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We introduce the generalized split common fixed point problem (GSCFPP) and show that the
GSCFPP for nonexpansive operators is equivalent to the common fixed point problem. Moreover,
we introduce a new iterative algorithm for finding a solution of the GSCFPP and obtain some
strong convergence theorems under suitable assumptions.

1. Introduction

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a bounded linear operator.
Given intergers p, r ≥ 1, let us recall that the multiple-set split feasibility problem (MSSFP)
was recently introduced [1] and is to find a point:

x∗ ∈
p⋂

i=1

Ci, Ax∗ ∈
r⋂

j=1

Qj, (1.1)

where {Ci}pi=1 and {Qj}rj=1 are nonempty closed convex subsets of H1 and H2, respectively. If
p = r = 1, the MSSFP (1.1) becomes the so-called split feasibility problem (SFP) [2] which is
to find a point:

x∗ ∈ C, Ax∗ ∈ Q, (1.2)

where C andQ are nonempty closed convex subsets ofH1 andH2, respectively. Recently, the
SFP (1.2) and MSSFP (1.1) have been investigated by many researchers; see, [3–10].
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Since every closed convex subset in a Hilbert space is looked as the fixed point set of
its associating projection, the MSSFP (1.1) becomes a special case of the split common fixed
point problem (SCFPP), which is to find a point:

x∗ ∈
p⋂

i=1

Fix(Ui), Ax∗ ∈
r⋂

j=1

Fix
(
Tj
)
, (1.3)

where Ui : H1 → H1 (i = 1, 2, . . . , p) and Tj : H2 → H2 (j = 1, 2, . . . , r) are nonlinear
operators. If p = r = 1, the problem (1.3) reduces to the so-called two-set SCFPP, which is to
find a point:

x∗ ∈ Fix(U), Ax∗ ∈ Fix(T). (1.4)

Censor and Segal in [11] firstly introduced the concept of SCFPP in finite-dimensional
Hilbert spaces and considered the following iterative algorithm for the two-set SCFPP (1.4)
for Class-� operators:

xn+1 = U
(
xn − γA∗(I − T)Axn

)
, n ≥ 0, (1.5)

where x0 ∈ H1, 0 < γ < 2/‖A‖2 and I is the identity operator. They proved the convergence
of the algorithm (1.5) to a solution of problem (1.4). Moreover, they introduced a parallel
iterative algorithm, which converges to a solution of the SCFPP (1.3). However, the parallel
iterative algorithm does not include the algorithm (1.5) as a special case.

Very recently, Wang and Xu in [12] considered the SCFPP (1.3) for Class-� operators
and introduced the following iterative algorithm for solving the SCFPP (1.3):

xn+1 = U[n]
(
xn − γA∗(I − T[n]

)
Axn

)
, n ≥ 0. (1.6)

Under some mild conditions, they proved some weak and strong convergence theorems.
Their iterative algorithm (1.6) includes Censor and Segal’s algorithm (1.5) as a special case
for the two-set SCFPP (1.4). Moreover, they prove that the SCFPP (1.3) for the Class-�
operators is equivalent to a common fixed point problem. This is also a classical method.
Many problems eventually converted to a common fixed point problem; see [13–15].

Motivated and inspired by the aforementioned research works, we introduce a
generalized split common fixed point problem (GSCFPP)which is to find a point:

x∗ ∈
∞⋂

i=1

Fix(Ui), Ax∗ ∈
∞⋂

j=1

Fix
(
Tj
)
. (1.7)

Then, we show that the GSCFPP (1.7) for nonexpansive operators is equivalent to the
following common fixed point problem:

x∗ ∈
∞⋂

i=1

Fix(Ui), x∗ ∈
∞⋂

j=1

Fix
(
Vj

)
, (1.8)
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where Vj = I − γA∗(I − Tj)A (0 < γ ≤ 1/‖A‖2) for every j ∈ N. Moreover, we give a new
iterative algorithm for solving the GSCFPP (1.7) for nonexpansive operators and obtain some
strong convergence theorems.

2. Preliminaries

Throughout this paper, we write xn ⇀ x and xn → x to indicate that {xn} converges weakly
to x and converges strongly to x, respectively.

An operator T : H → H is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ H. The set of fixed points of T is denoted by F(T). It is known that F(T) is closed and
convex. An operator f : H → H is called contraction if there exists a constant ρ ∈ [0, 1) such
that ‖f(x) − f(y)‖ ≤ ρ‖x − y‖ for all x, y ∈ H. Let C be a nonempty closed convex subset
of H. For each x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that
‖x − PCx‖ ≤ ‖x − y‖ for every y ∈ C. PC is called a metric projection of H onto C. It is known
that for each x ∈ H,

〈x − PCx, y − PCx〉 ≤ 0 (2.1)

for all y ∈ C.
Let {Tn} be a sequence of operators of H into itself. The set of common fixed points

of {Tn} is denoted by F({Tn}), that is, F({Tn}) =
⋂∞

n=1 F(Tn). A sequence {Tn} is said to be
strongly nonexpansive if each {Tn} is nonexpansive and

xn − yn −
(
Tnxn − Tnyn

) −→ 0 (2.2)

whenever {xn} and {yn} are sequences in C such that {xn − yn} is bounded and ‖xn − yn‖ −
‖Tnxn − Tnyn‖ → 0; see [16, 17]. A sequence {zn} in H is said to be an approximate fixed
point sequence of {Tn} if zn − Tnzn → 0. The set of all bounded approximate fixed point
sequences of {Tn} is denoted by F̃({Tn}); see [16, 17]. We know that if {Tn} has a common
fixed point, then F̃({Tn}) is nonempty; that is, every bounded sequence in the common fixed
point set is an approximate fixed point sequence. A sequence {Tn}with a common fixed point
is said to satisfy the condition (Z) if every weak cluster point of {xn} is a common fixed point
whenever {xn} ∈ F̃({Tn}). A sequence {Tn} of nonexpansive mappings ofH into itself is said
to satisfy the condition (R) if

lim
n→∞

sup
y∈D

∥∥Tn+1y − Tny
∥∥ = 0 (2.3)

for every nonempty bounded subset D ofH; see [18].
In order to prove our main results, we collect the following lemmas in this section.

Lemma 2.1 (see [16]). Let C be a nonempty subset of a Hilbert space H. Let {Tn} be a sequence of
nonexpansive mappings of C into H. Let {λn} be a sequence in [0, 1] such that lim infn→∞λn > 0.
Let {Un} be a sequence of mappings of C into H defined by Un = λnI + (1 − λn)Tn for n ∈ N, where
I is the identity mapping on C. Then {Un} is a strongly nonexpansive sequence.
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Lemma 2.2 (see [16]). Let H be a Hilbert space, C a nonempty subset of H, and {Sn} and {Tn}
sequences of nonexpansive self-mappings of C. Suppose that {Sn} or {Tn} is a strongly nonexpansive
sequence and F̃({Sn}) ∩ F̃({Tn}) is nonempty. Then F̃({Sn}) ∩ F̃({Tn}) = F̃({SnTn}).

Lemma 2.3 (see [17]). Let H be a Hilbert space, and C a nonempty subset of H. Both {Sn} and
{Tn} satisfy the condition (R) and {Tny : n ∈ N, y ∈ D} is bounded for any bounded subset D of C.
Then {SnTn} satisfies the condition (R).

Lemma 2.4 (see [19]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1 − βn) yn +
βn xn for all integers n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (2.4)

Then limn→∞‖yn − xn‖ = 0.

Lemma 2.5 (see [20]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, n ≥ 0, (2.5)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞,

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

3. Main Results

Now we state and prove our main results of this paper.

Lemma 3.1. Let A : H1 → H2 be a given bounded linear operator and let Tn : H2 → H2 be a
sequence of nonexpansive operators. Assume

A−1(Fix({Tn})) = {x ∈ H1 : Ax ∈ Fix({Tn})}/= ∅. (3.1)

For each constant γ > 0, Vn is defined by the following:

Vn = I − γA∗(I − Tn)A. (3.2)

Then Fix({Vn}) = A−1(Fix({Tn})). Moreover, for 0 < γ ≤ 1/‖A‖2, Vn is nonexpansive on H1 for
n ∈ N.
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Proof. Since the inclusion A−1(Fix({Tn})) ⊆ Fix({Vn}) is evident, now we only need to
show the converse inclusion. If z ∈ Fix({Vn}), then we have A∗(I − Tn)Az = 0. Since
A−1(Fix({Tn}))/= ∅, we take an arbitrary p ∈ A−1(Fix({Tn})). Hence

‖Az − TnAz‖2 = 〈Az − TnAz,Az − TnAz〉
=
〈
Az − TnAz,Az −Ap +Ap − TnAz

〉

=
〈
A∗(I − Tn)Az, z − p

〉
+
〈
Az − TnAz,Ap − TnAz

〉

= −1
2
∥∥Az −Ap

∥∥2 +
1
2
‖Az − TnAz‖2 + 1

2
∥∥Ap − TnAz

∥∥2

≤ 1
2
‖Az − TnAz‖2.

(3.3)

It follows that (1/2)‖Az − TnAz‖2 ≤ 0, then Az = TnAz for every n ∈ N, hence z ∈
A−1(Fix({Tn})). Next we turn to show that Vn is a nonexpansive operator for n ∈ N. Since
Tn is nonexpansive, we have

∥∥(I − Tn)Ax − (I − Tn)Ay
∥∥2 =

∥∥Ax −Ay
∥∥2 +

∥∥TnAx − TnAy
∥∥2 − 2

〈
Ax −Ay, TnAx − TnAy

〉

≤ 2
∥∥Ax −Ay

∥∥2 − 2
〈
Ax −Ay, TnAx − TnAy

〉

≤ 2
〈
Ax −Ay,Ax −Ay − (

TnAx − TnAy
)〉
.

(3.4)

Hence

∥∥Vnx − Vny
∥∥2 =

∥∥(I − γA∗(I − Tn)A
)
x − (I − γA∗(I − Tn)A)y

∥∥2

=
∥∥x − y

∥∥2 + γ2‖A‖2∥∥(I − Tn)Ax − (I − Tn)Ay
∥∥2

− 2γ
〈
Ax −Ay, (I − Tn)Ax − (I − Tn)Ay

〉

≤ ∥∥x − y
∥∥2 + γ

(
γ‖A‖2 − 1

)∥∥(I − Tn)Ax − (I − Tn)Ay
∥∥2

.

(3.5)

For 0 < γ ≤ 1/‖A‖2, we can immediately obtain that Vn is a nonexpansive operator for every
n ∈ N.

From Lemma 3.1, we can obtain that the solution set of GSCFPP (1.7) is identical to the
solution set of problem (1.8).

Theorem 3.2. Let {Un} and {Vn} be sequences of nonexpansive operators on Hilbert spaceH1. Both
{Un} and {Vn} satisfy the conditions (R) and (Z). Let f : H1 → H1 be a contraction with coefficient
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ρ ∈ [0, 1). Suppose Ω = Fix(Un)
⋂
Fix(Vn)/= ∅. Take an initial guess x1 ∈ H1 and define a sequence

{xn} by the following algorithm:

yn = λnxn + (1 − λn)Vnxn,

xn+1 = αnf(xn) + βnxn + γnUnyn,
(3.6)

where {αn}, {βn}, {γn}, and {λn} are sequences in [0, 1]. If the following conditions are satisfied:

(i) αn + βn + γn = 1, for all n ≥ 1;

(ii) limn→∞αn = 0 and Σ∞
n=1αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) 0 < lim infn→∞λn ≤ lim supn→∞λn < 1;

(v) limn→∞|λn+1 − λn| = 0,

then {xn} converges strongly to w ∈ Ω where w = PΩf(w).

Proof. We proceed with the following steps.

Step 1. First show that there exists w ∈ Ω such that w = PΩf(w).
In fact, since f is a contraction with coefficient ρ, we have

∥∥PΩf(x) − PΩf
(
y
)∥∥ ≤ ∥∥f(x) − f

(
y
)∥∥ ≤ ρ

∥∥x − y
∥∥ (3.7)

for every x, y. Hence PΩf is also a contraction. Therefore, there exists a unique w ∈ Ω such
that w = PΩf(w).

Step 2. Now we show that {xn} is bounded.
Let p ∈ Ω, then p ∈ Fix({Un}) and p ∈ Fix({Vn}). Hence

‖Unyn − p‖ ≤ ‖yn − p‖ ≤ λn‖xn − p‖ + (1 − λn)‖Vnxn − p‖ ≤ ‖xn − p‖. (3.8)

Then

∥∥xn+1 − p
∥∥ ≤ αn

∥∥f(xn) − p
∥∥ + βn

∥∥xn − p
∥∥ + γn

∥∥Unyn − p
∥∥

≤ αnρ
∥∥xn − p

∥∥ + αn

∥∥f
(
p
) − p

∥∥ + βn
∥∥xn − p

∥∥ + γn
∥∥xn − p

∥∥

≤ (
1 − αn

(
1 − ρ

))∥∥xn − p
∥∥ + αn

(
1 − ρ

) 1
1 − ρ

∥∥f
(
p
) − p

∥∥

≤ max
{∥∥xn − p

∥∥,
1

1 − ρ

∥∥f
(
p
) − p

∥∥
}
.

(3.9)

By induction on n,

∥∥Vnxn − p
∥∥ ≤ ∥∥xn − p

∥∥ ≤ max
{∥∥x1 − p

∥∥,
1

1 − ρ

∥∥f
(
p
) − p

∥∥
}

(3.10)



Journal of Applied Mathematics 7

for every n ∈ N. This shows that {xn} and {Vnxn} are bounded, and hence, {Unyn}, {yn}, and
{f(xn)} are also bounded.

Step 3. We claim that F̃({An}) = F̃({Vn}) and F̃({UnAn}) = F̃({Un}) ∩ F̃({Vn}), where An =
λnI + (1 − λn)Vn.

We first show the former equality. Let {zn} be a bounded sequence in H1. If {zn} ∈
F̃({Vn}), then

‖Anzn − zn‖ = ‖λnzn + (1 − λn)Vnzn − zn‖ = (1 − λn)‖Vnzn − zn‖ −→ 0. (3.11)

Hence {zn} ∈ F̃({An}). On the other hand, if {zn} ∈ F̃({An}), combining (3.11) and
lim supn→∞λn < 1, we obtain that ‖Vnzn − zn‖ → 0. Hence {zn} ∈ F̃({Vn}). Therefore,
F̃({An}) = F̃({Vn}).

Next, we show the latter equality. Using Lemma 2.1, we know that {An} is a strongly
nonexpansive sequence. Thus, since F̃({Un}) ∩ F̃({An}) = F̃({Un}) ∩ F̃({Vn})/= ∅, from
Lemma 2.2 we have

F̃({UnAn}) = F̃({Un}) ∩ F̃({An}) = F̃({Un}) ∩ F̃({Vn}). (3.12)

Step 4. {Sn} satisfies the condition (R), where Sn = UnAn.
LetD be a nonempty bounded subset ofH1. From the definition of {An}, we have, for

all y ∈ D,

∥∥An+1y −Any
∥∥ =

∥∥λn+1y + (1 − λn+1)Vn+1y − λny − (1 − λn)Vny
∥∥

≤ |λn+1 − λn|
∥∥y

∥∥ +
∥∥Vn+1y − Vny

∥∥ +
∥∥λn+1Vn+1y − λnVny

∥∥

≤ |λn+1 − λn|
∥∥y

∥∥ +
∥∥Vn+1y − Vny

∥∥ +
∥∥λn+1Vn+1y − λnVn+1y

∥∥

+
∥∥λnVn+1y − λnVny

∥∥

= |λn+1 − λn|
∥∥y

∥∥ +
∥∥Vn+1y − Vny

∥∥ + |λn+1 − λn|
∥∥Vn+1y

∥∥

+ λn
∥∥Vn+1y − Vny

∥∥

= |λn+1 − λn|
(∥∥y

∥∥ +
∥∥Vn+1y

∥∥) + (1 + λn)
∥∥Vn+1y − Vny

∥∥.

(3.13)

It follows that

sup
y∈D

∥∥An+1y −Any
∥∥ ≤ |λn+1 − λn|sup

y∈D

(∥∥y
∥∥ +

∥∥Vn+1y
∥∥) + (1 + λn)sup

y∈D

∥∥Vn+1y − Vny
∥∥. (3.14)

Since {Vn} satisfies the condition (R) and limn→∞|λn+1 − λn| = 0, we have

lim
n→∞

sup
y∈D

∥∥An+1y −Any
∥∥ = 0, (3.15)
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that is, {An} satisfies the condition (R). Since {Any : n ∈ N, y ∈ D} is bounded for any
bounded subset D of H1, by using Lemma 2.3, we have that {VnAn} satisfies the condition
(R), that is, {Sn} satisfies the condition (R).

Step 5. We show ‖xn+1 − xn‖ → 0.
We can write (3.6) as xn+1 = βnxn + (1 − βn)zn where zn = (αnf(xn) + γnSnxn)/1 − βn. It

follows that

zn+1 − zn =
αn+1f(xn+1) + γn+1Sn+1xn+1

1 − βn+1
− αnf(xn) + γnSnxn

1 − βn

=
αn+1

1 − βn+1

(
f(xn+1) − f(xn)

)
+
(

αn+1

1 − βn+1
− αn

1 − βn

)
f(xn)

+
γn+1

1 − βn+1
(Sn+1xn+1 − Snxn) +

(
γn+1

1 − βn+1
− γn
1 − βn

)
Snxn.

(3.16)

From Step 2, we may assume that {xn} ⊂ D′, where D′ is a bounded set of H1. Then from
(3.16), we obtain

‖zn+1 − zn‖ ≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣
(∥∥f(xn)

∥∥ + ‖Snxn‖
)
+

αn+1

1 − βn+1
ρ‖xn+1 − xn‖

+
γn+1

1 − βn+1
‖Sn+1xn+1 − Snxn+1‖ +

γn+1
1 − βn+1

‖Snxn+1 − Snxn‖

≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣
(∥∥f(xn)

∥∥ + ‖Snxn‖
)

+
[
1 − αn+1

1 − βn+1

(
1 − ρ

)]‖xn+1 − xn‖

+
γn+1

1 − βn+1
sup
y∈D′

∥∥Sn+1y − Sny
∥∥.

(3.17)

It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣
(∥∥f(xn)

∥∥ + ‖Snxn‖
)

+
γn+1

1 − βn+1
sup
y∈D′

∥∥Sn+1y − Sny
∥∥ − αn+1

1 − βn+1

(
1 − ρ

)‖xn+1 − xn‖.
(3.18)

Since {Sn} satisfies the condition (R), combining αn → 0 as n → ∞, we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.19)

Hence by Lemma 2.4, we get ‖zn − xn‖ → 0 as n → ∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.20)
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Step 6. We claim that {xn} ∈ F̃({Un}) ∩ F̃({Vn}).
From (3.6), we have

‖Snxn − xn‖ ≤ ‖Snxn − xn+1‖ + ‖xn+1 − xn‖
=
∥∥Snxn − αnf(xn) − βnxn − γnSnxn

∥∥ + ‖xn+1 − xn‖
≤ αn

∥∥Snxn − f(xn)
∥∥ + βn‖Snxn − xn‖ + ‖xn+1 − xn‖,

(3.21)

and hence

(
1 − βn

)‖Snxn − xn‖ ≤ αn

∥∥Snxn − f(xn)
∥∥ + ‖xn+1 − xn‖. (3.22)

Since ‖xn+1 − xn‖ → 0, αn → 0 and lim supn→∞βn < 1, we derive

‖Snxn − xn‖ −→ 0. (3.23)

Thus (3.23) and Steps 2 and 3 imply that

{xn} ∈ F̃({Sn}) = F̃({Un}) ∩ F̃({Vn}). (3.24)

Step 7. Show lim supn→∞〈f(w) −w,xn −w〉 ≤ 0, where w = PΩf(w).
Since {xn} is bounded, there exist a point v ∈ H1 and a subsequence {xni} of {xn} such

that

lim sup
n→∞

〈
f(w) −w,xn −w

〉
= lim

i→∞
〈
f(w) −w,xni −w

〉
(3.25)

and xni ⇀ v. Since {Un} and {Vn} satisfy the condition (Z), from Step 6, we have v ∈
F({Un}) ∩ F({Vn}). Using (2.1), we get

lim sup
n→∞

〈
f(w) −w,xn −w

〉
= lim

i→∞
〈
f(w) −w,xni −w

〉

=
〈
f(w) −w,v −w

〉 ≤ 0.
(3.26)

Step 8. Show xn → w = PΩf(w).
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Since w ∈ Ω, using (3.8), we have

‖xn+1 −w‖2 = 〈
αn

(
f(xn) −w

)
+ βn(xn −w) + γn

(
Unyn −w

)
, xn+1 −w

〉

≤ αn

〈
f(xn) − f(w), xn+1 −w

〉
+ αn

〈
f(w) −w,xn+1 −w

〉

+ βn‖xn −w‖ · ‖xn+1 −w‖ + γn
∥∥yn −w

∥∥ · ‖xn+1 −w‖

≤ 1
2
αnρ

(
‖xn −w‖2 + ‖xn+1 −w‖2

)
+ αn

〈
f(w) −w,xn+1 −w

〉

+
1
2
βn
(
‖xn −w‖2 + ‖xn+1 −w‖2

)
+
1
2
γn
(
‖xn −w‖2 + ‖xn+1 −w‖2

)

≤ 1
2
[
1 − αn

(
1 − ρ

)]‖xn −w‖2 + 1
2
‖xn+1 −w‖2 + αn

〈
f(w) −w,xn+1 −w

〉
,

(3.27)

which implies that

‖xn+1 −w‖2 ≤ [
1 − αn

(
1 − ρ

)]‖xn −w‖2 + 2αn

(
1 − ρ

) 1
1 − ρ

〈
f(w) −w,xn+1 −w

〉
, (3.28)

for every n ∈ N. Consequently, according to Step 7, ρ ∈ [0, 1), and Lemma 2.5, we deduce that
{xn} converges strongly to w = PΩ(w). This completes the proof.

Combining Lemma 3.1 and Theorem 3.2, we can obtain the following strong conver-
gence theorem for solving the GSCFPP (1.7).

Theorem 3.3. Let {Un} and {Tn} be sequences of nonexpansive operators on Hilbert space H1 and
H2, respectively. Both {Un} and {Tn} satisfy the conditions (R) and (Z). Let f : H1 → H1 be a
contraction with coefficient ρ ∈ [0, 1). Suppose that the solution setΩ of GSCFPP (1.7) is nonempty.
Take an initial guess x1 ∈ H1 and define a sequence {xn} by the following algorithm:

yn = xn − γ(1 − λn)A∗(I − Tn)Axn,

xn+1 = αnf(xn) + βnxn + γnUnyn,
(3.29)

where γ ∈ (0, 1/‖A‖2), and {αn}, {βn}, {γn}, {λn} are sequences in [0, 1]. If the following conditions
are satisfied:

(i) αn + βn + γn = 1, for all n ≥ 1;

(ii) limn→∞αn = 0 and Σ∞
n=1αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) 0 < lim infn→∞λn ≤ lim supn→∞λn < 1;

(v) limn→∞|λn+1 − λn| = 0,

then {xn} converges strongly to w ∈ Ω where w = PΩf(w).
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Proof. Set Vn = I−γA∗(I−Tn)A. By Lemma 3.1, Vn is a nonexpansive operator for every n ∈ N.
We can rewrite (3.29) as

yn = λnxn + (1 − λn)Vnxn,

xn+1 = αnf(xn) + βnxn + γnUnyn.
(3.30)

We only need to prove that {Vn} satisfies the conditions (R) and (Z). Assume that D
is a nonempty bounded subset ofH1. For every y ∈ D, we have

∥∥(I − γA∗(I − Tn+1)A
)
y − (

I − γA∗(I − Tn)A
)
y
∥∥ ≤ γ

∥∥A∗(I − Tn+1)Ay −A∗(I − Tn)Ay
∥∥

≤ γ‖A‖∥∥Tn+1
(
Ay

) − Tn
(
Ay

)∥∥.
(3.31)

Since {Tn} satisfies the condition (R), and D′ = {Ay : y ∈ D} is bounded, it follows from
(3.31) that

sup
y∈D

∥∥(I − γA∗(I − Tn+1)A
)
y − (

I − γA∗(I − Tn)A
)
y
∥∥ ≤ γ‖A‖sup

y∈D

∥∥Tn+1
(
Ay

) − Tn
(
Ay

)∥∥

= γ‖A‖sup
z∈D′

‖Tn+1z − Tnz‖ −→ 0.

(3.32)

Therefore, {Vn} satisfies the condition (R).
Assume that xn ⇀ z and xn − Vnxn → 0; we next show that Vnz = z. By using xn −

Vnxn → 0, we have A∗(I − Tn)Axn → 0. Since A−1(Fix({Tn}))/= ∅, we choose an arbitrary
point p ∈ A−1(Fix({Tn})); then for every n ∈ N,

‖Axn − TnAxn‖2 =
〈
Axn − TnAxn,Axn −Ap +Ap − TnAxn

〉

=
〈
A∗(I − Tn)Axn, xn − p

〉
+
〈
Axn − TnAxn,Ap − TnAxn

〉

=
〈
A∗(I − Tn)Axn, xn − p

〉 − 1
2
∥∥Axn −Ap

∥∥2 +
1
2
‖Axn − TnAxn‖2

+
1
2
∥∥Ap − TnAxn

∥∥2

≤ 〈
A∗(I − Tn)Axn, xn − p

〉
+
1
2
‖Axn − TnAxn‖2.

(3.33)

Hence

1
2
‖Axn − TnAxn‖2 ≤

〈
A∗(I − Tn)Axn, xn − p

〉 −→ 0. (3.34)

Then we get Axn ∈ F̃({Tn}). Since {Tn} satisfies the condition (Z) and Axn ⇀ Az, we have
Az ∈ F({Tn}). From Lemma 3.1, we have z ∈ Fix({Vn}).
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Let T : H → H be a nonexpansive mapping with a fixed point, and define Tn = T for
all n ∈ N. Then {Tn} satisfies the conditions (R) and (Z). Thus, one obtains the algorithm for
solving the two-set SCFPP (1.4).

Corollary 3.4. Let U and T be nonexpansive operators on Hilbert space H1 and H2, respectively.
Let f : H1 → H1 be a contraction with coefficient ρ ∈ [0, 1). Suppose that the solution set Ω of
SCFPP (1.4) is nonempty. Take an initial guess x1 ∈ H1 and define a sequence {xn} by the following
algorithm in (3.29), where γ ∈ (0, 1/‖A‖2), and {αn}, {βn}, {γn}, {λn} are sequences in [0, 1]. If the
following conditions are satisfied:

(i) αn + βn + γn = 1, for all n ≥ 1;

(ii) limn→∞αn = 0 and Σ∞
n=1αn = ∞;

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iv) 0 < lim infn→∞λn ≤ lim supn→∞λn < 1;

(v) limn→∞|λn+1 − λn| = 0.

Then {xn} converges strongly to w ∈ Ω where w = PΩf(w).

Remark 3.5. By adding more operators to the families {Un} and {Tn} by setting Ui = I for
i ≥ p+1 and Tj = I for j ≥ r+1, the SCFPP (1.3) can be viewed as a special case of the GSCFPP
(1.7).
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