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We propose a generic spatial domain control scheme for a class of nonlinear rotary systems
of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the
rotary system in time domain is transformed into one in spatial domain employing a coordinate
transformation with respect to angular displacement. Under the circumstances that measurement
of the system states is not available, a nonlinear state observer is established for providing the
estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed
to stabilize the system and improve the tracking performance. The first control module applies
adaptive backstepping with projected parametric update and concentrates on robust stabilization
of the closed-loop system. The second control module introduces an internal model of the periodic
disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error
but also improves parametric adaptation. The overall spatial domain output feedback adaptive
control system is robust to model uncertainties and state estimated error and capable of rejecting
spatially periodic disturbances under varying system speeds. Stability proof of the overall system
is given. A design example with simulation demonstrates the applicability of the proposed design.

1. Introduction

Rotary systems play important roles in various industry applications, for example,
packaging, printing, assembly, fabrication, semiconductor, robotics, and so forth. Design of
control algorithm for a motion system often comes up with nonlinearities and uncertainties.
Nonlinearities are either inherent to the system or due to the dynamics of actuators and
sensors. Uncertainties are mainly caused by unmodeled dynamics, parametric uncertainty,
and disturbances. For dealingwith nonlinearities, common techniques, for example, feedback
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linearization and backstepping, are to utilize feedback to cancel all or part of the nonlinear
terms. On the other hand, design techniques for conducting disturbance rejection or
attenuation in control systems mostly originate from the internal model principle [1],
for example, those incorporating or estimating the exosystem of the disturbances [2–6].
Conventional controllers are mostly time-based controllers as they are synthesized and
operate in temporal or time domain. Several researches [7–9] have started studying spatial
domain controllers ever since a repetitive controller design was initiated by Nakano et al.
[10]. In the design of Nakano et al., the repetitive control system has its repetitive kernel (i.e.,
e−Ls with positive feedback) synthesized and operated with respect to a spatial coordinate,
for example, angular position or displacement. Hence its capability for rejecting or tracking
spatially periodic disturbances or references will not degrade when the controlled system
operates at varying speed. All existing studies propose design methods starting with a
linear time-invariant (LTI) system. After reformulation, a nonlinear open-loop system is
obtained in spatial domain. Subsequently, the open-loop system is either linearized around
an operating speed or regarded as a quasi-linear parameter varying (quasi-LPV) system
and then adjoined with the spatial domain internal model of the tracking or disturbance
signal. Design paradigms based on linear (robust) control theory are then applied to the
resulting augmented system. However, presuming the open-loop system to be LTI and
resorting to design paradigm of linear control will inevitably restrict the applicability and
limit the achievable performance of a design method. Chen and Yang [11] introduced a new
spatial domain control scheme based on a second-order LTI system with availability of state
measurements. To achieve robust stabilization and high-performance tracking, a two-module
control configuration is constructed. One of the modules utilizes adaptive backstepping
with projected parametric adaptation to robustly stabilize the system. The other module
incorporates a spatial domain internal model of the disturbances cascaded with a loop-
shaping filter to improve the tracking performance.

This paper extends the work of Chen and Yang [11, 12]. The control scheme has been
generalized such that it is applicable to a class of nonlinear systems (instead of just LTI
systems). Moreover, the major shortcoming in Chen and Yang’s design [11], that is, which
requires full-state feedback, is resolved by incorporation of a nonlinear state observer. Various
types of nonlinear state observers have been developed and put into use in the past (e.g.,
[13, 14]). This paper will study the feasibility of incorporating a K-filter-type state observer
[13] into the proposed design. The proposed system incorporating the state observer can
be proved to be stable under bounded disturbance and system uncertainties. An illustrative
example is given for demonstration and derivation of the control algorithm. Simulation is
performed to verify the feasibility and effectiveness of the proposed scheme. Compared to
the preliminary work in [12] (which is only applicable to second order systems), the results
have been generalized to be suited for nth order systems. Specifically, the design and stability
proof are more comprehensive and rigorous than those presented in [12].

Recently, there have been emerging design techniques based on adaptive fuzzy control
(AFC), which may cope with nonlinearities and uncertainties with unknown structures
[15–17]. The major differences between those techniques and the proposed one are as
follows: (1) design being time based (AFC) versus spatial based (the proposed approach);
(2) assuming less information about the nonlinearities/uncertainties (AFC) versus more
information about the nonlinearities/uncertainties (the proposed approach). Note that
the spatial-based design is not just a change of the independent variable from time to
angular displacement. A nonlinear coordinate transformation is actually involved. Therefore,
the systems under consideration in AFC and the proposed method are different. Next,
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the capability of the design approaches suggested in AFC for tackling systems subject to
a more generic class of nonlinearities/uncertainties lies in the usage of a fuzzy system
to approximate those nonlinearities/uncertainties. It is actually not clear regarding the
complexity of the fuzzy system (i.e., number of membership functions) that should be used to
achieve the required control performance. It is also not clear whether or not the control effort
is reasonable. In general, when characteristics of the uncertainties or disturbances are known,
such information should be incorporated as much as possible into the design to enhance
performance, avoid conservativeness, and result in sensible control input. Hence, instead
of assuming the disturbances to be generic (probably just being bounded as by AFC), the
proposed design is aiming at a type of disturbances specific to rotary systems and utilizes
the spatially periodic nature of the disturbances to establish a well-defined control module
integrated into the overall control configuration.

This paper is organized as follows. Reformulation of a generic nonlinear rotary system
with respect to angular displacement will be presented in Section 2. Design of the state
observer is described in Section 3. Section 4 will cover derivation and stability analysis of
the proposed spatial domain output feedback control scheme. Simulation verification for the
proposed scheme will be presented in Section 5. Conclusion is given in Section 6.

2. Problem Formulation

In this section, we show how a generic NTI model can be transformed into an NPI model
by choosing an alternate independent variable (angular displacement instead of time) and
defining a new set of states (or coordinates) with respect to the angular displacement. Note
that the transformation described here is equivalent to a nonlinear coordinate transformation
or a diffeomorphism. The NPI model will be used for the subsequent design and discussion,

ẋ(t) =
[
ft
(
x(t), φf

)
+ Δft

(
x(t), φf

)]
+
[
gt
(
x(t), φg

)
+ Δgt

(
x(t), φg

)]
u(t),

y = Ψx(t) + dy(t) = x1(t) + dy(t),
(2.1)

where x(t) = [x1(t) · · · xn(t)]
T , Ψ = [1 0 · · · 0], and u(t) and y(t) correspond to control

input and measured output angular velocity of the system, respectively. dy(t) represents
a class of bounded output disturbances which constitutes (dominant) spatially periodic
and band-limited (or nonperiodic) components. Here we refer band-limited disturbances
to signals whose Fourier transform or power spectral density is zero above a certain finite
frequency. The only available information of the disturbances is the number of distinctive
spatial frequencies and the spectrum distribution for band-limited disturbance components.
ft(x(t), φf) and gt(x(t), φg) are known vector-valued functions with unknown but bounded
system parameters, that is, φf = [φf1 · · · φfk] and φg = [φg1 · · · φgl]; Δft(x(t), φf)
and Δgt(x(t), φg) represent unstructured modeling inaccuracy, which are also assumed to
be bounded. Instead of using time t as the independent variable, consider an alternate
independent variable θ = λ(t), that is, the angular displacement. Since by definition

λ(t) =
∫ t

0
ω(τ)dτ + λ(0), (2.2)
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where ω(t) is the angular velocity, the following condition:

ω(t) =
dθ

dt
> 0, ∀ t > 0, (2.3)

will guarantee that λ(t) is strictly monotonic such that t = λ−1(θ) exists. Thus all the variables
in the time domain can be transformed into their counterparts in the θ-domain, that is,

x̂(θ) = x
(
λ−1(θ)

)
, ŷ(θ) = y

(
λ−1(θ)

)
,

û(θ) = u
(
λ−1(θ)

)
, d̂(θ) = d

(
λ−1(θ)

)
,

ω̂(θ) = ω
(
λ−1(θ)

)
,

(2.4)

where we denote •̂ as the θ-domain representation of •. Note that, in practice, (2.3) can
usually be satisfied for most rotary systems where the rotary component rotates only in one
direction. Since

dx(t)
dt

=
dθ

dt

dx̂(θ)
dθ

= ω̂(θ)
dx̂(θ)
dθ

. (2.5)

Equation (2.1) can be rewritten as

ω̂(θ)
dx̂(θ)
dθ

=
[
ft
(
x̂(θ), φf

)
+ Δft

(
x̂(θ), φf

)]
+
[
gt
(
x̂(θ), φg

)
+ Δgt

(
x̂(θ), φg

)]
û(θ),

ŷ(θ) = Ψx̂(θ) + d̂y(θ) = x̂1(θ) + d̂y(θ).

(2.6)

Equation (2.6) can be viewed as a nonlinear position-invariant (as opposed to the definition
of time-invariant) system with the angular displacement θ as the independent variable. Note
that the concept of transfer function is still valid for linear position-invariant systems if we
define the Laplace transform of a signal ĝ(θ) in the angular displacement domain as

Ĝ(s̃) =
∫∞

0
ĝ(θ)e−s̃θdθ. (2.7)

This definition will be useful for describing the linear portion of the overall control system.

3. Nonlinear State Observer

Drop the θ notation and note that (2.6) can be expressed as a standard nonlinear system:

˙̂x = f
(
x̂, φf
)
+ g
(
x̂, φg
)
û + d̂s, ŷ = h(x̂) + d̂y = ω̂ + d̂y, (3.1)
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where terms involving unstructured uncertainty are merged into d̂s = Δf(x̂, φf) +
Δg(x̂, φg)ûwith

Δf
(
x̂, φf
)
=

Δft
(
x̂, φf

)

x̂1
, Δg

(
x̂, φg
)
=

Δgt
(
x̂, φg

)

x̂1
. (3.2)

In addition, we have

f
(
x̂, φf
)
=
ft
(
x̂, φf

)

x̂1
, g

(
x̂, φg
)
=
gt
(
x̂, φg

)

x̂1
, h(x̂) = ω̂ = x̂1. (3.3)

The state variables have been specified such that the angular velocity ω̂ is equal to x̂1, that is,
the undisturbed output h(x̂). It is not difficult to verify that (3.1) has the same relative degree
inD0 = {x̂ ∈ R

n | x̂1 /= 0} as the NTI model in (2.1). If (3.1) has relative degree r, we can define
the following nonlinear coordinate transformation:

ẑ = T(x̂) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ψ1(x̂)
...

ψn−r(x̂)
h(x̂)
...

Lr−1
f
h(x̂)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

�
[
ẑ2
ẑ1

]
, (3.4)

where ψ1 to ψn−r are chosen such that T(x̂) is a diffeomorphism on D0 ⊂ D and

Lgψi(x̂) = 0, 1 ≤ i ≤ n − r, ∀x̂ ∈ D0. (3.5)

With respect to the new coordinates, that is, ẑ1 and ẑ2, (3.1) can be transformed into the so-
called normal form, that is,

˙̂z2 = Lfψ(x̂)
∣∣
x̂=T−1(ẑ) + d̂so � Ψ(ẑ1, ẑ2),

˙̂z1 = Acẑ1 + Bc
[
LgL

r−1
f h(x̂)

∣∣∣
x̂=T−1(ẑ)

]
⎡

⎣û +
Lrfh(x̂)

LgL
r−1
f
h(x̂)

∣∣∣∣∣∣
x̂=T−1(ẑ)

⎤

⎦ + d̂si,

ŷ = Ccẑ1 + d̂y,

(3.6)

where d̂so and d̂si = [d̂si1 · · · d̂sir ]
T
come from d̂s going through the indicated coordinate

transformation. ẑ1 = [ẑ11 · · · ẑ1r] ∈ R
r , ẑ2 ∈ R

n−r , and (Ac, Bc, Cc) is a canonical form
representation of a chain of r integrators. The first equation is called internal dynamics and
the second is called external dynamics. Internal dynamics which is not affected by the control
u. By setting ẑ1 = 0 in that equation, we obtain

˙̂z2 = Ψ(0, ẑ2), (3.7)
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which is the zero dynamics of (3.1) or (3.6). The system is called minimum phase if (3.7) has
an asymptotically stable equilibrium point in the domain of interest. To allow us to present
the proposed algorithm and stability analysis in a simpler context, wewill make the following
assumptions for the subsequent derivation:

(1) f(x̂(θ), φf) and g(x̂(θ), φg) are linearly related to those unknown system
parameters, that is,

f
(
x̂(θ), φf

)
= φ1f1(x̂(θ)) + · · · + φfkfk(x̂(θ)),

g
(
x̂(θ), φg

)
= φg1g1(x̂(θ)) + · · · + φglgl(x̂(θ)).

(3.8)

(2) Equation (3.1) is minimum phase, and the internal dynamics in (3.6) is ISS (input-
to-state stable).

(3) The output disturbance is sufficiently smooth, that is, ˙̂dy, . . . , d̂
(r)
y exist,

(4) d̂(r−1)
si1

, d̂
(r−2)
si2

, . . . , ˙̂dsir−1 exist, that is, the transformed unstructured uncertainty is
sufficiently smooth.

(5) The reference command ŷm and its first r derivates are known and bounded.
Moreover, the signal ŷ(r)

m is piecewise continuous.

With assumption (2), we focus on designing a nonlinear state observer for external dynamics
of (3.6),

˙̂z1 = Acẑ1 + Bc
[
LgL

r−1
f h(x̂)

∣∣∣
x̂=T−1(ẑ)

]
⎡

⎣û +
Lr
f
h(x̂)

LgL
r−1
f h(x̂)

∣∣∣∣∣∣
x̂=T−1(ẑ)

⎤

⎦ + d̂si. (3.9)

Since f(x̂) and g(x̂) are linearly related to system parameters, LgLr−1f
h(x̂) and LgLr−1f

h(x̂) can

be written as Lr
f
h(x̂) = ΘTWf(x̂) and LgL

r−1
f
h(x̂) = ΘTWg(x̂), where Wf(x̂) and Wg(x̂) are

two nonlinear functions, and Θ = [φf1 · · · φfk φg1 · · · φgl · · · ]T = [φ1 · · · φ�]
T ∈ R

� ,
where � is the number of unknown parameters. Next, we adopt the following observer
structure: ż1 = A0z1 + ky + F(y, u)TΘ, where z1 = [z11 · · · z1r]

T is the estimate of z1,
andWf(y) andWg(y) are nonlinear functions with the same structure asWf(x) andWg(x)
except that each entry of x is replaced by y. Furthermore,

A0=

⎡

⎢
⎣

−k1
...

−kr

I(r−1)×(r−1)
01×(r−1)

⎤

⎥
⎦, k=

[
k1 · · · kr

]T
, F

(
y, u
)T =

[
0(r−1)×�

W
T

f

(
y
)
+W

T

g

(
y
)
u

]

∈ R
r×�.

(3.10)

By properly choosing k, the matrixA0 can be made Hurwitz. Define the state estimated error
as ε � [εz11 · · · εz1r ]

T � z1 − z1. The dynamics of the estimated error can be obtained as
ε̇ = A0ε + Δ, where Δ = −kdy + BcΘT [Wg(x) −Wg(y)] u + BcΘT [Wf(x) −Wf(y)] + dsi. To
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proceed, the role of the state observer is replaced by z1 � ξ + ΩTΘ and the following two
K-filters:

ξ̇ = A0ξ + ky, Ω̇T = A0ΩT + F
(
y, u
)T
, (3.11)

such that ξ = [ξ11 · · · ξ1r]
T ∈ R

r and ΩT � [v1 · · · v�] ∈ R
r×� . Decompose the second

equation of (3.11) into v̇j = A0vj + erσj , j = 1, 2, . . . , �, where er = [0 · · · 0 1] ∈ R
r and

σj = w1j +w2juwithw1j andw2j are the jth columns ofW
T

f (y) andW
T

g(y), respectively. With
the definition of the state estimated error ε, the state estimate z1, and (3.11), we acquire the
following set of equations which will be used in the subsequent design:

z1k = z1k + εz1k = ξ1k +
�∑

j=1

vj,kφj + εz1k , k = 1, . . . , r, (3.12)

where •j,i denotes the ith row of •j .

4. Spatial Domain Output Feedback Adaptive Control System

To apply adaptive backstepping method, we firstly rewrite the derivative of output ŷ as

˙̂y = ˙̂z11 +
˙̂dy = ẑ12 + d̂si1 +

˙̂dy = z12 + εẑ12 + d̂si1 +
˙̂dy. (4.1)

With the second equation in (3.12), (4.1) can be written as

˙̂y = z12 + εẑ12 + d̂si1 +
˙̂dy = ξ12 + v�,2φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy, (4.2)

where ωT = [v1,2 · · · v�−1,2 0].
In view of designing output feedback backstepping with K-filters, we need to find

a set of K-filter parameters, that is, v�,2, . . . , v1,2, separated from û by the same number of
integrators between ẑ12 and û. From (3.11), we can see that v�,2, . . . , v1,2 are all candidates
if w2j are not zero. In the following derivation, we assume that v�,2 is selected. Hence, the
system incorporating the K-filters can be expressed as

˙̂y = ξ12 + v�,2φ� +ω
TΘ + εẑ12 + d̂si1 +

˙̂dy, v̇�,i = v�,i+1 − kiv�,1, i = 2, . . . , r − 1,

v̇�,r = −krv�,1 +w1� +w2�û.
(4.3)

To apply adaptive backstepping to (4.3), a new set of coordinates will be introduced

z1 = ŷ − ŷm, zi = v�,i − αi−1, i = 2, . . . , r, (4.4)
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where ŷm is the prespecified reference command and αi−1 is the virtual input which will be
used to stabilize each state equation. For simplicity, we define ∂α0/∂ŷ � −1 for subsequent
derivations.

Step 1 (i = 1). With (4.4), the first state equation of (4.3) can be expressed as

ż1 = ξ12 + z2φ� + α1φ� +ω
TΘ + εẑ12 + d̂si1 +

˙̂dy − ˙̂ym. (4.5)

Consider a Lyapunov function V1 = (1/2)z21 and calculate its derivative

V̇1 = z1ż1 = z1
(
ξ12 + z2φ� + α1φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy − ˙̂ym

)
. (4.6)

Define the estimates of φi as φ̃i and Φ = [Φ1 · · · Φ�] = Θ − Θ̃, where Θ̃ =

[φ̃f1 · · · φ̃fk φ̃g1 · · · φ̃gl · · · ]T = [φ̃1 · · · φ̃�]
T ∈ R

� . Note that Θ is the “true” parameter
vector while Θ̃ is the estimated parameter vector. Design the virtual input α1 as α1 = α1/φ̃�
and specify

α1 =
1
z1

(
−z1ξ12 − z1z2φ̃� − z1ωΘ̃ + z1 ˙̂ym − c1z21 − d1z21 − g1z21

)

= −ξ12 − z2φ̃� −ωT Θ̃ + ˙̂ym − c1z1 − d1z1 − g1z1,
(4.7)

where ci, di, gi are variables. Therefore, (4.6) becomes

V̇1 = −c1z21 − d1z21 − g1z21 + τ1Φ + z1
(
εẑ12 + d̂si1 +

˙̂dy
)
, (4.8)

where τ1Φ = z1z2Φ� + α1Φ� + z1ω
TΦ.

Step 2 (i = 2, . . . , r − 1). With respect to the new set of coordinates (4.4), the second equation
of (4.3) can be rewritten as

żi = zi+1 + αi − kiv�,1 −
⎡

⎣∂αi−1
∂ŷ

(
ξ12 + v�,2φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy
)
+
∂αi−1
∂ξ

(
A0ξ + kŷ

)

+
∂αi−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αi−1
∂vj

(
A0vj + erσj

)
+

i−1∑

j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦.

(4.9)
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Consider a Lyapunov function Vi =
∑i−1

j=1 Vj + (1/2)z2i and its derivative

V̇i =
i−1∑

j=1

V̇j + zi

⎧
⎨

⎩
zi+1 + αi − kiv�,1 −

⎡

⎣∂αi−1
∂ŷ

(
ξ12 + v�,2φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy
)

+
∂αi−1
∂ξ

(
A0ξ + kŷ

)
+
∂αi−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αi−1
∂vj

(
A0vj + erσj

)

+
i−1∑

j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦

⎫
⎬

⎭
.

(4.10)

Specify

αi =
1
zi

⎧
⎨

⎩
−zizi+1 + zikiv�,1 + zi

⎡

⎣∂αi−1
∂ŷ

(
ξ12 + v�,2φ̃� +ω

T Θ̃
)
+
∂αi−1
∂ξ

(
A0ξ + kŷ

)

+
∂αi−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αi−1
∂vj

(
A0vj + erσj

)
+

i−1∑

j=1

∂αi−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦

−ciz2i − di
(
∂αi−1
∂ŷ

)2

z2i − gi
(
∂αi−1
∂ŷ

)2

z2i

⎫
⎬

⎭
.

(4.11)

The derivative of Vi becomes

V̇i = −
i−1∑

j=1

⎛

⎝cjz
2
j + dj

(
∂αj−1
∂ŷ

)2

z2j + gj

(
∂αj−1
∂ŷ

)2

z2j

⎞

⎠ + τiΦ −
i−1∑

j=1

zj
∂αj−1
∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy
)
,

(4.12)

where τiΦ = τ1Φ −∑i−1
j=2(∂αj−1/∂ŷ)(zjv�,1Φ� + zjω

TΦ).

Step 3. With respect to the new set of coordinates (4.4), the third equation of (4.3) can be
written as

żr =− krv�,1+w1�+w2�û −
⎡

⎣∂αr−1
∂ŷ

(
ξ12 + v�,2φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy
)
+
∂αr−1
∂ξ

(
A0ξ + kŷ

)

+
∂αr−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αr−1
∂vj

(
A0vj + erσj

)
+

r−1∑

j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦.

(4.13)
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The overall Lyapunov function may now be chosen as

Vr =
r−1∑

j=1

Vj +
1
2
z2r +

1
2
ΦTΓ−1Φ +

r∑

j=1

1
4dj

εTPε, (4.14)

where Γ is a symmetric positive definite matrix, that is, Γ = ΓT > 0. With the definition of state
estimated error ε, we can obtain that

V̇r =
r−1∑

j=1

V̇j + zr

⎧
⎨

⎩
−krv�,1 +w1� +w2�û −

⎡

⎣∂αr−1
∂ŷ

(
ξ12 + v�,2φ� +ω

TΘ + εẑ12 + d̂si1 +
˙̂dy
)

+
∂αr−1
∂ξ

(
A0ξ + kŷ

)
+
∂αr−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αr−1
∂vj

(
A0vj + erσj

)

+
r−1∑

j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦

⎫
⎬

⎭

+ Φ̇TΓ−1Φ −
r∑

j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.15)

Specify the control input as

û =
1

zrw2�

⎧
⎨

⎩
zrkrv�,1 − zrw1� + zr

⎡

⎣∂αr−1
∂ŷ

(
ξ12 + v�,2φ̃� +ω

T Θ̃
)
+
∂αr−1
∂ξ

(
A0ξ + kŷ

)

+
∂αr−1
∂Θ̃

˙̃Θ
�∑

j=1

∂αr−1
∂vj

(
A0vj + erσj

)
+

r−1∑

j=1

∂αr−1

∂ŷ
(j−1)
m

ŷ
(j)
m

⎤

⎦

−crz2r − dr
(
∂αr−1
∂ŷ

)2

z2r − gr
(
∂αr−1
∂ŷ

)2

z2r + zrûR̂

⎫
⎬

⎭
,

(4.16)

where ûR̂ is an addition input which will be used to target on rejection of uncertainties.
Substituting (4.16) into V̇r , we have

V̇r =−
r∑

j=1

⎛

⎝cjz
2
j +dj

(
∂αj−1
∂ŷ

)2

z2j +gj

(
∂αj−1
∂ŷ

)2

z2j

⎞

⎠+τr−1Φ− ∂αr−1
∂ŷ

(
zrv�,1Φ�+zrω

TΦ
)
+zrûR̂

−
r∑

j=1

zj
∂αj−1
∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy
)
+ Φ̇TΓ−1Φ −

r∑

j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.17)
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Write τrΦ = τr−1Φ − (∂αr−1/∂ŷ)(zrv�,1Φ� + zrω
TΦ) and we arrive at

V̇r = −
r∑

j=1

⎛

⎝cjz
2
j + dj

(
∂αj−1
∂ŷ

)2

z2j + gj

(
∂αj−1
∂ŷ

)2

z2j

⎞

⎠ +
(
τr + Φ̇TΓ−1

)
Φ + zrûR̂

−
r∑

j=1

zj
∂αj−1
∂ŷ

(
εẑ12 + d̂si1 +

˙̂dy
)
−

r∑

j=1

1
4dj

εTε +
r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.18)

From (4.18), we may specify the parameter update law in order to cancel the term (τr +
Φ̇TΓ−1)Φ. To guarantee the estimated parameters will always lie within allowable region w,
a projected parametric update law will be specified as

˙̃Θ =

{
ΓτTr if Θ̃ ∈ w0,

PR
(
ΓτTr
)

if Θ̂ ∈ ∂w, τrΓΘ̃perp > 0,
(4.19)

where w is the allowable parameter variation set (compact and convex) with its interior and
boundary denoted by w0 and ∂w, respectively. If the current estimated parameter vector lies
within the allowable parameter variation set, normal update law is employed. If the current
estimated parameter vector lies on the boundary of the allowable parameter variation set,
projected update law denoted by PR(·) is employed to prevent the parameter vector from
leaving the variation set. With (4.19), (4.18) can be written as

V̇r = −
r∑

j=1

⎛

⎝cjz
2
j + gj

(
∂αj−1
∂ŷ

)2

z2j

⎞

⎠ −
r∑

j=1

dj

(
∂αj−1
∂ŷ

zi +
1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

zj
∂αj−1
∂ŷ

(
d̂si1 +

˙̂dy
)
−

r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)

≤ −
r∑

j=1

⎛

⎝cjz
2
j + gj

(
∂αj−1
∂ŷ

)2

z2j

⎞

⎠ −
r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

zj
∂αj−1
∂ŷ

∣∣∣d̂si1 +
˙̂dy
∣∣∣ −

r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.20)
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Add and subtract terms
∑r

j=1(1/4gj)|d̂si1 + ˙̂dy|
2
; we have

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

+ zrûR̂

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

)2

z2j −
r∑

j=1

zj
∂αj−1
∂ŷ

∣∣∣d̂si1 +
˙̂dy
∣∣∣ −

r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
−

r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
.

(4.21)

Moreover, we obtain

V̇i ≤ −
r∑

j=1

cjz
2
j −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4di

(
εTPΔ + ΔTPε

)
−

r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+ zrûR̂.

(4.22)

As shown in Figure 1, the tracking error Z1(s̃) and the control input ÛR̂(s̃) are related by

ÛR̂(s̃) = −R̂(s̃)Ĉ(s̃)Z1(s̃), (4.23)

where we have chosen R̂(s̃) as a low-order and attenuated-type internal model filter, that is,

R̂(s̃) =
k∏

i=1

s̃2 + 2ζiωnis̃ +ω2
ni

s̃2 + 2ξiωnis̃ +ω2
ni

, (4.24)

where k is the number of periodic frequencies to be rejected, ωni is determined based on
the ith disturbance frequency in rad/rev, and ξi and ζi are two damping ratios that satisfy
0 < ξi < ζi < 1. We can adjust the gain of R̂(s̃) at those periodic frequencies by varying the
values of ξi and ζi.

Theorem 4.1. Consider the control law of (4.16) and (4.23) applied to a nonlinear system with
unmodeled dynamics, parameter uncertainty and subject to output disturbance as given by (3.1).

Assume that ŷm, ˙̂ym, . . . , ŷ
(r)
m (where r is the relative degree) and d̂y,

˙̂dy, . . . , d̂
(r)
y are known and

bounded, d̂(r−1)
si1

, d̂
(r−2)
si2

, . . . , ˙̂dsir−1 are sufficiently smooth, f, g, h, Lrfh, LgL
r−1
f h are Lipschitz

continuous functions, at least one column ofW(ŷ) is bounded away from zero. Furthermore, suppose
that a loop-shaping filter Ĉ(s̃) is designed such that the feedback system is stable. Then the modified
parameter update law as given by (4.19) yields the bounded tracking error.
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K-filters

Internal model filter

Output feedback adaptive backstepping

−ꉱu
ꉱR ꉱu σ

ε

∫

+

ꉱdy

+ ꉱy
−

ꉱym

z1

NL1(·)

NL2(·) f(·) + g(·) α(·) + ∆f(·) + ∆g(·) α(·)

ꉱC(∼s) ꉱR(∼s)

Figure 1: The control configuration for the proposed spatial domain adaptive control system.

Proof. Step 1 (show that only Θ̃ ∈ w0 needs to be considered).
Denote by ˙̃Θperp the component of ˙̃Θ perpendicular to the tangent plane at Θ̃ so that

˙̃Θ = PR(
˙̃Θ) + ˙̃Θperp. Since Θ ∈ w and w is convex, we have (Θ̃ −Θ)

T ˙̃Θperp ≥ 0. Choose
Lyapunov function V (Φ) = ΦTΦ and use the parameter update law as defined in (4.19).
When Θ̃ ∈ w0, we have V̇ = −ΦT ˙̃Θ. When Θ̃ ∈ ∂w, we have

V̇ = −ΦTPR
( ˙̃Θ
)
= −ΦT

( ˙̃Θ − ˙̃Θperp

)
= −ΦT ˙̃Θ +ΦT ˙̃Θperp ≤ −ΦT ˙̃Θ, (4.25)

where we use the fact that

ΦT ˙̃Θperp =
(
Θ − Θ̃

)T ˙̃Θperp = −
(
Θ̃ −Θ

)T ˙̃Θperp ≤ 0. (4.26)

Thus, we only have to consider the scenario corresponding to Θ̃ ∈ w0 in the sequel.
Step 2. Substituting (4.23) back into (4.22), we have

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
− zrR̂(s̃)Ĉ(s̃)z1.

(4.27)

Using the definition of tracking error z1 = ŷ − ŷm = (z11 − ŷm) + εẑ11 − d̂y, (4.27) can be
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written as

V̇r ≤ −
r∑

j=1

cjz
2
j −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)

+
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
z11 − ŷm

)∣∣∣ +
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

)∣∣∣.

(4.28)

Use the following equality:

ẑrR̂(s̃)Ĉ(s̃)
(
εẑ11 − d̂y

)
≤ γ2ẑ2r +

(
1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

, γ > 0 is designable. (4.29)

Equation (4.28) becomes

V̇r ≤ −
r−1∑

j=1

cjz
2
j − c′rz2r −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
+
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
z11 − ŷm

)∣∣∣

+
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
,

(4.30)

where c′r = cr − γ2 > 0. Moreover, the positive designable parameters ci can be written as

cj = Cj + hj , j = 1, . . . , r − 1,

c′r = Cr + hr,
(4.31)

where Cj, Cr and hj , hr > 0. Thus, (4.30) can be written as

V̇r ≤ −
r−1∑

j=1

(
Cj + hj

)
z2j − (Cr + hr)z2r −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
+
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
z11 − ŷm

)∣∣∣

+
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

.

(4.32)
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Utilizing the fact that
(√

h1|z1| −
√
hr |zr |

)2
= z21 + hrz

2
r −
√
h1hr
∣∣∣zr
(
z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣, (4.33)

we have

V̇r ≤ −
r−1∑

j=2

(
Cj + hj

)
z2j − C1z

2
1 − Crz

2
r

−
(√

h1|z1| −
√
hr |zr |

)2 −
√
h1hr
∣∣∣zr
(
z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣

−
r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
+

r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)

+
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
z11 − ŷm

)∣∣∣ +
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

.

(4.34)

To design h1, . . . , hr (or c1, . . . , cr ), dj and gj such that

−
r∑

j=1

hjz
2
j −

r∑

j=1

dj

(
∂αj−1
∂ŷ

zj +
1
2dj

εẑ12

)2

−
r∑

j=1

gj

(
∂αj−1
∂ŷ

zj +
1
2gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣

)2

−
r∑

j=1

1
4dj

(
ε2

ẑ11
+ ε2

ẑ13
+ · · · + ε2

ẑ1r

)
−
(√

h1|z1| −
√
hr |zr |

)2

−
√
h1hr
∣∣∣zr
(
z11 − ŷm

)
+ zr
(
εẑ11 − d̂y

)∣∣∣ +
∣∣∣zrR̂(s̃)Ĉ(s̃)

(
z11 − ŷm

)∣∣∣ ≤ 0,

(4.35)

we arrive at

V̇r ≤ −
r∑

j=1

Cjz
2
j +
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2
+

r∑

j=1

1
4dj

(
εTPΔ + ΔTPε

)
.

(4.36)

Equation (4.36) implies that

V̇r ≤ −
r∑

j=1

Cjz
2
j −
⎛

⎝1
2
ΦTΓ−1Φ +

r∑

j=1

1
4dj

εTPε

⎞

⎠ +

⎛

⎝1
2
ΦTΓ−1Φ +

r∑

j=1

1
4dj

εTPε

⎞

⎠

+
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2

+
r∑

j=1

1
4dj

∣∣∣εTPΔ + ΔTPε
∣∣∣ ≤ −2kvVr + C,

(4.37)
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where kv � min{C1, . . . Cr, λmin(Γ)}, λmin (Γ) is the smallest eigenvalue of Γ and

C =
1
2
ΦTΓ−1Φ +

r∑

j=1

1
4dj

εTPε +
(

1
2γ
R̂(s̃)Ĉ(s̃)

(
εẑ11 − d̂y

))2

+
r∑

j=1

1
4gj

∣∣∣d̂si1 +
˙̂dy
∣∣∣
2

+
r∑

j=1

1
4dj

∣∣∣εTPΔ + ΔTPε
∣∣∣

(4.38)

is bounded since εẑ11 , d̂y are bounded and ΦTΓ−1Φ is bounded due to the parameter update
law specified in (4.19). We conclude that

Vr ≤ e−2kvθVr(0) +
∫θ

0
Ce−2kv(θ−τ)dτ ≤ e−2kvθVr(0) +

(
1 − e−2kvθ

) C

2kv
. (4.39)

As θ → ∞, we have

Vr(∞) ≤ C

2kv
, (4.40)

which implies that the overall system is stable and the bound C/(2kv) can be decreased
by increasing kv or increasing γ . By (4.14), this implies that z, Θ̃, ε are bounded. Since
z1 = ŷ− ŷm, ŷ is also bounded. From (3.11), we can see that ξ and v1, . . . , v� are bounded since
Wf(ŷ) andWg(ŷ) are bounded. Moreover, we conclude that the virtual inputs α are bounded
because they consist of bounded terms. Also, z1 is bounded from (3.12) and also ẑ1 from
the definition of ε. With the ISS assumption and bounded ẑ1, we conclude that the internal
dynamics ẑ2 is bounded. Finally, x̂ is bounded by diffeomorphism, that is, x̂ = T−1(ẑ).

5. Illustrative Example

For realistic simulation, we set up a simulation configuration as shown in Figure 2, in which
the controller and parametric adaptation operate in the θ-domain whereas the open-loop
system operates in the time domain. The proposed spatial domain output feedback adaptive
control scheme is applied to a reformulated system in spatial domain expressed as

˙̂x = f(x̂) + g(x̂)û + d̂s, ŷ = h(x̂) + d̂y, (5.1)

where

f(x̂) =

⎡

⎣−a1 +
x̂2
x̂1

−a0

⎤

⎦, g(x̂) =

⎡

⎣
0
b0
x̂1

⎤

⎦, h(x̂) = x̂1, (5.2)

with a0 = 5155, a1 = 1138, and b0 = 140368. For verification purpose, the output disturbance
is assumed to be a low-pass rectangular periodic signal (with amplitude switching between
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Figure 2: The configuration for numerical simulation.
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Figure 3: The output disturbance and the corresponding frequency spectrum.

−0.1 and 0.1) (see Figure 3), that is,

d̂y(θ) =
0.1

0.0125s̃ + 1

[ ∞∑

l=−∞
(−1)lΠ(θ − 1 − l)

]

+
10

(0.005s̃ + 1)2
N0, (5.3)
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where

Π(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 |θ| < 1,
0.5 |θ| = 1,
0 otherwise.

(5.4)

Note that the disturbance has been low-pass filtered so that it is continuously differentiable.
Parameters of the internal model filter are specified to target the fundamental frequency and
the first three harmonic frequencies of the periodic disturbance, that is,

R̂(s̃) =
4∏

i=1

s̃2 + 2ζiωnis̃ +ω2
ni

s̃2 + 2ξiωnis̃ +ω2
ni

, (5.5)

where

ςi = 0.2, ξi = 0.0002,

ωn1 = 0.25π, ωn2 = 3 × 0.25π, ωn3 = 5 × 0.25π, ωn4 = 7 × 0.25π,
(5.6)

Furthermore, the stabilizing filter is specified as

Ĉ(s̃) =
100 000(s̃/100 + 1)

(s̃/10 000 + 1)
. (5.7)

The parameters of the K-filter are set to k1 = 1600 and k2 = 100. The initial values of the
estimated parameters are set to ã0 = 1500, ã1 = 500, and b̃0 = 1000000. The allowable
parameter variation sets are

ã0 ∈ Ωã0 � {ã0 : 100 ≤ ã0 ≤ 10 000},

ã1 ∈ Ωã1 � {ã1 : 10 ≤ ã1 ≤ 10 000},

b̃0 ∈ Ωb̃0
�
{
b̃0 : 10 000 ≤ b̃0 ≤ 10 000 000

}
.

(5.8)

Note that ds(t) is set to 0 so that the system performance is not affected by the unstructured
uncertainty. Suppose that a variable speed control task demands the system to initially run
at 30 rev/s and then speed up to 35 rev/s and finally speed down to 25 rev/s (see Figure 4).
To avoid getting infinite value when taking derivative, the reference command is specified to
have smooth (instead of instant) change. Figure 5 compares the tracking performance of two
scenarios. The figures on the left are for the pure output feedback adaptive backstepping
design. The ones on the right are for the proposed output feedback design with internal
model control. Without internal model control, the adaptive backstepping design has already
shown superb tracking performance. We see that adding the internal model control further
reduces the magnitude of the tracking error without noticeable increase in the control input.
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Figure 4: The tracking command for a variable speed control task.
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Figure 5: Comparison of tracking performance.

6. Conclusion

This paper presents the design of a new spatial domain adaptive control system, which can
be applied to rotary systems operating at varying speeds and subject to spatially periodic
and band-limited disturbances and structured/unstructured parametric uncertainties.
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The proposed design integrates two control paradigms, that is, adaptive backstepping and
internal model control. The overall output feedback adaptive control system can be shown
to be stable and have bounded state estimated error and output tracking error. Feasibility
and effectiveness of the proposed design are further justified by a numerical example. Future
effort will be dedicated to implementation and verification of the proposed control design to
a practical rotary system, for example, a brushless dc-motor-driven control system.
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