
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 613270, 10 pages
doi:10.1155/2012/613270

Research Article
Ulam-Hyers Stability for Cauchy Fractional
Differential Equation in the Unit Disk

Rabha W. Ibrahim

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Rabha W. Ibrahim, rabhaibrahim@yahoo.com

Received 11 January 2012; Accepted 18 April 2012

Academic Editor: Bing Xu

Copyright q 2012 Rabha W. Ibrahim. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk
for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa
operators.

1. Introduction

A classical problem in the theory of functional equations is that if a function f approximately
satisfies functional equation E, when does there exists an exact solution of Ewhich f approxi-
mates. In 1940, Ulam [1, 2] imposed the question of the stability of the Cauchy equation, and
in 1941, Hyers solved it [3]. In 1978, Rassias [4] provided a generalization of Hyers, theorem
by proving the existence of unique linear mappings near approximate additive mappings.
The problem has been considered for many different types of spaces (see [5–7]). The Ulam-
Hyers stability of differential equations has been investigated by Alsina and Ger [8] and
generalized by Jung [9–11]. Recently, Li and Shen [12] have investigated the Ulam-Hyers
stability of the linear differential equations of second order, Abdollahpour and Najati [13]
have studied the Ulam-Hyers stability of the linear differential equations of third order, and
Lungu and Popa have imposed the Ulam-Hyers stability of a first-order partial differential
equation [14].

The analysis on stability of fractional differential equations is more complicated than
the classical differential equations, since fractional derivatives are nonlocal and have weakly
singular kernels. Recently, Li and Zhang [15] provided an overview on the stability results
of the fractional differential equations. Particularly, Li et al. [16] devoted to study the Mittag-
Leffler stability and the Lyapunov’s methods, Deng [17] derived sufficient conditions for
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the local asymptotical stability of nonlinear fractional differential equations, and Li et al.
studied the stability of fractional-order nonlinear dynamic systems using the Lyapunov direct
method and generalized Mittag-Leffler stability [18]. Furthermore, there are few works on
the Ulam stability of fractional differential equations, which maybe provide a new way for
the researchers to investigate the stability of fractional differential equations from different
perspectives. First the Ulam stability and data dependence for fractional differential equa-
tions with Caputo derivative have been posed by Wang et al. [19] and Ibrahim [20] with
Riemann-Liouville derivative in complex domain. Moreover, Wang et al. [21–24] considered
and established the Ulam stability for various types of fractional differential equation. Finally,
the author generalized the Ulam-Hyers stability for fractional differential equation including
infinite power series [25, 26].

In this work, we continue our study by imposing the Ulam-Hyers stability for the
Cauchy fractional differential equations in complex domain. The operators are taken in sense
of the Srivastava-Owa fractional derivative and integral.

2. Fractional Calculus

The theory of fractional calculus has found interesting applications in the theory of analytic
functions. The classical definitions of fractional operators and their generalizations have fruit-
fully been applied in obtaining, for example, the characterization properties, coefficient esti-
mates [27], distortion inequalities [28], and convolution structures for various subclasses of
analytic functions and the works in the research monographs. In [29], Srivastava and Owa
gave definitions for fractional operators (derivative and integral) in the complex z-plane C

as follows.

Definition 2.1. The fractional derivative of order α is defined, for a function f(z), by

Dα
zf(z) :=

1
Γ(1 − α)

d

dz

∫z

0

f(ζ)
(z − ζ)α

dζ, 0 ≤ α < 1, (2.1)

where the function f(z) is analytic in simply connected region of the complex z-plane C

containing the origin and the multiplicity of (z− ζ)−α is removed by requiring log(z− ζ) to be
real when (z − ζ) > 0.

Definition 2.2. The fractional integral of order α is defined, for a function f(z), by

Iαz f(z) :=
1

Γ(α)

∫z

0
f(ζ)(z − ζ)α−1dζ, α > 0, (2.2)

where the function f(z) is analytic in simply connected region of the complex z-plane (C)
containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.
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Remark 2.3. From Definitions 2.1 and 2.2, we have

Dα
zz

μ =
Γ
(
μ + 1

)
Γ
(
μ − α + 1

)zμ−α, μ > −1, 0 ≤ α < 1,

Iαz z
μ =

Γ
(
μ + 1

)
Γ
(
μ + α + 1

)zμ+α, μ > −1, α > 0.

(2.3)

We need the following preliminaries in the sequel.
Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H denote

the space of all analytic functions onU. Also for a ∈ C andm ∈ N, letH[a,m] be the subspace
ofH consisting of functions of the form

f(z) = a + amz
m + am+1z

m+1 + · · · , z ∈ U. (2.4)

Let A be the class of functions f , analytic in U and normalized by the conditions f(0) =
f ′(0) − 1 = 0. A function f ∈ A is called univalent (S) if it is one-one inU.

Lemma 2.4 (see [28]). Let the function f(z) be in the class S. Then

∣∣Dα
zf(z)

∣∣ ≤ r1−α

Γ(1 − α)

∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt (r = |z|, z ∈ U, 0 < α < 1). (2.5)

Lemma 2.5 (see [28]). Let the function f(z) be in the class S. Then
∣∣∣Dα+1

z f(z)
∣∣∣ ≤ r−α

Γ(1 − α)
(rF(2, 1; 1 − α; r))′ (r = |z|, z ∈ U \ {0}, 0 < α < 1). (2.6)

3. Ulam-Hyers Stability for Fractional Problems

In this section, we will study the Ulam-Hyers stability for two different types of fractional
Cauchy problems involving the differential operator in Definition 2.1. The first initial value
problem is

Dα
zu(z) = ρ(z)u(z), (u(0) = 0, z ∈ U, 0 < α < 1), (3.1)

where u(z), ρ(z) ∈ H[U,C] (the space of analytic function on the unit disk). While the second
problem is

Dα
zu(z) = f(z, u(z)), (u(0) = 0, z ∈ U, 0 < α < 1), (3.2)

where f : U × C → C is analytic in z ∈ U. Finally, we consider the problem

D1+α
z u(z) = f(z, u(z)), (u(z0) = c, z0 ∈ U \ {0}, 0 < α < 1), (3.3)

where u(z) ∈ H[U,C] and f : U × C → C is analytic in z ∈ U.
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Definition 3.1. Problem (3.1) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣∣Dα
zu(z) − ρ(z)u(z)

∣∣ < ε, (3.4)

then there exists some v ∈ H[U,C] satisfying

Dα
zv(z) = ρ(z)v(z) (3.5)

with v(0) = 0 such that

|u(z) − v(z)| < Kε. (3.6)

Definition 3.2. Problem (3.2) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣∣Dα
zu(z) − f(z, u(z))

∣∣ < ε, (3.7)

then there exists some v ∈ H[U,C] satisfying

Dα
zv(z) = f(z, v(z)) (3.8)

with v(0) = 0 such that

|u(z) − v(z)| < Kε. (3.9)

Definition 3.3. Problem (3.3) has the Ulam-Hyers stability if there exists a positive constantK
with the following property: for every ε > 0, u ∈ H[U,C], if

∣∣∣D1+α
z u(z) − f(z, u(z))

∣∣∣ < ε, (3.10)

then there exists some v ∈ H[U,C] satisfying

D1+α
z v(z) = f(z, v(z)) (3.11)

with v(z0) = c, z0 ∈ U \ {0} such that

|u(z) − v(z)| < Kε. (3.12)

We start with the following result.
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Theorem 3.4. Let u ∈ S, such that

max|u(z)| ≤ hα

2
, ∀z ∈ U, (3.13)

where

hα =
r1−α

Γ(1 − α)

∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt. (3.14)

Ifmax |ρ(z)| < 1, then problem (3.1) has the Ulam-Hyers stability.

Proof. For every ε > 0, u ∈ S, we let

∣∣Dα
zu(z) − ρ(z)u(z)

∣∣ < ε (3.15)

with u(0) = 0. In view of Lemma 2.4, we obtain

max|Dα
zu(z)| = hα

(
sharp case

)
, (3.16)

consequently, we have

max|u(z)| ≤ max
∣∣Dα

zu(z) − ρ(z)u(z)
∣∣ +max

∣∣ρ(z)∣∣max|u(z)|
≤ ε +max

∣∣ρ(z)∣∣max|u(z)|;
(3.17)

hence we impose that

max|u(z)| ≤ ε

1 −max
∣∣ρ(z)∣∣ := Kε. (3.18)

Obviously, v(z) = 0 is a solution of the problem (3.1) and yields

|u(z)| ≤ Kε. (3.19)

Hence (3.1) has the Ulam-Hyers stability.

Corollary 3.5. Let u ∈ H[D,C], where D ⊂ C is a convex domain, satisfying one of the following
conditions:

(1) �{u′(z)} > 0, z ∈ U,

(2) �{zu′(z)/u(z)} > 0, z ∈ U,

(3) �{1 + zu′′(z)/u′(z)} > 0, z ∈ U.

Ifmax |u(z)| ≤ hα/2 and max |ρ(z)| < 1, then problem (3.1) has the Ulam-Hyers stability.
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Proof. Assume that u ∈ H[D,C] satisfying one of the conditions (1)–(3), then u is a uni-
valent function in the unit disk; that is, u ∈ A (see [30]). Thus, in view of Theorem 3.4, prob-
lem (3.1) has the Ulam-Hyers stability.

Remark 3.6. A function f ∈ A is called bounded turning function if it satisfies the following
inequality:

�{
f ′(z)

}
> 0 (z ∈ U). (3.20)

A function f ∈ A is called star-like if it satisfies the following inequality:

�
{
zf ′(z)
f(z)

}
> 0 (z ∈ U). (3.21)

A function f ∈ A is called convex if it satisfies the following inequality

�
{
zf ′′(z)
f ′(z)

+ 1
}

> 0 (z ∈ U). (3.22)

These subclasses of analytic functions in the unit disk play an important role in the theory of
geometric function (see [30]).

Next, we consider the Ulam-Hyers stability for the nonlinear problems (3.2) and (3.3).

Theorem 3.7. Let u ∈ S, such that max |u(z)| ≤ hα/2, where

hα =
r1−α

Γ(1 − α)

∫1

0

1 + rt

(1 − t)α(1 − rt)3
dt. (3.23)

If

max
∣∣f(z, u(z))∣∣ ≤ Mmax|u(z)|, M ∈ (0, 1), (3.24)

then problem (3.2) has the Ulam-Hyers stability.

Proof. For every ε > 0, u ∈ S, we let

∣∣Dα
zu(z) − f(z, u(z))

∣∣ < ε (3.25)

with u(0) = 0. In view of Lemma 2.4, it implies that

max|Dα
zu(z)| = hα

(
sharp case

)
; (3.26)
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therefore, we pose

max|u(z)| ≤ max
∣∣Dα

zu(z) − f(z, u(z))
∣∣ +max

∣∣f(z, u(z))∣∣
≤ ε +max

∣∣f(z, u(z))∣∣
≤ ε +Mmax|u(z)|;

(3.27)

that is,

max|u(z)| ≤ ε

1 −M
:= Kε. (3.28)

It is clear that

v(0) = Iαz f(z, v(z))
∣∣
z=0 = 0 (3.29)

yields

|u(z)| ≤ Kε. (3.30)

Hence (3.2) has the Ulam-Hyers stability.

Now by applying Lemma 2.5, we study the Ulam-Hyers stability for the nonlinear
problems (3.3).

Theorem 3.8. Let u ∈ S, such that max |u(z)| ≤ gα/2, where

gα =
r−α

Γ(1 − α)
(rF(2, 1; 1 − α; r))′,

∣∣f(z, u(z)) − f(z, v(z))
∣∣ ≤ L|u(z) − v(z)|.

(3.31)

If L ∈ (0, 1), then problem (3.3) has the Ulam-Hyers stability.

Proof. Since f is a contraction mapping, then the Banach fixed-point theorem implies that
problem (3.3) has a unique solution. For every ε > 0, u ∈ S, we let

∣∣∣D1+α
z u(z) − f(z, u(z))

∣∣∣ < ε (3.32)

with u(z0) = c, z0 ∈ U \ {0}. In view of Lemma 2.5, we impose

max
∣∣∣D1+α

z u(z)
∣∣∣ = gα

(
sharp case

)
, (3.33)
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and consequently we have

max|u(z) − v(z)|
≤ max|Dα

z(u(z) − v(z))|
≤ ∣∣Dα

zu(z) −Dα
zv(z) − f(z, u(z)) + f(z, v(z))

∣∣ +max
∣∣f(z, u(z)) − f(z, v(z))

∣∣
≤ ε + Lmax|u(z) − v(z)|;

(3.34)

hence we receive

max|u(z) − v(z)| ≤ ε

1 − L
:= Kε. (3.35)

It is clear that v(z0) = c for some z0 ∈ U \ {0} yields

|u(z) − v(z)| ≤ Kε. (3.36)

Thus (3.3) has the Ulam-Hyers stability.

4. Conclusion

From above, the Ulam-Hyers stability is considered for different types of fractional Cauchy
problems in the unit disk and in the puncture unit disk. We have observed that the problems
(3.1) and (3.2) have the Ulam-Hyers stability when α ∈ (0, 1) and u ∈ S (univalent solution).
While the Ulam-Hyers stability for higher-order fractional Cauchy problem of the form (3.3)
is studied in Theorem 3.8, for z ∈ U \ {0} and u ∈ S. This leads to a set of questions:

(1) Is the fractional Cauchy problem (linear and nonlinear) has the Ulam-Hyers stabi-
lity for all u ∈ H[U,C]? (under what conditions).

(2) Is the higher-order fractional Cauchy problem has the Ulam-Hyers stability for all
u ∈ H[U,C]? (under what conditions). More specific,

(3) does the higher-order fractional Cauchy problem of the form

Dm+α
z u(z) = f(z, u(z)) (u ∈ H[U,C], m = 2, 3, . . .) (4.1)

have the Ulam-Hyers stability?

(4) If we extend our study to complex Banach space, does the last problem have the
Ulam-Hyers stability?

(5) If the study in complex Banach space, does the problem

Dmu(z) = f(z, u(z)), D :=
d

dz
(4.2)

have the Ulam-Hyers stability?
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More generalization

(6) If the study in complex Banach space, does the problem

Dmu(z) = f
(
z, u(z), Dm−1u(z)

)
, m = 2, 3, . . . , (4.3)

have the Ulam-Hyers stability?

Another special case

(7) If the study in complex Banach space, does the problem

Dmu(z) = f
(
z, zDm−1u(z)

)
, m = 2, 3, . . . , (4.4)

have the Ulam-Hyers stability?
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