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The purpose of this paper is using Korpelevich’s extragradient method to study the existence
problem of solutions and approximation solvability problem for a class of systems of finite
family of general nonlinear variational inequality in Banach spaces, which includes many kinds
of variational inequality problems as special cases. Under suitable conditions, some existence
theorems and approximation solvability theorems are proved. The results presented in the paper
improve and extend some recent results.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. We also assume that E is a real Banach space, E∗ is the dual space of E, C is a
nonempty closed convex subset of E, and 〈·, ·〉 is the pairing between E and E∗.

In this paper, we are concerned a finite family of a general system of nonlinear
variational inequalities in Banach spaces, which involves finding (x∗

1, x
∗
2, . . . , x

∗
n) ∈ C × C ×

· · · × C such that
〈
λ1A1x

∗
2 + x∗

1 − x∗
2, j

(
x − x∗

1

)〉 ≥ 0, ∀x ∈ C,

〈
λ2A2x

∗
3 + x∗

2 − x∗
3, j

(
x − x∗

2
)〉 ≥ 0, ∀x ∈ C,

〈
λ3A3x

∗
4 + x∗

3 − x∗
4, j

(
x − x∗

3
)〉 ≥ 0, ∀x ∈ C,

...
〈
λN−1AN−1x∗

N + x∗
N−1 − x∗

N, j
(
x − x∗

N−1
)〉 ≥ 0, ∀x ∈ C,

〈
λNANx∗

1 + x∗
N − x∗

1, j
(
x − x∗

N

)〉 ≥ 0, ∀x ∈ C,

(1.1)
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where {Ai : C → E, i = 1, 2, . . . ,N} is a finite family of nonlinear mappings and λi (i = 1,
2, . . . ,N) are positive real numbers.

As special cases of the problem (1.1), we have the following.
(I) If E is a real Hilbert space and N = 2, then (1.1) reduces to

〈
λ1A1x

∗
2 + x∗

1 − x∗
2, x − x∗

1

〉 ≥ 0, ∀x ∈ C,

〈
λ2A2x

∗
1 + x∗

2 − x∗
1, x − x∗

2
〉 ≥ 0, ∀x ∈ C,

(1.2)

which was considered by Ceng et al. [1]. In particular, if A1 = A2 = A, then the problem (1.2)
reduces to finding (x∗

1, x
∗
2) ∈ C × C such that

〈
λ1Ax∗

2 + x∗
1 − x∗

2, x − x∗
1

〉 ≥ 0, ∀x ∈ C,

〈
λ2Ax∗

1 + x∗
2 − x∗

1, x − x∗
2
〉 ≥ 0, ∀x ∈ C,

(1.3)

which is defined by Verma [2]. Furthermore, if x∗
1 = x∗

2, then (1.3) reduces to the following
variational inequality (VI) of finding x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.4)

This problem is a fundamental problem in variational analysis and, in particular, in
optimization theory. Many algorithms for solving this problem are projection algorithms
that employ projections onto the feasible set C of the VI or onto some related set, in order
to iteratively reach a solution. In particular, Korpelevich’s extragradient method which was
introduced by Korpelevich [3] in 1976 generates a sequence {xn} via the recursion

yn = PC[xn − λAxn],

xn+1 = PC

[
xn − λAyn

]
, n ≥ 0,

(1.5)

where PC is the metric projection from R
n onto C, A : C → H is a monotone operator, and λ

is a constant. Korpelevich [3] proved that the sequence {xn} converges strongly to a solution
of V I(C,A). Note that the setting of the space is Euclid space R

n.
The literature on the VI is vast, and Korpelevich’s extragradient method has received

great attention by many authors, who improved it in various ways. See, for example, [4–16]
and references therein.

(II) If E is still a real Banach space andN = 1, then the problem (1.1) reduces to finding
x∗ ∈ C such that

〈
Ax∗, j(x − x∗)

〉 ≥ 0, ∀x ∈ C, (1.6)

which was considered by Aoyama et al. [17]. Note that this problem is connected with the
fixed point problem for nonlinear mapping, the problem of finding a zero point of a nonlinear
operator, and so on. It is clear that problem (1.6) extends problem (1.4) from Hilbert spaces
to Banach spaces.
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In order to find a solution for problem (1.6), Aoyama et al. [17] introduced the
following iterative scheme for an accretive operator A in a Banach space E:

xn+1 = αnxn + (1 − αn)ΠC(xn − λnAxn), n ≥ 1, (1.7)

where ΠC is a sunny nonexpansive retraction from E to C. Then they proved a weak conver-
gence theorem in a Banach space. For relatedworks, please see [18] and the references therein.

It is an interesting problem of constructing some algorithms with strong convergence
for solving problem (1.1)which contains problem (1.6) as a special case.

Our aim in this paper is to construct two algorithms for solving problem (1.1). For this
purpose, we first prove that the system of variational inequalities (1.1) is equivalent to a fixed
point problem of some nonexpansive mapping. Finally, we prove the strong convergence of
the proposed methods which solve problem (1.1).

2. Preliminaries

In the sequel, we denote the strong convergence and weak convergence of the sequence {xn}
by xn → x and xn ⇀ x, respectively.

For q > 1, the generalized duality mapping Jq : E → 2E
∗
is defined by

Jq(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖q, ∥∥f∥∥ = ‖x‖q−1

}
(2.1)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. It is known that
Jq(x) = ||x||q−2 for all x ∈ E. If E is a Hilbert space, then J = I, the identity mapping. Let
U = {x ∈ E : ||x|| = 1}. A Banach space E is said to be uniformly convex if, for any ε ∈ (0, 2],
there exists δ > 0 such that, for any x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. A
Banach space E is said to be smooth if the limit

lim
n→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.3)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the previous limit is attained
uniformly for x, y ∈ U. The norm of E is said to be Fréchet differentiable if, for each x ∈ U,
the previous limit is attained uniformly for all y ∈ U. The modulus of smoothness of E is
defined by

ρ(τ) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : x, y ∈ E, ‖x‖ = 1,
∥∥y

∥∥ = τ

}
, (2.4)

where ρ : [0,∞) → [0,∞) is function. It is known that E is uniformly smooth if and only if
limτ → 0(ρ(τ)/τ) = 0. Let q be a fixed real number with 1 < q ≤ 2. Then a Banach space E is
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said to be q-uniformly smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0.
Note the following.

(1) E is a uniformly smooth Banach space if and only if J is single valued and uniformly
continuous on any bounded subset of E.

(2) All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spaces Wp
m(p ≥ 2) are

2-uniformly smooth, while Lp (or lp) and WP
m spaces (1 < p ≤ 2) are p-uniformly

smooth.

(3) Typical examples of both uniformly convex and uniformly smooth Banach spaces
are Lp, where p > 1. More precisely, Lp is min{p, 2}-uniformly smooth for every
p > 1.

In our paper, we focus on a 2-uniformly smooth Banach space with the smooth con-
stant K.

Let E be a real Banach space, C a nonempty closed convex subset of E, T : C → C a
mapping, and F(T) the set of fixed points of T .

Recall that a mapping T : C → C is called nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (2.5)

A bounded linear operator F : C ∈ E is called strongly positive if there exists a constant γ > 0
with the property

〈
F(x), j(x)

〉 ≥ γ‖x‖2, ∀x ∈ C. (2.6)

A mapping A : C → E is said to be accretive if there exists j(x − y) ∈ J(x − y) such that

〈
Ax −Ay, j

(
x − y

)〉 ≥ 0, (2.7)

for all x, y ∈ C, where J is the duality mapping.
A mapping A of C into E is said to be α-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥x − y

∥∥2
, (2.8)

for all x, y ∈ C.
A mapping A of C into E is said to be α-inverse-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥Ax −Ay

∥∥2
, (2.9)

for all x, y ∈ C.

Remark 2.1. Evidently, the definition of the inverse strongly accretive mapping is based on
that of the inverse strongly monotone mapping, which was studied by so many authors; see,
for instance, [6, 19, 20].
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Let D be a subset of C, and let Π be a mapping of C into D. Then Π is said to be
sunny if

Π[Π(x) + t(x −Π(x))] = Π(x) (2.10)

whenever Π(x) + t(x −Π(x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C into itself is called
a retraction if Π2 = Π. If a mapping Π of C into itself is a retraction, then Π(z) = z for every
z ∈ R(Π), where R(Π) is the range of Π. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. Then following
lemma concerns the sunny nonexpansive retraction.

Lemma 2.2 (see [21]). Let C be a closed convex subset of a smooth Banach space E, let D be a
nonempty subset of C, and letΠ be a retraction from C ontoD. ThenΠ is sunny and nonexpansive if
and only if

〈
u −Π(u), j

(
y −Π(u)

)〉 ≤ 0, (2.11)

for all u ∈ C and y ∈ D.

Remark 2.3. (1) It is well known that if E is a Hilbert space, then a sunny nonexpansive retrac-
tion ΠC is coincident with the metric projection from E onto C.

(2) Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E, and let T be a nonexpansive mapping of C into itself with the set
F(T)/= ∅. Then the set F(T) is a sunny nonexpansive retract of C.

In what follows, we need the following lemmas for proof of our main results.

Lemma 2.4 (see [22]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.12)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a) Σ∞

n=1γn = ∞,

(b) lim supn→∞(δn/γn) ≤ 0 or Σ∞
n=1|δn| < ∞.

Then limn→∞αn = 0.

Lemma 2.5 (see [23]). Let X be a Banach space, {xn}, {yn} be two bounded sequences in X and
{βn} be a sequence in [0, 1] satisfying

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.13)

Suppose that xn+1 = βnxn + (1 − βn)yn, for all n ≥ 1 and

lim sup
n→∞

{∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
} ≤ 0, (2.14)

then limn→∞‖yn − xn‖ = 0.
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Lemma 2.6 (see [24]). Let E be a real 2-uniformly smooth Banach space with the best smooth
constant K. Then the following inequality holds:

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, Jx

〉
+ 2

∥
∥Ky

∥
∥2

, ∀x, y ∈ E. (2.15)

Lemma 2.7 (see [25]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space E, and let G be a nonexpansive mapping of C into itself. If {xn} is a sequence of C such
that xn ⇀ x and xn −Gxn → 0, then x is a fixed point of G.

Lemma 2.8 (see [26]). Let C be a nonempty closed convex subset of a real Banach space E. Assume
that the mapping F : C → E is accretive and weakly continuous along segments (i.e., F(x + ty) ⇀
F(x) as t → 0). Then the variational inequality

x∗ ∈ C,
〈
Fx∗, j(x − x∗)

〉 ≥ 0, x ∈ C, (2.16)

is equivalent to the dual variational inequality

x∗ ∈ C,
〈
Fx, j(x − x∗)

〉 ≥ 0, x ∈ C. (2.17)

Lemma 2.9. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E.
Let ΠC be a sunny nonexpansive retraction from E onto C. Let {Ai : C → E, i = 1, 2, . . . ,N} be
a finite family of γi-inverse-strongly accretive. For given (x∗

1, x
∗
2, . . . , x

∗
n) ∈ C × C × · · · × C, where

x∗ = x∗
1, x

∗
i = ΠC(I−λiAi)x∗

i+1, i ∈ {i, 2, . . . ,N−1}, x∗
N = ΠC(I−λNAN)x∗

1, then (x∗
1, x

∗
2, . . . , x

∗
n)

is a solution of the problem (1.1) if and only if x∗ is a fixed point of the mapping Q defined by

Q(x) = ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)(x), (2.18)

where λi (i = 1, 2, . . . ,N) are real numbers.

Proof. We can rewrite (1.1) as

〈
x∗
1 −

(
x∗
2 − λ1A1x

∗
2
)
, j
(
x − x∗

1

)〉 ≥ 0, ∀x ∈ C,

〈x∗
2 −

(
x∗
3 − λ2A2x

∗
3
)
, j
(
x − x∗

2
)〉 ≥ 0, ∀x ∈ C,

〈
x∗
3 −

(
x∗
4 − λ3A3x

∗
4

)
, j
(
x − x∗

3
)〉 ≥ 0, ∀x ∈ C,

...
〈
x∗
N−1 −

(
x∗
N − λN−1AN−1x∗

N

)
, j
(
x − x∗

N−1
)〉 ≥ 0, ∀x ∈ C,

〈
x∗
N − (

x∗
1 − λNANx∗

1

)
, j
(
x − x∗

N

)〉 ≥ 0, ∀x ∈ C.

(2.19)
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By Lemma 2.2, we can check (2.19) is equivalent to

x∗
1 = ΠC(I − λ1A1)x∗

2,

x∗
2 = ΠC(I − λ2A2)x∗

3,

...

x∗
N−1 = ΠC(I − λN−1AN−1)x∗

N,

x∗
N = ΠC(I − λNAN)x∗

1.

⇐⇒
Q(x∗) = ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)(x∗) = x∗.

(2.20)

This completes the proof.

Throughout this paper, the set of fixed points of the mapping Q is denoted by Ω.

Lemma 2.10. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space
E. Let ΠC be a sunny nonexpansive retraction from E onto C. Let {Ai : C → E, i = 1, 2, . . . ,N} be
a finite family of γi-inverse-strongly accretive. LetQ be defined as Lemma 2.9. If 0 ≤ λi ≤ γi/K

2, then
Q : C → C is nonexpansive.

Proof. First, we show that for all i ∈ {i, 2, . . . ,N}, the mapping ΠC(I − λiAi) is nonexpansive.
Indeed, for all x, y ∈ C, from the condition λi ∈ [0, γi/K2] and Lemma 2.6, we have

∥∥ΠC(I − λiAi)x −ΠC(I − λiAi)y
∥∥2≤ ∥∥(I − λiAi)x − (I − λiAi)y

∥∥2

=
∥∥(x − y

) − λi
(
Aix −Aiy

)∥∥2

≤ ∥∥x − y
∥∥2 − 2λi

〈
Aix −Aiy, j

(
x − y

)〉

+ 2K2λ2i
∥∥Aix −Aiy

∥∥2

≤ ∥∥x − y
∥∥2 − 2λiγi

∥∥Aix −Aiy
∥∥2 + 2K2λ2i

∥∥Aix −Aiy
∥∥2

=
∥∥x − y

∥∥2 + 2λi
(
K2λi − γi

)∥∥Aix −Aiy
∥∥2

≤ ∥∥x − y
∥∥2

,

(2.21)

which implies for all i ∈ {1, 2, . . . ,N}, the mapping ΠC(I − λiAi) is nonexpansive, so is the
mapping Q.
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3. Main Results

In this section, we introduce our algorithms and show the strong convergence theorems.

Algorithm 3.1. Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let ΠC be a sunny nonexpansive retraction from E to
C. Let {Ai : C → E, i = 1, 2, . . . ,N} be a finite family of γi-inverse-strongly accretive.
Let B : C → E be a strongly positive bounded linear operator with coefficient α > 0 and
F : C → E be a strongly positive bounded linear operator with coefficient ρ ∈ (0, α). For any
t ∈ (0, 1), define a net {xt} as follows:

xt = ΠC(tF + (I − tB))yt,

yt = ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)xt,
(3.1)

where, for any i, λi ∈ (0, γi/K2) is a real number.

Remark 3.2. We notice that the net {xt} defined by (3.1) is well defined. In fact, we can define
a self-mapping Wt : C → C as follows:

Wtx := ΠC(tF + (I − tB))ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)x, ∀x ∈ C. (3.2)

From Lemma 2.10, we know that if, for any i, λi ∈ (0, γi/K2), the mapping ΠC(I −
λ1A1)ΠC(I −λ2A2) · · ·ΠC(I −λNAN) = Q is nonexpansive and ||I − tB|| ≤ 1− tα. Then, for any
x, y ∈ C, we have

∥∥Wtx −Wty
∥∥ =

∥∥ΠC(tF + (I − tB))Q(x) −ΠC(tF + (I − tB))Q
(
y
)∥∥

≤ ∥∥((tF + (I − tB))Q)x − ((tF + (I − tB))Q)y
∥∥

=
∥∥t
(
Fx − Fy

)
+ (I − tB)

(
Qx −Qy

)∥∥

≤ tρ
∥∥x − y

∥∥ + ‖I − tB‖∥∥Qx −Qy
∥∥

≤ tρ
∥∥x − y

∥∥ + (1 − tα)
∥∥x − y

∥∥

=
(
1 − (

α − ρ
)
t
)∥∥x − y

∥∥.

(3.3)

This shows that the mappingWt is contraction. By Banach contractive mapping principle, we
immediately deduce that the net (3.1) is well defined.

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space E. Let ΠC be a sunny nonexpansive retraction from E to C. Let {Ai : C →
E, i = 1, 2, . . . ,N} be a finite family of γi-inverse-strongly accretive. Let B : C → E be a strongly
positive bounded linear operator with coefficient α > 0, and let F : C → E be a strongly positive
bounded linear operator with coefficient ρ ∈ (0, α). Assume that Ω/= ∅ and λi ∈ (0, γi/K

2). Then the
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net {xt} generated by the implicit method (3.1) converges in norm, as t → 0+ to the unique solution
x̃ of VI

x̃ ∈ Ω,
〈
(B − F)x̃, j(z − x̃)

〉 ≥ 0, z ∈ Ω. (3.4)

Proof. We divide the proof of Theorem 3.3 into four steps.

(I) Next we prove that the net {xt} is bounded.

Take that x∗ ∈ Ω, we have

‖xt − x∗‖ =
∥
∥ΠC(tF + (I − tB))yt − x∗∥∥

=
∥
∥ΠC(tF + (I − tB))yt −ΠCx

∗∥∥

≤ ∥∥(tF + (I − tB))yt − x∗∥∥

=
∥∥t
(
F
(
yt

) − F(x∗)
)
+ (I − tB)

(
yt − x∗) + tF(x∗) − tB(x∗)

∥∥

≤ t
∥∥F

(
yt

) − F(x∗)
∥∥ + ‖I − tB‖∥∥yt − x∗∥∥ + t‖F(x∗) − B(x∗)‖

≤ tρ
∥∥yt − x∗∥∥ + (1 − tα)

∥∥yt − x∗∥∥ + t‖F(x∗) − B(x∗)‖
=
(
1 − (

α − ρ
)
t
)∥∥yt − x∗∥∥ + t‖F(x∗) − B(x∗)‖

=
(
1 − (

α − ρ
)
t
)‖Q(xt) −Q(x∗)‖ + t‖F(x∗) − B(x∗)‖

≤ (
1 − (

α − ρ
)
t
)‖xt − x∗‖ + t‖F(x∗) − B(x∗)‖.

(3.5)

It follows that

‖xt − x∗‖ ≤ ‖F(x∗) − B(x∗)‖
α − ρ

. (3.6)

Therefore, {xt} is bounded. Hence, {yt}, {Byt}, {Aixt}, and {F(yt)} are also bounded. We
observe that

∥∥xt − yt

∥∥ =
∥∥ΠC(tF + (I − tB))yt −ΠCyt

∥∥

≤ ∥∥(tF + (I − tB))yt − yt

∥∥

= t
∥∥F

(
yt

) − B
(
yt

)∥∥

−→ 0.

(3.7)

From Lemma 2.10, we know that Q : C → C is nonexpansive. Thus, we have

∥∥yt −Q
(
yt

)∥∥ =
∥∥Q(xt) −Q

(
yt

)∥∥ ≤ ∥∥xt − yt

∥∥ −→ 0. (3.8)
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Therefore,

lim
t→ 0

‖xt −Q(xt)‖ = 0. (3.9)

(II) {xt} is relatively norm-compact as t → 0+.
Let {tn} ⊂ (0, 1) be any subsequence such that tn → 0+ as n → ∞. Then, there exists

a positive integer n0 such that 0 < tn < 1/2, for all n ≥ n0. Let xn := xtn . It follows from (3.9)
that

‖xn −Q(xn)‖ −→ 0. (3.10)

We can rewrite (3.1) as

xt = ΠC(tF + (I − tB))yt − (tF + (I − tB))yt + (tF + (I − tB))yt. (3.11)

For any x∗ ∈ Ω ⊂ C, by Lemma 2.2, we have

〈
(tF + (I − tB))yt − xt, j(x∗ − xt)

〉

=
〈
(tF + (I − tB))yt −ΠC(tF + (I − tB))yt, j

(
x∗ −ΠC(tF + (I − tB))yt

)〉 ≤ 0.
(3.12)

With this fact, we derive that

‖xt − x∗‖2 = 〈
x∗ − xt, j(x∗ − xt)

〉

=
〈
x∗ − (tF + (I − tB))yt, j(x∗ − xt)

〉

+
〈
(tF + (I − tB))yt −ΠC(tF + (I − tB))yt, j(x∗ − xt)

〉

≤ 〈
(tF + (I − tB))

(
x∗ − yt

)
, j(x∗ − xt)

〉
+ t

〈
B(x∗) − F(x∗), j(x∗ − xt)

〉

≤ (
1 − t

(
α − ρ

))∥∥x∗ − yt

∥∥‖x∗ − xt‖ + t
〈
B(x∗) − F(x∗), j(x∗ − xt)

〉

=
(
1 − t

(
α − ρ

))‖Q(x∗) −Q(xt)‖‖x∗ − xt‖ + t
〈
B(x∗) − F(x∗), j(x∗ − xt)

〉

≤ (
1 − t

(
α − ρ

))‖x∗ − xt‖‖x∗ − xt‖ + t
〈
B(x∗) − F(x∗), j(x∗ − xt)

〉

≤ (
1 − t

(
α − ρ

))‖x∗ − xt‖2 + t
〈
B(x∗) − F(x∗), j(x∗ − xt)

〉
.

(3.13)

It turns out that

‖xt − x∗‖2 ≤ 1
α − ρ

〈
B(x∗) − F(x∗), j(x∗ − xt)

〉
, x∗ ∈ Ω. (3.14)

In particular,

‖xn − x∗‖2 ≤ 1
α − ρ

〈
B(x∗) − F(x∗), j(x∗ − xn)

〉
, x∗ ∈ Ω. (∗∗)
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Since {xn} is bounded, without loss of generality, xn ⇀ x̃ ∈ C can be assumed.
Noticing (3.10), we can use Lemma 2.7 to get x̃ ∈ Ω = F(Q). Therefore, we can substitute
x̃ for x∗ in (∗∗) to get

‖xn − x̃‖2 ≤ 1
α − ρ

〈
B(x̃) − F(x̃), j(x̃ − xn)

〉
. (3.15)

Consequently, the weak convergence of {xn} to x̃ actually implies that xn → x̃ strongly. This
has proved the relative norm compactness of the net {xt} as t → 0+.

(III) Now, we prove that x̃ solves the variational inequality (3.4). From (3.1), we have

xt = ΠC(tF + (I − tB))yt − (tF + (I − tB))yt + (tF + (I − tB))yt

=⇒ xt = ΠC(tF + (I − tB))yt − (tF + (I − tB))yt − (tF + (I − tB))
(
xt − yt

)

+ tF(xt) + (I − tB)(xt)

=⇒ F(xt) − B(xt) =
1
t

[
(tF + (I − tB))yt −ΠC(tF + (I − tB))yt − (tF + (I − tB))

(
yt − xt

)]
.

(3.16)

For any z ∈ Ω, we obtain

〈
F(xt) − B(xt), j(z − xt)

〉
=

1
t

〈
(tF + (I − tB))yt −ΠC(tF + (I − tB))yt, j(z − xt)

〉

− 1
t

〈
(tF + (I − tB))

(
yt − xt

)
, j(z − xt)

〉

≤ −1
t

〈
(tF + (I − tB))

(
yt − xt

)
, j(z − xt)

〉

= −1
t

〈
yt − xt, j(z − xt)

〉
+
〈
(B − F)

(
yt − xt

)
, j(z − xt)

〉
.

(3.17)

Nowwe prove that 〈yt −xt, j(z−xt)〉 ≥ 0. In fact, we can write yt = Q(xt). At the same
time, we note that z = Q(z), so

〈
yt − xt, j(z − xt)

〉
=
〈
z −Q(z) − (xt −Q(xt)), j(z − xt)

〉
. (3.18)

Since I −Q is accretive (this is due to the nonexpansivity of Q), we can deduce immediately
that

〈
yt − xt, j(z − xt)

〉
= 〈z −Q(z) − (

xt −Q(xt), j(z − xt)
〉 ≥ 0. (3.19)

Therefore,

〈
F(xt) − B(xt), j(z − xt)

〉 ≤ 〈
(B − F)

(
yt − xt

)
, j(z − xt)

〉
. (3.20)
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Since B, F is strongly positive, we have

0 ≤ (
α − ρ

)‖z − xt‖2 ≤
〈
(B − F)(z − xt), j(z − xt)

〉

=
〈
(F(xt) − B(xt)) − (F(z) − B(z)), j(z − xt)

〉
.

(3.21)

It follows that

〈
F(z) − B(z), j(z − xt)

〉 ≤ 〈
F(xt) − B(xt), j(z − xt)

〉
. (3.22)

Combining (3.20) and (3.22), we get

〈
F(z) − B(z), j(z − xt)

〉 ≤ 〈
(B − F)

(
yt − xt

)
, j(z − xt)

〉
. (3.23)

Now replacing t in (3.23) with tn and letting n → ∞, noticing that xtn − ytn → 0, we obtain

〈
F(z) − B(z), j(z − x̃)

〉 ≤ 0, z ∈ Ω, (3.24)

which is equivalent to its dual variational inequality (see Lemma 2.8)

〈
(B − F)x̃, j(z − x̃)

〉 ≥ 0, z ∈ Ω, (3.25)

that is, x̃ ∈ Ω is a solution of (3.4).
(IV) Now we show that the solution set of (3.4) is singleton.
As a matter of fact, we assume that x∗ ∈ Ω is also a solution of (3.4) Then, we have

〈
(B − F)x∗, j(x̃ − x∗)

〉 ≥ 0. (3.26)

From (3.25), we have

〈
(B − F)x̃, j(x∗ − x̃)

〉 ≥ 0. (3.27)

So,

〈
(B − F)x∗, j(x̃ − x∗)

〉
+
〈
(B − F)x̃, j(x∗ − x̃)

〉 ≥ 0

=⇒ 〈
(B − F)(x̃ − x∗), j(x∗ − x̃)

〉 ≥ 0

=⇒ 〈
(B − F)(x∗ − x̃), j(x∗ − x̃)

〉 ≤ 0

=⇒ (
α − ρ

)‖x∗ − x̃‖2 ≤ 0.

(3.28)

Therefore, x∗ = x̃. In summary, we have shown that each cluster point of {xt} (as t → 0)
equals x̃. Therefore, xt → x̃ as t → 0. This completes the proof.
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Next, we introduce our explicit method which is the discretization of the implicit
method (3.1).

Algorithm 3.4. Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space E. Let ΠC be a sunny nonexpansive retraction from E to
C. Let {Ai : C → E, i = 1, 2, . . . ,N} be a finite family of γi-inverse-strongly accretive. Let
B : C → E be a strongly positive bounded linear operator with coefficient α > 0, and let
F : C → E be a strongly positive bounded linear operator with coefficient ρ ∈ (0, α). For
arbitrarily given x0 ∈ C, let the sequence {xn} be generated iteratively by

xn+1 = βnxn +
(
1 − βn

)
ΠC(αnF + (I − αnB))ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)xn,

n ≥ 0,
(3.29)

where {αn} and {βn} are two sequences in [0, 1] and, for any i, λi ∈ (0, γi/K2) is a real number.

Theorem 3.5. Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space E, and let ΠC be a sunny nonexpansive retraction from E to C. Let {Ai : C →
E, i = 1, 2, . . . ,N} be a finite family of γi-inverse-strongly accretive.Let B : C → E be a strongly
positive bounded linear operator with coefficient α > 0, and let F : C → E be a strongly positive
bounded linear operator with coefficient ρ ∈ (0, α). Assume that Ω/= ∅. For given x0 ∈ C, let {xn} be
generated iteratively by (3.29). Suppose the sequences {αn} and {βn} satisfy the following conditions:

(1) limn→∞αn = 0 and Σ∞
n=1αn = ∞,

(2) 0 < lim infn→∞βn ≤ lim supn→∞βn ≤ 1.

Then {xn} converges strongly to x̃ ∈ Ω which solves the variational inequality (3.4).

Proof. Set yn = ΠC(I − λ1A1)ΠC(I − λ2A2) · · ·ΠC(I − λNAN)xn for all n ≥ 0. Then xn+1 =
βnxn + (1 − βn)ΠC(αnF + (I − αnB))yn for all n ≥ 0. Pick up x∗ ∈ Ω.

From Lemma 2.10, we have

∥∥yn − x∗∥∥ = ‖Q(xn) −Q(x∗)‖ ≤ ‖xn − x∗‖. (3.30)

Hence, it follows that

‖xn+1 − x∗‖ =
∥∥βnxn +

(
1 − βn

)
ΠC(αnF + (I − αnB))yn − x∗∥∥

=
∥∥βn(xn − x∗) +

(
1 − βn

)(
ΠC(αnF + (I − αnB))yn − x∗)∥∥
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≤ βn‖xn − x∗‖ + (
1 − βn

)∥∥ΠC(αnF + (I − αnB))yn −ΠCx
∗∥∥

≤ βn‖xn − x∗‖ + (
1 − βn

)∥∥(αnF + (I − αnB))yn − x∗∥∥

= βn‖xn − x∗‖ + (
1 − βn

)∥∥(αnF + (I − αnB))
(
yn − x∗) + αn(F(x∗) − B(x∗))

∥
∥

≤ βn‖xn − x∗‖ + (
1 − βn

)(
αnρ + (1 − αnα)

)∥∥yn − x∗∥∥ +
(
1 − βn

)
αn‖F(x∗) − B(x∗)‖

≤ (
1 − αn

(
1 − βn

)(
α − ρ

))‖xn − x∗‖ + αn

(
1 − βn

)(
α − ρ

)‖F(x∗) − B(x∗)‖
α − ρ

.

(3.31)

By induction, we deduce that

‖xn+1 − x∗‖ ≤ max
{
‖x0 − x∗‖, ‖F(x

∗) − B(x∗)‖
α − ρ

}
. (3.32)

Therefore, {xn} is bounded. Hence, {Aixi} (i = 1, 2, . . . ,N), {yn}, {Byn}, and {F(yn)} are also
bounded. We observe that

∥∥yn+1 − yn

∥∥ = ‖Q(xn+1) −Q(xn)‖ ≤ ‖xn+1 − xn‖. (3.33)

Set xn+1 = βnxn + (1 − βn)zn for all n ≥ 0. Then zn = ΠC(αnF + (I − αnB))yn. It follows that

‖zn+1 − zn‖ =
∥∥ΠC(αn+1F + (I − αn+1B))yn+1 −ΠC(αnF + (I − αnB))yn

∥∥

≤ ∥∥(αn+1F + (I − αn+1B))yn+1 − (αnF + (I − αnB))yn

∥∥

=
∥∥yn+1 − yn + αn+1

(
F
(
yn+1

) − B
(
yn+1

)) − αn

(
F
(
yn

) − B
(
yn

))∥∥

≤ ∥∥yn+1 − yn

∥∥ + αn+1
∥∥F

(
yn+1

) − B
(
yn+1

)∥∥ − αn

∥∥F
(
yn

) − B
(
yn

)∥∥

≤ ‖xn+1 − xn‖ + αn+1
∥∥F

(
yn+1

) − B
(
yn+1

)∥∥ − αn

∥∥F
(
yn

) − B
(
yn

)∥∥.

(3.34)

This implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.35)

Hence, by Lemma 2.5, we obtain limn→∞‖zn − xn‖ = 0. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.36)
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At the same time, we note that

∥
∥zn − yn

∥
∥ =

∥
∥ΠC(αnF + (I − αnB))yn − yn

∥
∥

=
∥
∥ΠC(αnF + (I − αnB))yn −ΠCyn

∥
∥

≤ ∥
∥(αnF + (I − αnB))yn − yn

∥
∥

= αn

∥
∥F

(
yn

) − B
(
yn

)∥∥

−→ 0.

(3.37)

It follows that

lim
n→∞

∥
∥xn − yn

∥
∥ = 0. (3.38)

From Lemma 2.10, we know that Q : C → C is nonexpansive. Thus, we have

∥∥yn −Q
(
yn

)∥∥ =
∥∥Q(xn) −Q

(
yn

)∥∥ ≤ ∥∥xn − yn

∥∥ −→ 0. (3.39)

Thus, limn→∞‖xn −Q(xn)‖ = 0. We note that

‖zn −Q(zn)‖ ≤ ‖zn − xn‖ + ‖xn −Q(xn)‖ + ‖Q(xn) −Q(zn)‖
≤ 2‖zn − xn‖ + ‖xn −Q(xn)‖
= 2

∥∥ΠC(αnF + (I − αnB))yn −ΠCxn

∥∥ + ‖xn −Q(xn)‖
≤ 2

(∥∥yn − xn

∥∥ + αn

∥∥F
(
yn

) − B
(
yn

)∥∥) + ‖xn −Q(xn)‖
−→ 0.

(3.40)

Next, we show that

lim sup
n→∞

〈
F(x̃) − B(x̃), j(zn − x̃)

〉 ≤ 0, (3.41)

where x̃ ∈ Ω is the unique solution of VI(3.4).
To see this, we take a subsequence {znj} of {zn} such that

lim
n→∞

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
= lim

nj →∞

〈
F(x̃) − B(x̃), j

(
znj − x̃

)〉
. (3.42)

We may also assume that znj ⇀ z. Note that z ∈ Ω in virtue of Lemma 2.7 and (3.40). It
follows from the variational inequality (3.4) that

lim
n→∞

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
= lim

nj →∞

〈
F(x̃) − B(x̃), j

(
znj − x̃

)〉

=
〈
F(x̃) − B(x̃), j(z − x̃)

〉 ≤ 0.
(3.43)
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Since zn = ΠC(αnF + (I − αnB))yn, according to Lemma 2.2, we have

〈
(αnF + (I − αnB))yn −ΠC(αnF + (I − αnB))yn, j(x̃ − zn)

〉 ≤ 0. (3.44)

From (3.44), we have

‖zn − x̃‖2 = 〈
ΠC(αnF + (I − αnB))yn − x̃, j(zn − x̃)

〉

=
〈
ΠC(αnF + (I − αnB))yn − (αnF + (I − αnB))yn, j(zn − x̃)

〉

+
〈
(αnF + (I − αnB))yn − x̃, j(zn − x̃)

〉

≤ 〈
(αnF + (I − αnB))yn − x̃, j(zn − x̃)

〉

=
〈
(αnF + (I − αnB))

(
yn − x̃

)
, j(zn − x̃)

〉
+ αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉

≤ (
1 − αn

(
α − ρ

))∥∥yn − x̃
∥∥‖zn − x̃‖ + αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉

≤
(
1 − αn

(
α − ρ

))2

2
∥∥yn − x̃

∥∥2 +
1
2
‖zn − x̃‖2 + αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
.

(3.45)

It follows that

‖zn − x̃‖2 ≤ (
1 − αn

(
α − ρ

))∥∥yn − x̃
∥∥2 + 2αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
,

≤ (
1 − αn

(
α − ρ

))‖xn − x̃‖2 + 2αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
.

(3.46)

Finally, we prove xn → x̃. From xn+1 = βnxn + (1 − βn)zn and (3.46), we have

‖xn+1 − x̃‖2 ≤ βn‖xn − x̃‖2 + (
1 − βn

)‖zn − x̃‖2

≤ βn‖xn − x̃‖2 + (
1 − βn

)((
1 − αn

(
α − ρ

))‖xn − x̃‖2 + 2αn

〈
F(x̃) − B(x̃), j(zn − x̃)

〉)

=
(
1 − αn

(
1 − βn

)(
α − ρ

))‖xn − x̃‖2 + αn

(
1 − βn

)(
α − ρ

)

×
{

2
α − ρ

〈
F(x̃) − B(x̃), j(zn − x̃)

〉
}
.

(3.47)

We can apply Lemma 2.4 to the relation (3.47) and conclude that xn → x̃. This completes the
proof.
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