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This paper discussed a hepatitis B virus infection with delay, spatial diffusion, and standard
incidence function. The local stability of equilibrium is obtained via characteristic equations. By
using comparison arguments, it is proved that if the basic reproduction number is less than unity,
the infection-free equilibrium is globally asymptotically stable. If the basic reproductive number is
greater than unity, by means of an iteration technique, sufficiently conditions are obtained for the
global asymptotic stability of the infected steady state. Numerical simulations are carried out to
illustrate our findings.

1. Introduction

Human infection with hepatitis B virus (HBV) is a major global health problem. Between 300
and 400 million people are chronically infected worldwide. The virus is contracted through
contact with blood or other fluids from the body, which could lead to develop viral persis-
tence in the individual in the absence of strong antibody or some immune depression. Math-
ematical models have the potential to improve the understanding of the dynamics of this
disease; one of the earliest models is referred to as the basic virus infection model, introduced
by Nowak et al. [1]. They proposed a basic mathematical model for uninfected susceptible
host cells (hepatocytes), u, infected host cells, w, and free virus particles, v, as follows:

u̇(t) = s − μu(t) − βu(t)v(t),

ẇ(t) = βu(t)v(t) − aw(t),

v̇(t) = kw(t) − dv(t),

(1.1)
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where hepatocytes are produced at a rate s, uninfected cells die at rate μ and become and
infected at rate βu(t)v(t), infected hepatocytes are produced at rate βu(t)v(t) and die at rate
aw(t). Free viruses are produced from infected cells at rate kw(t) and are removed at rate
dv(t). It is assumed that all parameters are positive constants. Previous models assume that
the infectious process is instantaneous; that is, in the very moment that the virus enters an
uninfected cell, this one starts to produce virus particles; we know that this is not biologically
reasonable. Thus, models with delays have been considered; in [2], the authors studied the
following hepatitis B virus infection model with a time delay:

ẋ(t) = λ − dx(t) − βx(t)v(t)
x(t) + y(t)

,

ẏ(t) =
βe−mτx(t − τ)v(t − τ)
x(t − τ) + y(t − τ)

− ay(t),

v̇(t) = ky(t) − uv(t).

(1.2)

The authors gave results about local and global stability of feasible equilibria.
For HBV infection, susceptible host cells and infected cells are hepatocytes and cannot

move under normal conditions, but viruses move freely in liver [3]; therefore, the authors
introduce an HBVmodel with diffusion and delay. Xu andMa [4] considered also a diffusion
model with delay but instead of bilinear response of the infection rate, they considered
saturation response.

In this work motivated by the work of Xu and Ma, we study the following model:

∂u

∂t
= L − du(x, t) − βu(x, t)v(x, t)

u(x, t) +w(x, t)
,

∂w

∂t
=

βe−mτu(x, t − τ)v(x, t − τ)
u(x, t − τ) +w(x, t − τ)

− aw(x, t),

∂v

∂t
= DΔv + kw(x, t) − pv(x, t),

(1.3)

for t > 0, x ∈ Ω, with homogeneous Neumann boundary conditions

∂v

∂η
= 0, (1.4)

and initial conditions

u(x, θ) = φ1(x, θ) ≥ 0, w(x, θ) = φ2(x, θ) ≥ 0,

v(x, θ) = φ3(x, θ) ≥ 0, θ ∈ [−τ, 0], x ∈ Ω.
(1.5)

In the previous problem Ω is a bounded domain in R
n with smooth boundary ∂Ω, ∂/∂η

denotes the outward normal derivative on ∂Ω.
This paper is ordered as follows. In the next section we present a result about the

existence, uniqueness, and positivity. In Section 3 we discuss the local stability of each
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of the feasible equilibria of system (1.3), by analyzing the corresponding characteristic
equations. In Section 4, by using comparison arguments and an iterative technique, we
establish sufficient conditions for the global stability of the equilibria of system (1.3). In
Section 5 numerical simulations are carried out to illustrate our principal results and we
compare the effect of the diffusion and the delay on the system (1.3).

2. Preliminaries

Consider problem (1.3)–(1.5) and the following definitions.

Definition 2.1. A pair of functions ˜U = (ũ, w̃, ṽ), ̂U = (û, ŵ, v̂) in C([0,∞)×Ω)∩C(1,2)((0,∞)×
Ω) are called coupled upper and lower solutions to system (1.3)–(1.5) if û ≤ ũ, ŵ ≤ w̃, v̂ ≤ ṽ

in Ω × [−τ,∞) and the following differential inequalities hold:

∂ũ

∂t
≥ L − dũ(x, t) − βũ(x, t)v̂(x, t)

ũ(x, t) + ŵ(x, t)
,

∂w̃

∂t
≥ βe−mτ ũ(x, t − τ)ṽ(x, t − τ)

ũ(x, t − τ) + w̃(x, t − τ)
− aw̃(x, t),

∂ṽ

∂t
≥ DΔṽ + kw̃(x, t) − pṽ(x, t),

∂û

∂t
≤ L − dũ(x, t) − βũ(x, t)v̂(x, t)

ũ(x, t) + ŵ(x, t)
,

∂ŵ

∂t
≤ βe−mτ û(x, t − τ)v̂(x, t − τ)

û(x, t − τ) + ŵ(x, t − τ)
− aŵ(x, t),

∂v̂

∂t
≤ DΔv̂ + kŵ(x, t) − pv̂(x, t),

(2.1)

for (x, t) ∈ Ω × (0,∞), and

∂û

∂η
≤ 0 ≤ ∂ũ

∂η
,

∂ŵ

∂η
≤ 0 ≤ ∂w̃

∂η
,

∂v̂

∂η
≤ 0 ≤ ∂ṽ

∂η
(x, t) ∈ ∂Ω × (0,∞),

û(x, t) ≤ φ1(x, t) ≤ ũ(x, t), ŵ(x, t) ≤ φ2(x, t) ≤ w̃(x, t),

v̂(x, t) ≤ φ3(x, t) ≤ ṽ(x, t), (x, t) ∈ Ω × [−τ, 0].

(2.2)

The following lemma then follows from Theorem 3.4 developed by Redlinger [5].

Lemma 2.2. Let ˜U and ̂U be a pair of coupled upper and lower solutions for problem (1.3)–(1.5)
and suppose that the initial functions φi (i = 1, 2, 3) are Hölder continuous in [−τ, 0] × Ω. Then
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problem (1.3)–(1.5) has exactly one regular solution U(x, t) = (u(x, t), w(x, t), v(x, t)) satisfying
̂U ≤ U ≤ ˜U in Ω × [−τ,∞).

It is not hard to see that 0 = (0, 0, 0) and K = (K1, K2, K3) are a pair of coupled lower-
upper solutions to problem (1.3)–(1.5), where

K1 = max

{

L

d
, sup
−τ≤θ≤0

∥

∥φ1(·, θ)
∥

∥

C(Ω,R)

}

,

K2 = max

{

kβe−mτK1

ap
, sup
−τ≤θ≤0

∥

∥φ2(·, θ)
∥

∥

C(Ω,R)

}

,

K3 = max

{

k2βe−mτK1

ap2
, sup
−τ≤θ≤0

∥

∥φ3(·, θ)
∥

∥

C(Ω,R)

}

.

(2.3)

Hence, 0 ≤ u(x, t) ≤ K1, 0 ≤ w(x, t) ≤ K2, 0 ≤ v(x, t) ≤ K3 for (x, t) ∈ Ω× [−τ,∞), and also, by
the maximum principle, if φi(x, 0)/≡ 0 (i = 1, 2, 3), we have u(x, t) > 0, w(x, t) > 0, v(x, t) > 0
for all t > 0, x ∈ Ω.

3. Local Stability

System (1.3) has the equilibrium E1(L/d, 0, 0). Let R0 = βke−mτ/ap > 1 then system (1.3) has
a unique infected steady state E2(u∗(τ), w∗(τ), v∗(τ)); the previous notation is because the
equilibrium involves τ and we use this as the parameter for the stability analysis, where

u∗(τ) =
Le−mτ

de−mτ + a(R0 − 1)
, w∗(τ) =

Le−mτ(R0 − 1)
de−mτ + a(R0 − 1)

,

v∗(τ) =
Lke−mτ(R0 − 1)

p[de−mτ + a(R0 − 1)]
.

(3.1)

Let 0 = μ1 < μ2 < · · · be the eigenvalues of the operator −Δ on Ω with the homo-
geneous Neumann boundary conditions, and let E(μi) be the eigenspace corresponding to μi

in C1(Ω).
Let X = [C1(Ω)]3, let {φij ; j = 1, 2, . . . ,dimE(μi)} be an orthonormal basis of E(μi), and

let Xij = {cφij | c ∈ R
3}, then

X =
⊕∞

i=0
Xi, Xi =

⊕dimE(pi)

j=1
Xij . (3.2)
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LetD = diag(0, 0, D), Z = Z(x, t) = (U(x, t),W(x, t), V (x, t)),LZ = DΔZ+JE∗Z+JτE∗Z(t−τ),
where

JE∗ =

⎛

⎜

⎜

⎜

⎝

−d − βw v

(u +w)2
βuv

(u +w)2
− βu

u +w

0 −a 0
0 k −p

⎞

⎟

⎟

⎟

⎠

,

Jτ =

⎛

⎜

⎜

⎜

⎝

0 0 0
βe−mτvw

(u +w)2
−βe

−mτu v

(u +w)2
βe−mτu

u +w

0 0 0

⎞

⎟

⎟

⎟

⎠

,

(3.3)

and E∗(u,w, v) represents any feasible steady state of the system (1.3). The linearization of
system (1.3) at E∗ is of the form Zt = LZ. For each i ≥ 1, Xi is invariant under the operator
L, and λ is an eigenvalue of the matrix −μiD + JE∗ + JτE∗ for some i ≥ 1, then, there is an
eigenvector in Xi.

The characteristic equation on the equilibrium E1 is

(λ + d)
(

λ2 + a1λ + a0 + b0(τ)e−λτ
)

= 0, (3.4)

where

a0 = a
(

p + μID
)

, a1 = a + p + μiD, b0(τ) = −kβe−mτ . (3.5)

The characteristic equation has the negative root λ = −d. All other roots of (3.4) are given by
the transcendental equation

λ2 + a1λ + a0 + b0(τ)e−λτ = 0. (3.6)

Let

f(λ) = λ2 + a1λ + a0 + b0(τ)e−λτ , (3.7)

if R0 > 1, note that for λ real and i = 1 (in this case μ1 = 0),

f(0) = a0 + b0 = ap − kβe−mτ < 0, lim
λ→∞

f(λ) = +∞. (3.8)

Hence, (3.7) has a positive root. Therefore, there is a characteristic root λ with positive real
part in the spectrum of L. Accordingly, if R0 > 1, the disease-free steady state E1(λ/d, 0, 0) is
unstable.

If R0 < 1, when τ = 0 the coefficients of (3.7) are a1 and a0 + b0(0), and under
the hypothesis R0 < 1 the coefficients are positive and according to the criterion of Routh-
Hurwitz, the equilibrium E1(λ/d, 0, 0) is locally asymptotically stable.
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For τ > 0 if iω (ω > 0) is a solution of (3.6), separating in real and imaginary parts, we
obtain

−ω2 + a0 = −b0(τ) cos(ωτ),

a1ω = b0(τ) sin(ωτ).
(3.9)

Squaring and adding the above equations and taking z = ω2 we obtain

z2 +
(

a2
1 − 2a0

)

z + a2
0 − b0(τ)2 = 0, (3.10)

where

a2
1 − 2a0 = a2 +

(

p + μiD
)2

> 0,

a2
0 − b20(τ) =

(

a
(

p + μiD
) − kβe−mτ)(a

(

p + μiD
)

+ kβe−mτ) > 0,
(3.11)

the last inequality is true because R0 < 1. Therefore there is no positive root z = ω2 of (3.10).
In conclusion if R0 < 1 the equilibrium E1(λ/d, 0, 0) is locally asymptotically stable.

The characteristic equation of system (1.3) at the endemic equilibrium E2(u∗, w∗, v∗) is
of the form

λ3 + a2(τ)λ2 + a1λ + a0(τ) +
(

b2(τ)λ2 + b1(τ)λ + b0(τ)
)

e−λτ = 0, (3.12)

where

a2(τ) = a + d + p + μiD +
βv∗w∗

(u∗ +w∗)2
,

a1 = a
(

p + μiD
)

+
(

a + p + μiD
)

d,

a0(τ) = a
(

p + μiD
)

[

d +
βw∗v∗

(u∗ +w∗)2

]

,

b2(τ) =
βe−mτu∗v∗

(u∗ +w∗)∗
,

b1(τ) =
(

d + p + μiD
)βe−mτu∗w∗

(u∗ +w∗)2
− k

βe−mτu∗

u∗ +w∗ ,

b0(τ) = d
(

p + μiD
)βe−mτu∗v∗

(u∗ +w∗)2
− dk

βe−mτu∗

u∗ +w∗ ,

(3.13)

when τ = 0 becomes

λ3 + (a2(0) + b2(0))λ2 + (a1 + b1(0))λ + (a0(0) + b0(0)) = 0. (3.14)
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Note that a2(0) + b2(0) > 0; adding a0(0) + b0(0) and replacing u∗(0) and w∗(0) we obtain

a0(0) + b0(0) = a
(

p + μiD
) βw∗(0)v∗(0)

(u∗(0) +w∗(0))2
+ d
(

p + μiD
) βu∗(0)v∗(0)

(u∗(0) +w∗(0))2
> 0,

(a2(0) + b2(0))(a1 + b1(0)) − a0(0) + b0(0)

=

(

d
(

a + p + μiD
)

+ (u∗(0) +w∗(0))

(

p + μiD
)

βv∗(0)

(u∗(0) +w∗(0))2

)

×
(

a + d + p + μiD + (u∗(0) +w∗(0))
βv∗

(u∗(0) +w∗(0))2

)

+
λβv∗(0)

(u∗(0) +w∗(0))2

(

a + d + (u∗(0) +w∗(0))
βv∗(0)

(u∗(0) +w∗(0))2

)

> 0.

(3.15)

By the Routh-Hurwitz criteria, all roots have negative real parts if R0 > 1.
For the case τ > 0 we look for solutions λ = iω (ω > 0) for (3.12), separating real and

imaginary parts, it follows that

ω3 − a1ω =
(

b2(τ)ω2 − b0(τ)
)

sin(ωτ) + b1(τ)ω cos(ωτ),

a2(τ)ω2 − a0(τ) = −
(

b2(τ)ω2 − b0(τ)
)

cos(ωτ) + b1(τ)ω sin(ωτ).
(3.16)

Squaring and adding the two equations, we derive that

ω6 + C1ω
4 + C2ω

2 + C3 = 0, (3.17)

where

C1 =
(

p + μiD
)2 +

(

d +
βw∗(τ)v∗(τ)

(u∗(τ) +w∗(τ))2

)2

+
au∗(τ)

u∗(τ) +w∗(τ)

(

a +
βe−mτu∗(τ)v∗(τ)

(u∗(τ) +w∗(τ))2

)

> 0,

C2 = a2
(

d2 +
(

p + μiD
)2
)w∗(τ)(u∗(τ) + 2w∗(τ))

(u∗(τ) +w∗(τ))2

+
a2βw∗(τ)v∗(τ)

(u∗(τ) +w∗(τ))2

(

2d +
βw∗(τ)v∗(τ)

(u∗(τ) +w∗(τ))2

)

+
(

p + μiD
)

(

d +
βw∗(τ) + v∗(τ)

(u∗(τ) +w∗(τ))2

)

> 0,

C3 =
a
(

p + μiD
)2
βv∗(τ)(de−mτu∗(τ) + aw∗(τ))

(u∗(τ) +w∗(τ))3

(

d

(

2x∗(τ) +w∗(τ) +
βw∗(τ)v∗(τ)
u∗(τ) +w∗(τ)

))

> 0,

(3.18)

implying that (3.17) has no positive roots z = ω2.
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Theorem 3.1. If R0 < 1 the disease-free equilibrium is locally asymptotically stable; if R0 > 1 it is
unstable and the endemic equilibrium exists and it is locally asymptotically stable.

4. Global Stability

We will discuss in this section the global stability of the infected steady state and the disease-
free equilibrium. The technique of proof is to use comparison arguments and to successively
modify the coupled lower-upper solutions pairs.

Consider the following delay system:

u̇1(t) =
a1βe−mτu2(t − τ)
a1 + u1(t − τ)

− au1(t),

u̇2(t) = ku1(t) − pu2(t),

(4.1)

with initial conditions

ui(s) = φi(s) ≥ 0, s ∈ [−τ, 0), φi(0) > 0, φi ∈ C([−τ, 0],R+). (4.2)

System (4.1) always have the trivial equilibrium A0(0, 0). If kβe−mτ > ap, then system (4.1)
has a unique positive equilibrium A∗(u∗

1, u
∗
2)where

u∗
1 =

a1
(

kβe−mτ − ap
)

ap
, u∗

2 =
a1k
(

kβe−mτ − ap
)

ap2
, (4.3)

and according to [2], for system (4.1), one has the following.

Lemma 4.1. If kβe−mτ > ap, then the positive equilibrium A∗(u∗
1, u

∗
2) is globally stable.

If kβe−mτ < ap, then the equilibrium A0(0, 0) is globally stable.

Now we stablish and prove our result about global stability.

Theorem 4.2. Let (u(x, t), w(x, t), v(x, t)) be a solution to problem (1.3)–(1.5), let φi(x, 0)/≡ 0 (i =
1, 2, 3). If R0 > 1 and

(H1) dpe−mτ > kβe−mτ − ap,

then

lim
t→∞

(u(x, t), w(x, t), v(x, t)) = (u∗, w∗, v∗) uniformly for x ∈ Ω, (4.4)

that is, the infected steady state E∗ is globally asymptotically stable.
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Proof. Let (u(x, t), w(x, t), v(x, t)) be a solution to problem (1.3)–(1.5), let φi /≡ 0 (i = 1, 2, 3).
We have u(x, t) > 0, w(x, t) > 0, and v(x, t) > 0 for all x ∈ Ω, t > 0. Denote

u = lim sup
t→∞

max
x∈Ω

u(x, t), u = lim inf
t→∞

min
x∈Ω

u(x, t),

w = lim sup
t→∞

max
x∈Ω

w(x, t), w = lim inf
t→∞

min
x∈Ω

w(x, t),

v = lim sup
t→∞

max
x∈Ω

v(x, t), v = lim inf
t→∞

min
x∈Ω

v(x, t).

(4.5)

First we look for upper solutions for the system (1.3). Let (u1(x, t), w1(x, t), v1(x, t)) be a
solution for the following problem:

∂u(1)

∂t
= L − du(1)(x, t), t > 0, x ∈ Ω,

∂w(1)

∂t
=

βe−mτu(1)(x, t − τ)v(1)(x, t − τ)

u(1)(x, t − τ) +w(1)(x, t − τ)
− aw(1)(x, t), t > 0, x ∈ Ω,

∂v(1)

∂t
= DΔv(1)(x, t) + kw(1)(x, t) − pv(1)(x, t), t > 0, x ∈ Ω,

∂u(1)(x, t)
∂t

=
∂w(1)(x, t)

∂t
=

∂v(1)(x, t)
∂t

= 0, t > 0, x ∈ ∂Ω,

u(1)(x, t) = u(x, t), v(1)(x, t) = v(x, t),

w(1)(x, t) = w(x, t), t ∈ [−τ, 0], x ∈ Ω.

(4.6)

We note that the solution of this system is an upper solution of system (1.3)–(1.5). For t > 0,
x ∈ Ω we have

0 ≤ u(x, t) ≤ u(1)(x, t), 0 ≤ w(x, t) ≤ w(1)(x, t), 0 ≤ v(x, t) ≤ v(1)(x, t). (4.7)

From the first equation of (4.6)

lim
t→∞

u(1)(x, t) =
L

d
= Mu

1 . (4.8)

Hence, by comparison, for all ε > 0 sufficiently small, there exists t1 > 0 such that if t > t1

max
x∈Ω

u(1)(x, t) ≤ Mu
1 + ε, (4.9)

since ε is arbitrary and sufficiently small we can conclude that

u = lim sup
t→∞

max
x∈Ω

u(x, t) ≤ Mu
1 . (4.10)
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Now consider the problem related with the second and third equations of (4.6)

∂ω
(1)
2

∂t
=

βe−mτ
(

Mu
1 + ε

)

ω
(1)
3 (x, t − τ)

Mu
1 + ε +ω

(1)
2 (x, t − τ)

− aω
(1)
2 (x, t), t > t1, x ∈ Ω,

∂ω
(1)
3

∂t
= DΔω

(1)
3 (x, t) + kω

(1)
2 (x, t) − pω

(1)
3 , t > t1, x ∈ Ω,

∂ω
(1)
2

∂η
=

∂ω
(1)
3

∂η
= 0, t > t1, x ∈ ∂Ω,

ω
(1)
2 (x, t) = w(x, t), ω

(1)
3 (x, t) = v(x, t), t ∈ [−τ, t1], x ∈ Ω.

(4.11)

Consider the solution for

u̇2 =
βe−mτ

(

Mu
1 + ε

)

u3(t − τ)
Mu

1 + ε + u2(t − τ)
− au2, t > t1,

u̇3 = ku2 − pu3, t > t1,

u2(t) = max
x∈Ω

w(x, t), u3(t) = max
x∈Ω

v(x, t), t ∈ [−τ, t1].

(4.12)

Note that (u1(t), u2(t)) is an upper solution for system (4.11), and using the assumption that
R0 > 1, by Lemma 4.1, it follows from (4.12) that

lim
t→∞

u2(t) =

(

kβe−mτ − ap
)(

Mu
1 + ε

)

ap
,

lim
t→∞

u3(t) =
k
(

kβe−mτ − ap
)(

Mu
1 + ε

)

ap2
.

(4.13)

Hence, for all ε > 0 sufficiently small, by comparison there exists a t2 > t1 such that if t > t2

max
x∈Ω

w(1)(x, t) < Mw
1 + ε, max

x∈Ω
v(1)(x, t) < Mv

1 + ε, (4.14)

where

Mw
1 =

(

kβe−mτ − ap
)

Mu
1

ap
, Mv

1 =
k
(

kβe−mτ − ap
)

Mu
1

ap2
. (4.15)

Since ε > 0 is arbitrary and sufficiently small, we conclude that

w = lim sup
t→∞

max
x∈Ω

w(x, t) ≤ Mw
1 ,

v = lim sup
t→∞

max
x∈Ω

v(x, t) ≤ Mv
1 .

(4.16)
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Now for lower solutions, let (u(1)(x, t), w(1)(x, t), v(1)(x, t)) be the solution for the following
problem:

∂u(1)

∂t
= L − du(1)(x, t) − βu(1)(x, t)v(1)(x, t)

u(1)(x, t) +w(1)(x, t)
, t > t2, x ∈ Ω,

∂w(1)

∂t
=

βe−mτu(1)(x, t)v(1)(x, t)
u(1)(x, t) +w(1)(x, t)

− aw(1)(x, t), t > t2, x ∈ Ω,

∂v(1)

∂t
= DΔv(1)(x, t) + kw(1)(x, t) − pv(1)(x, t), t > t2, x ∈ Ω,

∂u(1)

∂η
=

∂w(1)

∂η
=

∂v(1)

∂η
= 0, t > t2, x ∈ ∂Ω,

u(1)(x, t) =
1
2
u(x, t), w(1)(x, t) =

1
2
w(x, t),

v(1)(x, t) =
1
2
v(x, t), t ∈ [−τ, t2], x ∈ Ω.

(4.17)

Note that the solution of (4.17) is a lower solution to (1.3)–(1.5). For all ε > 0 sufficiently
small, from the first equation of (4.17) and (4.16) it follows

∂u(1)

∂t
≥ L − du(1)(x, t) − β

(

Mv
1 + ε

)

, t > t2, x ∈ Ω. (4.18)

By comparing the above equation with the following problem:

∂ω
(1)
1

∂t
= L − dω

(1)
1 (x, t) − β

(

Mv
1 + ε

)

, t > t2, x ∈ Ω,

∂ω1

ωη
= 0, t > t2, x ∈ ∂Ω, ω1(x, t2) =

1
2
u(x, t2), x ∈ Ω,

(4.19)

we obtain

lim
t→∞

ω1(x, t) =
L − β

(

Mv
1 + ε

)

d
, (4.20)

so u(1)(x, t) ≥ ω1(x, t), t > t2, and x ∈ Ω. Hence, for all ε > 0 sufficiently small, there is a t3 > t2
such that if t > t3,

min
x∈Ω

u(1)(x, t) ≥ Nu
1 − ε, (4.21)
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where

Nu
1 =

L − βMv
1

d
. (4.22)

Since ε > 0 is arbitrary sufficiently small, by comparison we conclude that

u = lim inf
t→∞

min
x∈Ω

u(x, t) ≥ Nu
1 =

L − βMv
1

d
. (4.23)

Now consider the following problem related with the second and third equations of (4.17):

∂ω2

∂t
=

βe−mτ
(

Nu
1 − ε

)

ω3(x, t − τ)
Nu

1 − ε +ω2(x, t − τ)
− aω2(x, t), t > t3, x ∈ Ω,

∂ω3

∂t
= DΔω3(x, t) + kω2(x, t) − pω3(x, t), t > t3, x ∈ Ω,

∂ω2

∂η
=

∂ω3

∂η
= 0, t > t3, x ∈ ∂Ω,

ω2(x, t) =
1
2
w(x, t), ω3(x, t) =

1
2
v(x, t), t ∈ [−τ, t3], x ∈ Ω.

(4.24)

Now let us consider the solution for the problem

u̇2(t) =
βe−mτ

(

Nu
1 − ε

)

u3(t − τ)
Nu

1 − ε + u2(t − τ)
− au2(t), t > t3,

u̇3(t) = ku2(t) − pu3(t), t > t3,

u2(t) =
1
2
min
x∈Ω

w(x, t), u3(t) =
1
2
min
x∈Ω

v(x, t), t ∈ [−τ, t3], t > t3,

(4.25)

and according to Lemma 4.1

lim
t→∞

u2(t) =

(

kβe−mτ − ap
)(

Nu
1 − ε

)

ap
,

lim
t→∞

u3(t) =
k
(

kβe−mτ − ap
)(

Nu
1 − ε

)

ap2
.

(4.26)

Hence, for all ε > 0 sufficiently small, by comparison there exists a t4 > t3 such that if t > t4

min
x∈Ω

w(1)(x, t) > Nw
1 − ε, min

x∈Ω
v(1)(x, t) > Nv

1 − ε, (4.27)
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where

Nw
1 =

(

kβe−mτ − ap
)

Nu
1

ap
, Nv

1 =
k
(

kβe−mτ − ap
)

Nu
1

ap2
. (4.28)

Since ε > 0 is arbitrary and sufficiently small, we conclude that

w = lim inf
t→∞

min
x∈Ω

w(x, t) ≥ Nw
1 ,

v = lim inf
t→∞

min
x∈Ω

v(x, t) ≥ Nv
1 .

(4.29)

Now we look for the closest upper and lower solutions. Let (u(2), w(2), v(2)) be a solution for
the problem

∂u(2)

∂t
= L − du(2)(x, t) − βu(2)(x, t)v(1)(x, t)

u(1) +w(1)(x, t)
, t > t4, x ∈ Ω,

∂w(2)

∂t
=

βe−mτu(2)(x, t − τ)v(2)(x, t)

u(2)(x, t − τ) +w(2)(x, t − τ)
− aw(2)(x, t), t > t4, x ∈ Ω,

∂v(2)

∂t
= DΔv(x, t) + kw(2)(x, t) − pv(2)(x, t), t > t4, x ∈ Ω,

∂u(2)

∂η
=

∂w(2)

∂η
=

∂v(2)

∂η
= 0, t > t4, x ∈ ∂Ω,

u(2)(x, t) = u(x, t), w(2)(x, t) = w(x, t),

v(2)(x, t) = v(x, t), t ∈ [−τ, t4], x ∈ Ω.

(4.30)

For all ε > 0 sufficiently small it follows form the first equation of (4.30) and the inequalities
(4.27) and (4.14) that

∂u(2)

∂t
≤ L − du(2)(x, t) − βu(2)(x, t)

(

Nv
1 − ε

)

Mu
1 + ε +Mw

1 + ε
, t > t4, x ∈ Ω. (4.31)

Let ω(2)
1 (x, t) be the solution for the following problem:

∂ω
(2)
1

∂t
= L − dω

(2)
1 (x, t) − βω

(2)
1 (x, t)

(

Nv
1 − ε

)

Mu
1 + ε +Mw

1 + ε
, t > t4, x ∈ Ω,

∂ω
(2)
1

∂η
= 0, t > t4, x ∈ ∂Ω,

ω
(2)
1 (x, t4) = u(x, t4), x ∈ Ω,

(4.32)
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it follows that

lim
t→∞

ω
(2)
1 (x, t) =

L
(

Mu
1 +Mw

1 + 2ε
)

d
(

Mu
1 +Mw

1 + 2ε
)

+ β
(

Nv
1 − ε

) . (4.33)

By comparison we have that u(2) ≤ ω
(2)
1 , t > t4, and x ∈ Ω. Hence, for all ε > 0 sufficiently

small, by comparison, there is a t5 > t4 such that if t > t5

max
x∈Ω

u(2)(x, t) = Mu
2 + ε, (4.34)

where

Mu
2 =

L
(

Mu
1 +Mw

1

)

d
(

Mu
1 +Mw

1

)

+ β
(

Nv
1

) . (4.35)

Since (4.34) is valid for ε > 0 arbitrary and sufficiently small, by comparison we conclude that

u = lim sup
t→∞

max
x∈Ω

u(x, t) ≤ Mu
2 . (4.36)

Now consider the following problem related with the second and third equations of (4.30):

∂ω
(2)
2

∂t
=

βe−mτ
(

Mu
2 + ε

)

ω
(2)
3 (x, t)

Mu
2 +ω

(2)
2 (x, t − τ)

− aω
(2)
2 (x, t), t > t5, x ∈ Ω,

∂ω
(2)
3

∂t
= DΔω

(2)
3 (x, t) + kω

(2)
2 (x, t) − pω

(2)
3 (x, t), t > t5, x ∈ Ω,

∂ω
(2)
2

∂η
=

∂ω
(2)
3

∂η
= 0, t > t5, x ∈ ∂Ω,

ω
(2)
2 (x, t) = w(x, t), ω

(2)
3 (x, t) = v(x, t), t ∈ [−τ, t5], x ∈ Ω.

(4.37)

Let (u2(t), u3(t)) be the positive solution to the following problem:

u̇2(t) =
βe−mτ

(

Mu
2 + ε

)

u3(t − τ)
Mu

2 + ε + u2(t − τ)
− au2(t), t > t5,

u̇3(t) = ku2(t) − pu3(t), t > t5,

u2(t) = max
x∈Ω

w(x, t), u3(t) = max
x∈Ω

v(x, t), t ∈ [−τ, t5].

(4.38)
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Then by Lemma 4.1 and the previous system we have

limu2(t) =

(

kβe−mτ − ap
)(

Mu
2 + ε

)

ap
,

limu3(t) =
k
(

kβe−mτ
)(

Mu
2 + ε

)

ap2
.

(4.39)

Hence for all ε > 0 sufficiently small, by comparison there is a t6 > t5 such that if t > t6

max
x∈Ω

w(x, t) < Mw
2 + ε, max

x∈Ω
v(x, t) < Mv

2 + ε, (4.40)

where

Mw
2 =

(

kβe−mτ − ap
)

Mu
2

ap
,

Mv
2 =

k
(

kβe−mτ
)

Mu
2

ap2
.

(4.41)

Since ε > 0 is arbitrary and sufficiently small, we conclude that

w = lim sup
t→∞

max
x∈Ω

w(x, t) ≤ Mw
2 , v = lim sup

t→∞
max
x∈Ω

v(x, t) ≤ Mv
2 . (4.42)

Let (u(2), w(2), v(2)) be a solution for the following problem:

∂u(2)

∂t
= L − du(2)(x, t) − βu(2)(x, t)v(1)(x, t)

u(1)(x, t) +w(1)(x, t)
, t > t6, x ∈ Ω,

∂w(2)

∂t
=

βe−mτu(2)(x, t − τ)v(2)(x, t − τ)
u(2)(x, t − τ) +w(2)(x, t − τ)

− aw(2)(x, t) t > t6, x ∈ Ω,

∂v(2)

∂t
= DΔv(2)(x, t) + kw(2) − pv(2)(x, t) t > t6, x ∈ Ω,

u(2)(x, t) =
1
2
u(x, t), w(2)(x, t) =

1
2
w(x, t),

w(2)(x, t) =
1
2
v(x, t), t ∈ [−τ, t6], x ∈ Ω.

(4.43)

Then (u(2), w(2), v(2)) and (u(2), w(2), v(2)) are a pair of coupled lower and upper solutions to
system (1.3)–(1.5). Hence we have that for t ≥ t6, x ∈ Ω

u(2)(x, t) ≤ u(x, t) ≤ u(2)(x, t), w(2)(x, t) ≤ w(x, t) ≤ w(2)(x, t),

v(2)(x, t) ≤ v(x, t) ≤ v(2)(x, t).
(4.44)
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For all ε > 0 sufficiently small, it follow from the first equation of (4.43), and the inequalities

∂u(2)

∂t
≥ L − du(2)(x, t) − βu(2)(x, t)

(

Mv
1 + ε

)

Nu
1 − ε +Nw

1 − ε
. (4.45)

By comparison we have that u(2)(x, t) ≥ v
(2)
1 (x, t), t > t6, and x ∈ Ω where v(2)

1 is the solution
to problem

∂v
(2)
1

∂t
= L − dv

(2)
1 (x, t) − βv

(2)
1 (x, t)

(

Mv
1 + ε

)

Nu
1 − ε +Nw

1 − ε
,

∂v
(2)
1

∂η
= 0, t > t6, x ∈ ∂Ω,

(4.46)

which has satisfies

lim
t→∞

v
(2)
1 (x, t) =

L
(

Nu
1 − ε +Nw

1 − ε
)

d
(

Nu
1 − ε +Nw

1 − ε
)

+ β
(

Mv
1 + ε

) . (4.47)

Hence for all ε > 0 sufficiently small, by comparison, there is a t7 > t6 such that if t > t7

min u(2)(x, t) ≥ Nu
2 − ε, (4.48)

with

Nu
2 =

L
(

Nu
1 +Nw

1

)

d
(

Nu
1 +Nw

1

)

+ βMv
1

. (4.49)

Since this holds true for arbitrary ε > 0 sufficiently small, by comparison we conclude that

u = lim inf
t→∞

min
x∈Ω

u(x, t) ≥ Nu
2 . (4.50)

Now consider the following problem:

∂v
(2)
2

∂t
=

βe−mτ
(

Nu
2 − ε

)

v
(2)
3 (x, t − τ)

Nu
2 − ε + v

(2)
2 (x, t − τ)

− av
(2)
2 (x, t), t > t7, x ∈ Ω,

∂v
(2)
3

∂t
= DΔv

(2)
3 (x, t) + kv

(2)
2 − pv

(2)
3 (x, t), t > t7, x ∈ Ω,

∂v
(2)
2

∂η
=

∂v
(2)
3

∂η
= 0, t > t7, x ∈ Ω,

v
(2)
2 (x, t) =

1
2
w(x, t), v

(2)
3 (x, t) =

1
2
v(x, t), t ∈ [−τ, t7], x ∈ Ω.

(4.51)
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Let (u2(t), u3(t)) be the positive solution for the following problem:

v̇2(t) =
βe−mτ

(

Nu
2 − ε

)

u2(t − τ)
Nu

2 − ε + u2(t − τ)
− au2(t), t > t7,

v̇3(t) = kv2(t) − pv3(t), t > t7,

v2(t) =
1
2
min
x∈Ω

, v3(t) =
1
2
min
x∈Ω

v(x, t), t ∈ [−τ, t7].

(4.52)

By Lemma 4.1 it follows

lim
t→∞

v2(t) =

(

Nu
2 − ε

)(

kβe−mτ − ap
)

ap
, lim

t→∞
v3(t) =

k
(

Nu
2 − ε

)(

kβe−mτ − ap
)

ap2
, (4.53)

hence, for all ε > 0 sufficiently small, by comparison there exists a t8 > t7 such that if t > t8,

min
x∈Ω

w(2)(x, t) > Nw
2 − ε, min

x∈Ω
v(2)(x, t) > Nv

2 − ε, (4.54)

where

Nw
2 =

Nu
2

(

kβe−mτ − ap
)

ap
, Nv

2 =
kNu

2

(

kβe−mτ − ap
)

ap2
. (4.55)

Since ε > 0 is arbitrary and sufficiently small, we conclude that

w = lim inf
t→∞

min
x∈Ω

w(x, t) ≥ Nw
2 , v = lim inf

t→∞
min
x∈Ω

v(x, t) ≥ Nv
2 , (4.56)

continuing this process, we derive six sequences Mu
n, M

w
n , M

v
n, N

u
n , N

w
n , and Nv

n (n =
1, 2, . . .) such that, for n ≥ 2,

Mu
n =

L
(

Mu
n−1 +Mw

n−1
)

d
(

Mu
n−1 +Mw

n−1
)

+ βNv
n−1

,

Mw
n =

(

kβe−mτ − ap
)

Mu
n

ap
,

Mv
n =

k
(

kβe−mτ − ap
)

Mu
n

ap2
,

Nu
n =

L
(

Nu
n−1 +Nw

n−1
)

d
(

Nu
n−1 +Nw

n−1
)

+ βMv
n

,
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Nw
n =

(

kβe−mτ − ap
)

Nu
n

ap
,

Nv
n =

k
(

kβe−mτ − ap
)

Nu
n

ap2
.

(4.57)

It is readily seen that

Nu
n ≤ u ≤ u ≤ Mu

n, Nw
n ≤ w ≤ w ≤ Mw

n , Nv
n ≤ v ≤ v ≤ Mv

n. (4.58)

The sequences Mu
n, M

w
n , and Mv

n are nonincreasing and the sequences Nu
n , N

w
n , and Nv

n are
nondecreasing.

To prove the monotonicity of Nu
n and Mu

n, we follow the ideas of Uh Zapata et al. [6];
consider R0 = βke−mτ/ap and the following expressions for Nu,Nw,Nv,Mu,Mw, andMv

Mu
n =

L
(

Mu
n−1 +Mw

n−1
)

d
(

Mu
n−1 +Mw

n−1
)

+ βNn−1
, Mw

n = (R0 − 1)Mu
n, Mv

n =
k

p
(R0 − 1)Mu

n,

Nu
n =

L
(

Nu
n−1 +Nw

n−1
)

d
(

Nu
n−1 +Nw

n−1
)

+ βMv
n

, Nw
n = (R0 − 1)Nu

n, Nv
n =

k

p
(R0 − 1)Nu

n.

(4.59)

We prove the result by induction so we first show that Mu
2 −Mu

1 ≤ 0,

Mu
2 −Mu

1 =
Le−mτMu

1

deMu
1 + a(R0 − 1)Nu

1
− L

d
≤ L

d
− L

d
= 0 (4.60)

and Nu
2 −Nu

1 > 0,

Nu
2 −Nu

1 =
LR0N1

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

−N1 = Nu
1

(

LR0 − dR0N
u
1 − (βh/p)(R0 − 1)Mu

2

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

)

=
Nu

1

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

(

LR0 − LR0 + βR0M
v
1 −

hβ

p
(R0 − 1)Mu

2

)

=
Nu

1

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

(

βh

p
R0(R0 − 1)Mu

1 −
hβ

p
(R0 − 1)Mu

2

)

=
βh(R0 − 1)Nu

1

p
(

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

)

(

R0M
u
1 −Mu

2

)

>
βh(R0 − 1)Nu

1

p
(

dR0N
u
1 +
(

βh/p
)

(R0 − 1)Mu
2

)

(

R0M
u
1 −Mu

2

)

> 0.

(4.61)
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For the next step consider the function f(x) = ax/(bx + c), with a, b, and c positive, which is
monotone increasing. The induction hypothesis is Mu

n ≤ Mu
n−1 and Nu

n ≥ Nu
n−1,

Mu
n+1 =

LR0M
u
n

dR0M
u
n + βNu

n
=

LR0M
u
n

dR0M
u
n +
(

βh/p
)

(R0 − 1)Nu
n

. (4.62)

The last function is increasing and by the induction hypothesis we have

Mu
n+1 ≤

LR0M
u
n−1

dR0M
u
n−1 +

(

βh/p
)

(R0 − 1)Nu
n

≤ LR0M
u
n−1

dR0M
u
n−1 +

(

βh/p
)

(R0 − 1)Nu
n

= Mu
n, (4.63)

therefore the sequence Mu
n is nonincreasing. For the sequence Nu

n we use similar ideas and
the behaviour of the sequence Mu

n just proved. One has

Nu
n+1 =

LR0N
u
n

LR0N
u
n + βMv

n+1
=

LR0N
u
n

LR0N
u
n +
(

βh/p
)

(R0 − 1)Mu
n+1

. (4.64)

The last function is increasing and by the induction hypothesis we have

Nu
n+1 ≥

LR0Nn−1
LR0Nn−1 +

(

βh/p
)

(R0 − 1)Mu
n+1

≥ LR0Nn−1
LR0Nn−1 +

(

βh/p
)

(R0 − 1)Mu
n

= Nu
n, (4.65)

therefore the sequence Nu
n is nondecreasing. The behaviour for the sequences Nw

n , N
v
n , M

w
n ,

and Mv
n follows from the nonincreasing sequence Mu

n and the nondecreasing sequence Nu
n .

Hence, the limit of each sequence inNu
n , N

w
n , N

v
n , M

u
n, M

w
n , and Mv

n exists. Denote

x = lim
n→∞

Mu
n, x = lim

n→∞
Nu

n,

y = lim
n→∞

Mw
n , y = lim

n→∞
Nw

n ,

z = lim
n→∞

Mv
n, z = lim

n→∞
Nv

n.

(4.66)

We therefore obtain from (4.57) and (4.66) that

(

x − x
)

[

dkβe−mτ

ap
− kβ

(

kβe−mτ
) − ap

ap2

]

= 0. (4.67)
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Noting that (H1) holds and R0 > 1, it follows that

dkβe−mτ

ap
>

kβ
(

kβe−mτ − ap
)

ap2
, (4.68)

which together with the previous equation yields x = x. We therefore derive from (4.57) y
(4.66) that y = y, z = z. Noting that if R0 > 1, by Theorem 3.1, the virus-infected equilibrium
E2 is locally asymptotically stable, and if in addition (H1) holds, we conclude that E2 is
globally asymptotically stable.

Now we prove the global stability for the disease-free equilibrium

Theorem 4.3. If R0 < 1 the disease-free equilibrium E1(L/d, 0, 0) of (1.3) is globally asymptotically
stable.

Proof. Let (u(x, t), w(x, t), v(x, t)) be a solution to problem with φi(x, 0)/= 0, (i = 1, 2, 3). We
have u(x, t) > 0,w(x, t) > 0, and v(x, t) > 0 for all x ∈ Ω. Let (u(1)(x, t), w(1)(x, t), v(1)(x, t)) be
a solution to the following problem:

∂u(1)

∂t
= L − du(1)(x, t),

∂w(1)

∂t
=

βe−mτu(1)(x, t − τ)v(1)(x, t − τ)
u(1)(x, t − τ) +w(1)(x, t − τ)

− aw(1)(x, t),

∂v(1)

∂t
= DΔv(1)(x, t) + kw(1)(x, t) − pv(1)(x, t).

(4.69)

Therefore for t > 0, x ∈ Ωwe have

0 ≤ u(x, t) ≤ u(1)(x, t), 0 ≤ w(x, t) ≤ w(1)(x, t), 0 ≤ v(x, t) ≤ v(1)(x, t). (4.70)

We derive from the first equation that

lim
t→∞

u(1)(x, t) =
L

d
, (4.71)

so we can conclude

lim sup
t→∞

maxu(x, t) ≤ L

d
. (4.72)
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Figure 1: Simulations with parameters L = 211, d = 3.78−2, a = 3.38d, p = 0.67, β = 1.45−6, k = 5.183,m = 0.2,
and D = 0.5. R0 = 0.039426.

Hence, for ε > 0 sufficiently small, there exists a t1 such that u(1)(x, t) ≤ L/d + ε for all x ∈ Ω
and t ≥ t1. Hence, (w(x, t), v(x, t)) is a lower solution to the following problem:

∂ω
(1)
2

∂t
=

βe(−mτ)(L/d + ε)v(1)(x, t − τ)

L/d + ε +ω
(1)
2 (x, t − τ)

− aω
(1)
2 (x, t),

∂ω
(1)
3

∂t
= DΔω

(1)
3 + kω

(1)
2 (x, t) − pω

(1)
3 (x, t),

∂ω
(1)
2

∂η
=

∂ω
(1)
3

∂η
= 0, t > t1; x ∈ ∂ ̂Ω,

ω
(1)
2 (x, t) = w(x, t), ω

(1)
3 (x, t) = v(x, t), t ∈ [−τ, t1], x ∈ Ω.

(4.73)
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Figure 2: Simulations with parameters L = 211, d = 3.78−2, a = 3.38d, p = 0.67, β = 1.45−4, k = 5.18 × 103,
m = 0.2, and D = 0.1. R0 = 3.9426.

Consider (u2(t), u3(t)) as the solution for

u̇2 =
βe−mτ(L + ε)u3(t − τ)
L/d + ε + u2(t − τ)

− au2(t),

u̇3 = ku2(t) − pu3(t),

u2(t) = max
x∈Ω

w(x, t), u3(t) = max
x∈Ω

v(x, t), t ∈ [−τ, t1].

(4.74)

Then with R0 < 1 according to Lemma 4.1 we have that

lim
t→∞

u2(t) = 0, lim
t→∞

u3(t) = 0. (4.75)

By comparison, it follows that

lim
t→∞

w(t) = 0, lim
t→∞

v(t) = 0 (4.76)
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Figure 3: In this case the parameters are L = 211, d = 3.78−2, a = 3.38d, p = 0.67, β = 1.45−4, k = 5.183 and
m = 0.2.

uniformly for x ∈ Ω. Hence, for ε > 0 sufficiently small, by comparison there is a t2 ≥ t1 such
that if t ≥ t2, w(x, t) < ε, v(x, t) < ε for all x ∈ Ω and t ≥ t2.

As in the proof of Theorem 4.2 u(x, t) is an upper solution for the following problem:

∂ω
(1)
1 = L − dω

(1)
1 − βω

(1)
1 ε,

∂ω
(1)
1

∂η
= 0, t ≥ t2, x ∈ Ω, ω

(1)
1 (x, t2) =

1
2
u(x, t2), x ∈ Ω,

(4.77)

from the above equation we have that

lim
t→∞

ω
(1)
1 (x, t) =

L

d + βε
(4.78)
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Figure 4: In this case the parameter are L = 27, d = 3.78−2, a = 3.38d, p = 0.67, β = 1.45−4, k = 5.183 and
m = 0.2.

uniformly for x ∈ Ω. Since this holds for arbitrary ε > 0 sufficiently small, by comparison we
conclude that

lim inf
t→∞

minu(x, t) ≥ L

d
, (4.79)

which together with (4.72) gives

lim
t→∞

u(x, t) =
L

d
(4.80)

uniformly for x ∈ Ω. We already have by Theorem 3.1 that the disease-free equilibrium E1 is
locally asymptotically stable. And now we have proved that it is also globally asymptotically
stable.
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5. Numerical Simulations

In this section we illustrate some numerical solutions for systems (1.3). In the numerical
simulation display in Figure 1 we illustrate the stability for the disease-free equilibrium
according to Theorem 3.1. In this case the basic reproductive number is R0 = 0.039426. In
the graphics we see how the level of uninfected cells increases from the initial condition and
the number of infected cells and virus in the body goes to zero.

In Figure 2 consider the case R0 > 1 in this case we consider a bigger rate of infection
for the cells in the graphics we see how the number of infected cells and viruses increases
when the time passes, and when the number of susceptible cells decreases the number of
virus also decreases to the value v∗.

Now in Figure 3 we just show the level of virus in different for different values of the
diffusion constant D and the delay τ . We see that a bigger delay increases the time needed
for the virus to reach the value v∗, meanwhile a mayor value for the constant D just affects
the levels of the virus according to the space and does not affect significantly the time needed
for the virus to reach v∗. In Figure 4 we consider a lower value for λ, which is the uninfected
cell production rate. In this case we see how the time to reach the value v∗ of the endemic
equilibrium is lower and again the diffusion rate has no significant effect on the time; its
effect is on the level of virus in the system. The delay is what really affect the time to reach
the value v∗.
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