} that converge uniformly on [0, 1]. From (3.17), we can see that
the entire sequences {vn}, {wn} converge uniformly and monotonically to ρ, r, respectively,
as n → ∞. It is now easy to show that ρ, r are solutions of IVP (1.4) by the corresponding
Volterra fractional integral equation for (3.13).

In the following, we will prove that ρ and r are the minimal and maximal solutions
of IVP (1.4), respectively. We need to show that if u is any solution of IVP (1.4) satisfying
v0 ≤ u ≤ w0 on [0, 1], then we have v0 ≤ ρ ≤ u ≤ r ≤ w0 on [0, 1].
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We assume that for some n, vn ≤ u ≤ wn on [0, 1] and letting p = vn+1 − u, we have

L(D)p = L(D)vn+1 − L(D)u = f(t, vn) −N(vn+1 − vn) − f(t, u)

≤ −N(vn − u) −N(vn+1 − vn) = −Np,

p(0) = vn+1(0) − u(0) = 0,

(3.18)

which implies vn+1 ≤ u. Similarly, we have u ≤ wn+1 on [0, 1]. Since v0 ≤ u ≤ w0 on [0, 1], this
proves vn ≤ u ≤ wn for all n by induction. Letting n → ∞, we conclude that ρ ≤ u ≤ r on
[0, 1] and the proof is complete.

Theorem 3.4. Suppose that the conditions of Theorem 3.3 hold. In addition, we assume

f(t, x) − f
(
t, y

) ≤ N
(
x − y

)
, v0 ≤ y ≤ x ≤ w0, N > 0. (3.19)

Then ρ = r = u is the unique solution of IVP (1.4) provided N < 1/Γ(1 − sn) −
∑n−1

j=1 aj/Γ(1 − sj).

Proof. We have proved ρ ≤ r in Theorem 3.3, so we just need to prove ρ ≥ r. Letting p = r − ρ,
we get

L(D)p = f(t, r) − f
(
t, ρ

) ≤ Np,

p(0) = r(0) − ρ(0) = 0.
(3.20)

From Corollary 2.10, we obtain p ≤ 0 on [0, 1], which implies ρ ≥ r. Hence, ρ = r = u is the
unique solution of IVP (1.4).

4. Examples

In this paper, we will present an example to illustrate the main results.

Example 4.1. Consider the initial value problem of fractional differential equation

D0.8u + 0.4D0.6u =
u2t0.2

10Γ(0.2)
− ut0.4

2Γ(0.4)
, t ∈ (0, 1],

u(0) = 0.

(4.1)

Choose w = 5, v = −5; then we can obtain

D0.8w + 0.4D0.6w ≥ w2t0.2

10Γ(0.2)
− wt0.4

2Γ(0.4)
,

D0.8v + 0.4D0.6v ≤ v2t0.2

10Γ(0.2)
− vt0.4

2Γ(0.4)
.

(4.2)
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That is, v andw are the lower and upper solutions of initial value problem (4.1). Furthermore,
v and w are locally continuous with exponent 1 > λ > 0.8.

Since

(
Γ(0.8 − 0.6 + 1)

2|−0.4|
)1/(0.8−0.6)

= 1.9914 > 1, (4.3)

then by Theorem 3.2, there exists a solution u(t) of initial value problem (4.1) satisfying −5 ≤
u(t) ≤ 5.

Next, we will prove the existence of maximal and minimal solutions for initial value
problem (4.1) by using Theorem 3.3.

Let v0 = −5 and w0 = 5 be lower and upper solutions of (4.1). Furthermore, for any
−5 ≤ y ≤ x ≤ 5, we have

f(t, x) − f
(
t, y

)
=

x2t0.2

10Γ(0.2)
− xt0.4

2Γ(0.4)
− y2t0.2

10Γ(0.2)
+

yt0.4

2Γ(0.4)

=
t0.2

10Γ(0.2)
(
x − y

)(
x + y

) − t0.4

2Γ(0.4)
(
x − y

)

≥ − 1
2Γ(0.4)

(
x − y

)
.

(4.4)

Then let N = 1/2Γ(0.4) ≈ 0.2254. We get

0 <
N

Γ(0.8 + 1)
+

|−0.4|
Γ(0.8 − 0.6 + 1)

≈ 0.6777 < 1. (4.5)

Thus, from Theorem 3.3, there exist monotone sequences {vn} and {wn} such that vn → ρ,
wn → r as n → ∞ uniformly on [0, 1], where ρ and r are minimal and maximal solutions of
initial value problem (4.1), respectively.

In addition,

f(t, x) − f
(
t, y

)
=

x2t0.2

10Γ(0.2)
− xt0.4

2Γ(0.4)
− y2t0.2

10Γ(0.2)
+

yt0.4

2Γ(0.4)

=
t0.2

10Γ(0.2)
(
x − y

)(
x + y

) − t0.4

2Γ(0.4)
(
x − y

)

≤ 10
10Γ(0.2)

(
x − y

)

≤ N
(
x − y

)
,

0 < N <
1

Γ(1 − 0.8)
− −0.4
Γ(1 − 0.6)

≈ 0.3982.

(4.6)

Hence, by Theorem 3.4, initial value problem (4.1) has a unique solution.
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5. Conclusion

In this paper, we considered the initial value problem of nonlinear fractional differential equa-
tion

L(D)u = f(t, u), t ∈ (0, 1],

u(0) = 0.
(5.1)

The basic theory of differential equation, the method of upper and lower solutions, and
monotone iterative technique have been applied for the existence and uniqueness of solutions
of the initial value problem. And several results were obtained. Besides, we studied the
existence ofminimal andmaximal solutions. In Section 4, we also give an example to illustrate
our results.
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[26] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.

[27] Y. Zhao, S. Sun, Z. Han, and Q. Li, “The existence of multiple positive solutions for boundary
value problems of nonlinear fractional differential equations,” Communications in Nonlinear Science
and Numerical Simulation, vol. 16, no. 4, pp. 2086–2097, 2011.

[28] S. Sun, Q. Li, and Y. Li, “Existence and uniqueness of solutions for a coupled system of multi-term
nonlinear fractional differential equations,” Computers and Mathematics with Applications. In press.

[29] G. Wang, R. P. Agarwal, and A. Cabada, “Existence results and the monotone iterative technique for
systems of nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 25, no. 6, pp.
1019–1024, 2012.

[30] G. Wang, “Monotone iterative technique for boundary value problems of a nonlinear fractional
differential equation with deviating arguments,” Journal of Computational and Applied Mathematics,
vol. 236, no. 9, pp. 2425–2430, 2012.


