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The effect of different types of nanoparticles on the heat transfer from a continuously moving
stretching surface in a concurrent, parallel free stream has been studied. The stretching surface
is assumed to have power-law velocity and temperature. The governing equations are converted
into a dimensionless system of equations using nonsimilarity variables. Resulting equations are
solved numerically for various values of flow parameters. The effect of physical quantities on the
temperature profiles is discussed in detail.

1. Introduction

The thermal management of continuously moving surfaces in a quiescent or flowing fluid
plays a major role in determining the quality of final products and production rates during
many manufacturing processes such as extrusion of metal or polymer sheets, wire drawing,
glass fiber production, continuous casting, and paper production. Since the pioneering work
of Sakiadis [1], considerable attention has been given to the flow and heat transfer over a
continuously moving surface by many researchers. Elbashbeshy and Bazid [2] investigated
the heat transfer over an unsteady stretching surface. This study reveals that the rate of the
heat transfer increases with the increase of the unsteadiness parameter and Prandtl number.
Tsou et al. [3] obtained analytical and experimental results for the flow and heat transfer over
a continuously moving surface. Gupta and Gupta [4] analyzed the heat and mass transfer in
the flow over a porous stretching sheet. Chen [5] studied the flow and heat transfer from a
heated flat surface continuously moving in a parallel free stream of non-Newtonian fluid and
found that the heat transfer rate increases with an increase in the ratio of the free stream
velocity to the wall velocity. Devi and Thiyagarajan [6] investigated the hydromagnetic
flow and heat transfer over a nonlinearly stretching sheet with variable surface temperature.
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Hassanien et al. [7] studied the boundary layer solutions for the flow and heat transfer over a
continuously flat surface moving in a parallel free stream. Al-Sanea and Ali [8] investigated
the effect of extrusion slit on the flow and heat transfer from a continuously moving material
with suction or injection. Cortell [9] performed a numerical analysis for the flow and heat
transfer in a viscous fluid over a nonlinearly stretching sheet.

It is well known that conventional heat transfer fluids used in the above-mentioned
studies have low thermal properties. Rapid developments in modern manufacturing
techniques allow for the production of nanosized metallic or nonmetallic particles in the
range between 1 and 100 nmwhich are used as additives inside the base fluids such as water,
oil, and ethylene glycol for improving heat transfer. This new type of liquid-solid mixture is
termed nanofluid. Starting from studies of Masuda et al. [10] and Choi [11], nanofluids have
attracted great interest because of the their unique thermal properties. Wen and Ding [12]
observed that the usage of Al2O3 nanoparticles in water significantly enhances the convective
heat transfer in the laminar flow region. Santra et al. [13] studied heat transfer of a copper-
water nanofluid through two isothermally heated parallel plates and found that the rate of
heat transfer increases with the increase in flow as well as the increase in nanoparticle volume
fraction. Eastman et al. [14] observed that effective thermal conductivity of ethylene glycol
significantly increased for 0.3% volume fraction of Cu nanoparticles. Abu-Nada et al. [15]
investigated natural convection heat transfer enhancement in horizontal concentric annuli
using different types of nanofluids. Their results indicate that for high values of the Rayleigh
number, nanoparticles with high thermal conductivity cause significant enhancement of heat
transfer characteristics. On the other hand, for intermediate values of the Rayleigh number,
nanoparticles with low thermal conductivity cause a reduction in heat transfer. Hamad and
Pop [16] used scaling transformations for boundary layer flow near the stagnation point on
a permeable stretching sheet in a porous medium saturated with a nanofluid. Bachok et al.
[17] investigated the flow and heat transfer in a viscous fluid near the three-dimensional
stagnation point of a body that is placed in a water-based nanofluid containing different types
of nanoparticles and found that nanoparticles suspended in a fluid are capable of increasing
the heat transfer capability of the base fluids. Vajravelu et al. [18] studied the convective heat
transfer in the flow of viscous nanofluids over a stretching sheet. Hady et al. [19] studied
the radiation effect on the viscous flow of a nanofluid and heat transfer over a nonlinearly
stretching sheet. Yacob et al. [20] investigated the steady boundary layer shear flow over a
stretching/shrinking sheet in a nanofluid.

The aim of this work is to investigate the effect of different types of nanoparticles
(namely, copper (Cu) andAlumina (Al2O3)) on the heat transfer from a continuously moving
stretching surface in a concurrent, parallel free stream. The stretching surface is assumed to
have power-law velocity and temperature. The governing equations are made dimensionless
using nonsimilarity variables. Local nonsimilarity solutions are obtained for the temperature
distributions. The results are given in tabular and graphical forms. The effects of the problem
parameters are discussed in detail.

2. Formulation of the Problem

The geometry of the present problem and its coordinate system are shown in Figure 1. The
stretching surface moves as a two-dimensional sheet and originates from a slot with power-
law velocity through the nanofluid medium subjected to the uniform-free stream velocity,
U∞.
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Figure 1: Flow geometry.

The continuous stretching surface is assumed to have power-law wall temperature.
The positive x coordinate runs along the surface with the slot as the origin and positive y
coordinate is measured normal to the surface. It is also assumed that nanoparticles and base
fluid are in thermal equilibrium and move at the same velocity. Under these assumptions,
the governing equations for the steady, two-dimensional, laminar boundary layer flow of
an incompressible nanofluid with constant thermophysical properties can be expressed as
follows:
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and associated boundary conditions are

u = Uw(x) = Axp, T = Tw(x) = Bxm, v = 0 at y = 0

u −→ U∞, T −→ T∞ as y −→ ∞,
(2.2)

where u and v are the velocity components in the x and y directions, respectively. T is the
temperature.A and B are dimensional constants; p andm are the exponents. Furthermore, νeff
is the effective kinematic viscosity of the nanofluid and αeff is the effective thermal diffusivity
of nanofluid, defined by the following expressions [21, 22]:

ρeff =
(
1 − ψ)ρbf + ψρp,

(
ρcp

)
eff =

(
1 − ψ)(ρcp

)
bf + ψ

(
ρcp

)
p
,

μeff

μbf
=

1
(
1 − ψ)2.5

,

νeff =
μeff

ρeff
,

keff
kbf

=
kp + 2kbf + 2

(
kp − kbf

)(
1 + β

)3
ψ

kp + 2kbf −
(
kp − kbf

)(
1 + β

)3
ψ
, αeff =

keff(
ρcp

)
eff

,

(2.3)



4 Journal of Applied Mathematics

Table 1: Thermophysical properties of nanoparticules and base fluid.

Substances k (W/mK) ρ (kg/m3) cp (J/kgK) Pr
Water 0.613 997.1 4179 6.2
Cu 401 8933 385 —
Al2O3 40 3970 765 —

where ρeff is the effective density of nanofluid and ρbf and ρp denote the densities of the base
fluid and nanoparticles, respectively. ψ is the nanoparticle volume fraction and μeff and μbf

are the viscosities of the nanofluid and base fluid. keff is the effective thermal conductivity of
the nanofluid and kbf and kp are thermal conductivities of the base fluid and nanoparticles,
respectively. Finally, β is the ratio of the nanolayer thickness to the original particle radius
and fixed as 0.1 in the present study. The thermophysical properties of the base fluid with
nanoparticles are given in Table 1. All thermophysical properties are assumed to be constant.

In order to obtain nonsimilar solutions, one may introduce
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(2.4)

where ξ(x) is the transformed streamwise coordinate and η(x, y) is a pseudosimilarity
variable. L is a characteristic length of continuous surface and νbf is the kinematic viscosity of
base fluid. ϕ is the stream function. Upon substitution of these variables and functions into
the original equations we obtain
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The associated boundary conditions are

f ′(ξ, 0) = ∧ξp, 1
2
f(ξ, 0) + ξ

∂f

∂ξ
(ξ, 0) = 0,

f ′(ξ,∞) = 1, θ(ξ, 0) = 1, θ(ξ,∞) = 0,

(2.6)

where primes denote differentiation with respect to the pseudosimilarity variable η and Pr is
the Prandtl number for the base fluid. ∧ = ALp/U∞ corresponds to the ratio of surface wall
velocity to the free stream velocity.

It is worth mentioning that the terms on the right hand sides of (2.5) are assumed
to be sufficiently small so that they may be dropped. This gives local similar equations.
Approximate solutions of (2.5) subjected to the boundary conditions in (2.6)will be obtained
by employing the local nonsimilarity method. Details of application of the local nonsimilarity
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method to solutions of nonsimilar boundary layer equations can be found in [23, 24]. We now
introduce the new dependent variables:
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. (2.7)

Substituting (2.7) into the nonsimilar boundary layer equation (2.5), we obtain
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Differentiating (2.8) and boundary conditions in (2.6) with respect to ξ, we obtain
auxiliary equations and boundary conditions as follows:
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The ξ derivatives of g, g ′, and h are neglected. Hence, the boundary layer equations
and auxiliary equations with their boundary conditions can be written as
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f ′(ξ, 0) = ∧ξp, f(ξ, 0) = 0, f ′(ξ,∞) = 1, θ(ξ, 0) = 1, θ(ξ,∞) = 0,

g ′(ξ, 0) = p ∧ ξp−1, g(ξ, 0) = 0, g ′(ξ,∞) = 0, h(ξ, 0) = 0, h(ξ,∞) = 0.
(2.11)

In contrast to the local similarity method, the nonsimilar terms on the right-hand side
of the boundary layer equations are retained. As a consequence of this, it is expected that the
results obtained from the local nonsimilarity method are more accurate than those of the local
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Table 2: Numerical comparison of NuxRe
−1/2
x for ψ = 0 to previously published data.

Pr Soundalgekar and Murty Chen Present results
m = 0 m = 1 m = 0 m = 1 m = 0 m = 1

0.7 0.3508 0.8028 0.3509 0.8029 0.3508 0.8028
2 0.6831 1.4683 0.6832 1.4683 0.6833 1.4683
10 1.6808 3.4515 1.6802 3.4517 1.6803 3.4516

similarity method. The set of coupled equations (2.10) can be treated as a system of ordinary
differential equations with ξ being treated as a constant parameter in any streamwise location.

The primary physical quantity of interest is the local Nusselt number which represents
the surface heat transfer rate.

The local heat flux at the surface is defined as
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and the local Nusselt number Nux is given by
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x
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Substituting (2.12) into (2.13), the local Nusselt number then becomes

NuxRe−1/2x = −keff
kbf

θ′(ξ, 0), (2.14)

where Rex is the Reynolds number (Rex = U∞x/νbf).

3. Results and Discussions

The transformed local nonsimilar equations (2.10) subject to boundary conditions in (2.11)
are solved numerically using the effective shooting technique with a fourth-order Runge-
Kutta integration scheme in conjunction with the Newton-Raphson method for systematic
guessing of f ′(ξ, 0), θ′(ξ, 0), g ′(ξ, 0), and h′(ξ, 0). The convergence criterion of the obtained
results is of order 10−6. In order to test the accuracy of the present method, local similarity
results of the present problem are compared with those of Chen [25] and Soundalgekar and
Ramana Murty [26] in Table 2 and a good agreement is found. Heat transfer results obtained
only for θ and its derivative which is physically relevant is displayed in graphical and tabular
forms for various values of problem parameters to see the developments in the temperature
profiles.

Figure 2 is constructed to demonstrate the effect of the volume fraction ψ on the
temperature profiles. It is clear that thermal boundary layer thickness increases as ψ increases.
Physically, if the nanoparticle volume fraction increases, the thermal diffusivity of the
nanofluid increases and this phenomenon leads to the faster propagation of heat into
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Figure 2: Variation of dimensionless temperature for different values of ψ (Pr = 6.2, m = 1, p = 1, ξ = 0.1,
∧ = 0.1).
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Figure 3: Variation of dimensionless temperature for different values of parameter m (Pr = 6.2, ψ = 0.1,
p = 1, ξ = 0.1, ∧ = 0.1).

the nanofluid which increases the thermal boundary layer thickness. It is also observed that
this effect is more pronounced for alumina nanofluids.

Figure 3 displays temperature profiles for different values of the surface temperature
distribution exponent m. It is obvious that the temperature at a point decreases with an
increase in m. In addition, the adiabatic wall condition is achieved for m = −0.5; when



8 Journal of Applied Mathematics

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ

Al2O3

Cu

p = 1, 0.3, 0

Figure 4: Variation of dimensionless temperature for different values of parameter p (Pr = 6.2, ψ = 0.1,
m = 1, ξ = 0.1, ∧ = 0.1).
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m > −0.5, heat flows from the stretching surface into the nanofluid medium and a negative
temperature gradient is observed at the surface.

Figure 4 is plotted to see the effects of the surface velocity exponent p on the
temperature profiles. It can be seen that temperature decreases with an increase in p.

Figure 5 shows the temperatures within the boundary layer region for various values
of parameter ∧ (ratio of surface wall velocity to free stream velocity). It is clear that
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Table 3:Water-Cu nanofluid (Pr = 6.2,m = 1, p = 1, ∧ = 0.1).

ξ = 0.1 ξ = 0.5
ψ keff/kf −θ(0) NuxRex−1/2 −θ(0) NuxRex−1/2

0.0 1.0000 1.0426 1.0426 1.1896 1.1896
0.01 1.0403 1.0360 1.0778 1.1780 1.2255
0.05 1.2128 1.0037 1.2173 1.1289 1.3691
0.1 1.4582 0.9557 1.3936 1.0646 1.5524

Table 4: Water-Al2O3 nanofluid (Pr = 6.2,m = 1, p = 1, ∧ = 0.1).

ξ = 0.1 ξ = 0.5
ψ keff/kf −θ(0) NuxRex−1/2 −θ(0) NuxRex−1/2

0.0 1.0000 1.0426 1.0426 1.1896 1.1896
0.01 1.0386 1.0288 1.0688 1.1719 1.2171
0.05 1.2037 0.9749 1.1735 1.1045 1.3295
0.1 1.4371 0.9108 1.3089 1.0261 1.4746

the temperature decreases and the thermal boundary layer thickness becomes thinner when
the parameter ∧ takes on a higher value. It is also noticed that the temperature gradient at the
surface increases due to enhancements in convective heat transfer.

Tables 3 and 4 show the variations of the surface temperature gradient and local
Nusselt number for various values of the volume fraction and streamwise location for copper-
water and alumina-water nanofluids, respectively. It is obvious that the surface temperature
gradient decreases with the increase of volume fraction; however, the local Nusselt number
increases for both cases of the nanofluid. This is attributed to the increase in effective thermal
conductivity with ψ as illustrated in the tables. In addition to this, the temperature gradient
values increase along the streamwise location.

4. Concluding Remarks

This paper deals with the effects of different types of nanoparticles on the heat transfer from
a continuously moving stretching surface in a concurrent, parallel free stream. The governing
equations are derived using the boundary layer approximation and reduced to local
nonsimilar ones. Resulting equations are solved numerically. Dimensionless temperature
profiles are shown graphically for various problem parameters. It is found that the heat
transfer rate increases with the increase of suspended nanoparticle volume fraction. The
highest heat transfer enhancement is obtained when Cu nanoparticles are used. It is also
concluded that the thermal boundary layer thickness for Al2O3-water nanofluid is higher
than that of Cu-water nanofluid.
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