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We introduce the wave equation in fractal vibrating string in the framework of the local fractional
calculus. Our particular attention is devoted to the technique of the local fractional Fourier series
for processing these local fractional differential operators in a way accessible to applied scientists.
By applying this technique we derive the local fractional Fourier series solution of the local
fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-
Leffler function.

1. Introduction

Fractional calculus arises in many problems of physics, continuum mechanics, visco-
elasticity, and quantummechanics, and other branches of applied mathematics and nonlinear
dynamics have been studied [1–7]. In general, the fractional analogues are obtained by
changing the classical time derivative by a fractional one, which can be Riemann-Liouville,
Caputo, or another one. Many classical partial differential equations possess a fractional
analogue, like the fractional diffusion-wave equation [8–12], the fractional diffusion equation
[13–16], the fractional wave equation [17, 18], the fractional Schrödinger equation [19, 20],
the fractional heat equation [21], the fractional KdV equation [22], the fractional Fokker-
Planck equations [23], the fractional Fick’s law [24], the fractional evolution equation [25],
the Fractional Heisenberg equation [26], the fractional Ginzburg-Landau equation [27],
Fractional hydrodynamic equation [28], the fractional seepage flow equation [29], and the
fractional KdV-Burgers equation [30].
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There also are other methods for solving fractional differential equations, for example,
the fractional variational iteration method [31, 32] and the fractional complex transform
[33–37]. In all of the methods mentioned above, the solutions of the fractional differential
equations should be analytical if the fractional derivative is in the Caputo or Riemann-
Liouville sense. However, some solutions to ordinary and partial differential equations are
fractal curves. As a result, we cannot employ the classical Fourier series, which requires
that the defined functions should be differentiable, to describe some solutions to ordinary
and partial differential equations in fractal space. However, based on the modified Riemann-
Liouville derivative, Jumarie structured a Jumurie’s calculus of fractional order [38] (which is
one of useful tools to deal with everywhere continuous but nowhere differentiable functions)
and its applications were taken into account in Probability calculus of fractional order [39],
Laplace transform of fractional order via the Mittag-Leffler function (in convenient Hilbert
space) [40], and adomian decomposition method for nonsmooth initial value problems
[41]. Local fractional calculus is revealed as one of useful tools to deal with everywhere
continuous but nowhere differentiable functions in areas ranging from fundamental science
to engineering [42–57]. For these merits, local fractional calculus was successfully applied in
the local fractional Laplace problems [53, 54], local fractional Fourier analysis [53, 54], local
fractional short time transform [53, 54], local fractional wavelet transform [53–55], fractal
signal [55, 56], and local fractional variational calculus [57].

In this paper we introduce a local fractional wave equation in fractal vibrating string
which is described as

∂2αu(x, t)
∂t2α

+ a2α ∂
2αu(x, t)
∂x2α

= 0, (1.1)

with fractal boundary conditions

u(0, t) = u(l, t) = 0,

u(0, t) =
∂αu(l, t)
∂xα

= 0,

u(x, 0) = f(x),

∂αu(l, 0)
∂xα

= g(x),

(1.2)

where ∂2αu(x, t)/∂t2α, ∂2αu(x, t)/∂x2α, ∂αu(l, 0)/∂xα, and ∂αu(l, t)/∂xα are local fractional
partial differential operator, and where u(x, t) is local fractional continuous (for more details,
see [53, 54]). We study the technique of the local fractional Fourier series for treating the
local fractional wave equation in fractal vibrating string. This paper is organized as follows.
In Section 2, we specify and investigate the concepts of local fractional calculus and local
fractional Fourier series. In Section 3, we present the solving process for local fractional wave
equation with local fractional derivative. In Section 4, we study the expression solution with
Mittag-Leffler functions in fractal space. Finally, Section 5 is conclusions.
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2. Preliminaries

In this section we start with local fractional continuity of functions, and we introduce the
notions of local fractional calculus and local fractional Fourier series.

2.1. Local Fractional Continuity of Functions

In order to discuss the local fractional continuity of nondifferential functions on fractal sets,
we first consider the following results.

Lemma 2.1 (see [57]). Let F be a subset of the real line and be a fractal. If f : (F, d) → (Ω′, d′) is a
bi-Lipschitz mapping, then there are for constants ρ, τ > 0, and F ⊂ R,

ρsHs(F) ≤ Hs(f(F)
) ≤ τsHs(F), (2.1)

such that for all x1, x2 ∈ F,

ρα|x1 − x2|α ≤ ∣∣f(x1) − f(x2)
∣∣ ≤ τα|x1 − x2|α. (2.2)

As a direct result of Lemma 2.1, we have, [57],

∣∣f(x1) − f(x2)
∣∣ ≤ τα|x1 − x2|α, (2.3)

such that

∣∣f(x1) − f(x2)
∣∣ < εα, (2.4)

where α is fractal dimension of F. The result that is directly deduced from fractal geometry is
related to fractal coarse-grained mass function γα[F, a, b], which reads, [57],

γα[F, a, b] =
Hα(F ∩ (a, b))

Γ(1 + α)
, (2.5)

with

Hα(F ∩ (a, b)) = (b − a)α, (2.6)

where Hα is α dimensional Hausdorff measure.
Notice that we consider the dimensions of any fractal spaces (e.g., Cantor spaces or

like-Cantor spaces) as a positive number. It looks like Euclidean space because its dimension
is also a positive number. The detailed results had been considered in [53, 54, 57].

Definition 2.2. If there exists, [53, 57],

∣∣f(x) − f(x0)
∣∣ < εα, (2.7)
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with |x − x0| < δ, for ε, δ > 0 and ε, δ ∈ R, then f(x) is called local fractional continuous
at x = x0, denoted by limx→x0f(x) = f(x0). f(x) is called local fractional continuous on the
interval (a, b), denoted by

f(x) ∈ Cα(a, b), (2.8)

if (2.7) is valid for x ∈ (a, b).

Definition 2.3. If a function f(x) is called a nondifferentiable function of exponent α, 0 < α ≤ 1,
which satisfies Hölder function of exponent α, then for x, y ∈ X such that, [54, 57],

∣
∣f(x) − f

(
y
)∣∣ ≤ C

∣
∣x − y

∣
∣α. (2.9)

Definition 2.4. A function f(x) is called to be continuous of order α, 0 < α ≤ 1, or shortly α
continuous, when we have that, [54, 57],

f(x) − f(x0) = o
(
(x − x0)α

)
. (2.10)

Remark 2.5. Compared with (2.10), (2.7) is standard definition of local fractional continuity.
Here (2.9) is unified local fractional continuity [57].

2.2. Local Fractional Derivatives and Integrals

Definition 2.6 (let f(x) ∈ Cα(a, b)). Local fractional derivative of f(x) of order α at x = x0 is
given, [53–57],

f (α)(x0) =
dαf(x)
dxα

∣∣∣∣
x=x0

= lim
x→x0

Δα
(
f(x) − f(x0)

)

(x − x0)α
, (2.11)

where Δα(f(x) − f(x0)) ∼= Γ(1 + α)Δ(f(x) − f(x0)).

For any x ∈ (a, b), there exists, [53–57],

f (α)(x) = D
(α)
x f(x), (2.12)

denoted by

f(x) ∈ D
(α)
x (a, b). (2.13)

Local fractional derivative of high order is derived as, [57],

f (kα)(x) =

k times
︷ ︸︸ ︷
D

(α)
x · · ·D(α)

x f(x),
(2.14)
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and local fractional partial derivative of high order, [57],

∂kαf(x)
∂xkα

=

k times
︷ ︸︸ ︷
∂α

∂xα
· · · ∂α

∂xα
f(x).

(2.15)

Definition 2.7 (let f(x) ∈ Cα(a, b)). Local fractional integral of f(x) of order α in the interval
[a, b] is given by, [53–57],

aI
(α)
b f(x) =

1
Γ(1 + α)

∫b

a

f(t)(dt)α =
1

Γ(1 + α)
lim
Δt→ 0

j=N−1∑

j=0

f
(
tj
)(
Δtj

)α
, (2.16)

where Δtj = tj+1 − tj , Δt = max{Δt1,Δt2,Δtj , . . .}, and [tj , tj+1], j = 0, . . . ,N − 1, t0 = a, tN = b,
is a partition of the interval [a, b].

For convenience, we assume that

aI
(α)
a f(x) = 0 if a = b, aI

(α)
b f(x) = −bI

(α)
a f(x) if a < b. (2.17)

For any x ∈ (a, b), we get, [53, 54, 57],

aIx
(α)f(x), (2.18)

denoted by

f(x) ∈ I
(α)
x (a, b). (2.19)

Remark 2.8. If f(x) ∈ D
(α)
x (a, b), or I(α)x (a, b), we have that, [46, 47, 50],

f(x) ∈ Cα(a, b). (2.20)

2.3. Special Functions in Fractal Space

Definition 2.9. The Mittag-Leffler function in fractal space is defined by, [53, 57],

Eα(xα) :=
∞∑

k=0

xαk

Γ(1 + kα)
, x ∈ R, 0 < α ≤ 1. (2.21)

Definition 2.10. The sine function in fractal space is given by the expression, [54, 57],

sinαx
a :=

∞∑

k=0

(−1)k xα(2k+1)

Γ[1 + α(2k + 1)]
, x ∈ R, 0 < α ≤ 1. (2.22)
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Definition 2.11. The cosine function in fractal space is given, [54, 57],

cosαxa :=
∞∑

k=0

(−1)k x2αk

Γ(1 + 2αk)
, x ∈ R, 0 < α ≤ 1. (2.23)

The following rules hold [54, 57]:

Eα(xα)Eα

(
yα) = Eα

((
x + y

)α)
, Eα(xα)Eα

(−yα) = Eα

((
x − y

)α)
,

Eα(iαxα)Eα

(
iαyα) = Eα

(
iα
(
x + y

)α)
, Eα(iαxα) = cosαxα + iαsinαx

α,

sinαx
α =

Eα(iαxα) − Eα(−iαxα)
2iα

, cosαxα =
Eα(iαxα) + Eα(−iαxα)

2
,

cosα(−x)α = cosαxα, sinα(−x)α = −sinαx
α,

cos2αx
α + sin2

αx
α = 1, sin2

αx
α =

1 − cosα(2x)α

2
,

cos2αx
α =

1 + cosα(2x)α

2
, tanαx

α =
sinα(2x)α

1 + cosα(2x)α
=

1 − cosα(2x)α

sinα(2x)α
,

sinα(2x)α = 2sinαx
αcosαxα, cosα(2x)α = cos2αx

α − sin2
αx

α,

tanα

(
2y

)α =
2tanαy

α

1 + tan2
αx

α
, sinα(2x)α =

2tanαx
α

1 + tan2
αx

α
,

cosα(2x)α =
1 − tan2

αx
α

1 + tan2
αx

α
, tanα

(
x + y

)α =
tanαx

α + tanαy
α

1 + tanαxαtanαyα
,

cosαxα + cosαyα = 2cosα
(
x + y

2

)α

cosα
(
x − y

2

)α

,

cosαxα − cosαyα = −2sinα

(
x + y

2

)α

sinα

(
x − y

2

)α

,

sinαx
α + sinαy

α = 2sinα

(
x + y

2

)α

cosα
(
x − y

2

)α

,

sinαx
α − sinαy

α = 2cosα
(
x + y

2

)α

sinα

(
x − y

2

)α

,

cosα
(
x + y

)α = cosαxαcosαyα − sinαx
αsinαy

α,

cosα
(
x − y

)α = cosαxαcosαyα + sinαx
αsinαy

α,

sinα

(
x + y

)α = sinαx
αcosαyα + cosαxαsinαy

α,

cosαxαcosαyα =
cosα

(
x + y

)α + cosα
(
x − y

)α

2
,
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sinαx
αsinαy

α = −cosα
(
x + y

)α − cosα
(
x − y

)α

2
,

sinαx
αcosαyα =

sinα

(
x + y

)α + sinα

(
x − y

)α

2
,

sinα(mx)αsinα(nx)α =
cosα((m − n)x)α − cosα((m + n)x)α

2
,

cosα(nx)αsinα(mx)α =
sinα((m + n)x)α − sinα((m − n)x)α

2
,

Eα

(
iα(nx)α

)
=
(
cosα(nx)α + iαsinα(nx)α

)n
,

n∑

k=1

sinα(nx)α =
sinα(nx/2)

α

sinα(x/2)
α sinα

(
(n + 1)x

2

)α

, sinα

(x
2

)α

/= 0,

n∑

k=1

cosα(nx)α =
sinα(nx/2)

α

sinα(x/2)
α cosα

(
(n + 1)x

2

)α

, sinα

(x
2

)α

/= 0,

1
2
+

n∑

k=1

cosα(nx)α =
sinα((2n + 1)x/2)α

2sinα(x/2)
α , sinα

(x
2

)α

/= 0.

(2.24)

Remark 2.12. iα is fractal imaginary unit, for more details, see [53–57].

2.4. Local Fractional Fourier Series

Definition 2.13. Suppose that f(x) ∈ Cα(−∞,∞) and f(x) be 2l-periodic. For k ∈ Z, local
fractional Fourier series of f(x) is defined as, [53–55],

f(x) =
a0

2
+

∞∑

k=1

(
ancosα

πα(kx)α

lα
+ bnsinα

πα(kx)α

lα

)
, (2.25)

where

ak =
1
lα

∫ l

−l
f(x)cosα

πα(kx)α

lα
(dx)α,

bk =
1
lα

∫ l

−l
f(x)sinα

πα(kx)α

lα
(dx)α

(2.26)

are the local fractional Fourier coefficients.
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For local fractional Fourier series (2.25), the weights of the fractional trigonometric
functions are calculated as

ak =

∫ l+t0
−l+t0 f(x)cosα

(
πα(kx)α/lα

)
(dx)α

∫ l+t0
−l+t0 cos

2
α

(
πα(kx)α/lα

)
(dx)α

,

ak =

∫ l+t0
−l+t0 f(x)sinα

(
πα(kx)α/lα

)
(dx)α

∫ l+t0
−l+t0 sin

2
α

(
πα(kx)α/lα

)
(dx)α

.

(2.27)

Definition 2.14. Suppose that f(x) ∈ Cα(−∞,∞) and f(x) be 2l-periodic. For k ∈ Z, complex
generalizedMittag-Leffler form of local fractional Fourier series of f(x) is defined as, [53, 54],

f(x) =
∞∑

k=−∞
CkEα

(
παiα(kx)α

lα

)
, (2.28)

where the local fractional Fourier coefficients is

Ck =
1

(2l)α

∫ l

−l
f(x)Eα

(−παiα(kx)α

lα

)
(dx)α with k ∈ Z. (2.29)

The above generalized forms of local fractional series are valid and are also derived from the
generalized Hilbert space [53, 54].

For local fractional Fourier series (2.28), the weights of the Mittag-Leffler functions are
written in the form

Ck =

(
1/(2l)α

) ∫ l+t0
−l+t0 f(x)Eα

(−παiα(kx)α/lα
)
(dx)α

(
1/(2l)α

) ∫ l+t0
−l+t0 Eα

(−παiα(kx)α/lα
)
Eα

(−παiα(kx)α/lα
)
(dx)α

. (2.30)

Above is generalized to calculate local fractional Fourier series.

3. Solutions to Wave Equation with Fractal Vibrating String

Now we look for particular solutions of the form

u(x, t) = φ(x)T(t), (3.1)

and arrive at the equations

φ(2α) + λ2αφ = 0, (3.2)

T (2α) + a2αλ2αT = 0, (3.3)
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with the boundary conditions

φ(0) = φ(α)(l) = 0. (3.4)

Equation has the solution

φ(x) = C1cosαλαxα + C2sinαλ
αxα (C1 = cos t, C2 = cos t). (3.5)

According to (3.4), for x = 0 and x = l we derive as

φ(0) = C1 = 0,

φ(l) = φ(x)
∣∣
x=l = C2sinαλ

αlα = 0.
(3.6)

Assuming that C2 /= 0, since otherwise φ(x) is identically zero, we find that

λαnl
α = nαπα, (3.7)

where n is an integer; we write

λαn =
(nπ

l

)α
(n = 0, 1, 2, . . .),

φn(x) = sinαλ
α
nx

α = sinαn
α
(πx

l

)α
= 0 (n = 0, 1, 2, . . .).

(3.8)

For λα = λαn equation (3.3) leads to

Tn(t) = Ancosαaαλαnt
α + Bnsinαa

αλαnt
α (n = 0, 1, 2, . . .), (3.9)

and therefore

un(x, t) = (Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαn

α
(πx

l

)α
(n = 0, 1, 2, . . .). (3.10)

To solve our problem, we form the local fractional Fourier series

u(x, t) =
∞∑

n=1

un(x, t)

=
∞∑

n=1

(Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαn

α
(πx

l

)α
,

(3.11)
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and require that

u(x, 0) =
∞∑

n=1

un(x, 0) =
∞∑

n=1

Ansinαn
(πx

l

)α
= f(x),

∂αu(l, 0)
∂xα

=
∞∑

n=1

(−Ana
αλαnsinαa

αλαnt
α + Bna

αλαncosαa
αλαnt

α)sinαn
(πx

l

)α
∣
∣
∣
∣
t=0

=
∞∑

n=1

Bna
αλαnsinαn

(πx
l

)α

= g(x).

(3.12)

A calculation of local fractional Fourier coefficients of f(x) and g(x) with respect to the
system {sinαn

α(πx/l)α} is given by

An =

∫ l
0 f(x)sinαn

α(πx/l)α(dx)α
∫ l
0 sin

2
αn

α(πx/l)α(dx)α
(n = 0, 1, 2, . . .), (3.13)

Bna
αλαn =

∫ l
0 g(x)sinαn

α(πx/l)α(dx)α
∫ l
0 sin

2
αn

α(πx/l)α(dx)α
(n = 0, 1, 2, . . .). (3.14)

But
∫ l
0 sin

2
αn

α(πx/l)α(dx)α = lα/2 and therefore

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .), (3.15)

Bn =
2

aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .). (3.16)

Thus, the solution of our problem is given by formula (3.11), where local fractional
Fourier coefficients are determined. From (3.14) and (3.16), we get the harmonic vibrations

un(x, t) = (Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαλ

α
nx

α, (3.17)

where

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .),

Bn =
1

2/aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .).

(3.18)
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4. Expression Solutions with Mittag-Leffler Functions in Fractal Space

Taking into account the relations, [57],

sinαx
α =

Eα(iαxα) − Eα(−iαxα)
2iα

,

cosαxα =
Eα(iαxα) + Eα(−iαxα)

2
,

(4.1)

we obtain the harmonic vibration with the Mittag-Leffler functions in fractal space

un(x, t) =
(
An

Eα(iαaαλαnt
α) + Eα(−iαaαλαnt

α)
2

+ Bn
Eα(iαaαλαnt

α) − Eα(−iαaαλαnt
α)

2iα

)

× Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα

=
[
An + Bn

2
Eα(iαaαλαnt

α) +
An − Bn

2
Eα(−iαaαλαnt

α)
]

× Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα

=
An + Bn

4iα
{
Eα

[
iαλαn(at + x)α

] − Eα

[
iαλαn(at − x)α

]}

+
An − Bn

4iα
{
Eα

[
iαλαn(x − at)α

] − Eα

[−iαλαn(at + x)α
]}
,

(4.2)

where its coefficients are

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α

=
2
lα

∫ l

0
f(x)

Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα
(dx)α

=
1

iαlα

∫ l

0
f(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .),

Bn =
2

aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α

=
2

aαλαnlα

∫ l

0
g(x)

Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα
(dx)α

=
1

aαλαnlαiα

∫ l

0
g(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .).

(4.3)
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Hereby, we always find that

∣∣f(x) − f(x0)
∣∣ < εα,

∣∣g(x) − g(x0)
∣∣ < εα (4.4)

with |x − x0| < δ, for ε, δ > 0 and ε, δ ∈ R.
Hence the boundary conditions are fractal and solution with Mittag-Leffler functions

in fractal space is given by

u(x, t) =
∞∑

n=1

un(x, t)

=
∞∑

n=1

An + Bn

4iα
{
Eα

[
iαλαn(at + x)α

] − Eα

[
iαλαn(at − x)α

]}

+
∞∑

n=1

An − Bn

4iα
{
Eα

[
iαλαn(x − at)α

] − Eα

[−iαλαn(at + x)α
]}
,

(4.5)

where its coefficients are derived as

An =
1

iαlα

∫ l

0
f(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .),

Bn =
1

aαλαnlαiα

∫ l

0
g(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .).

(4.6)

5. Conclusions

We applied the technique of the local fractional Fourier series to treat with the local fractional
wave equation in fractal vibrating string. When contrasted with other analytical methods,
such as the heat-balance integral method, the homotopy perturbation method [11], the
variational iteration method [29], the exp-function method [58], the fractional variational
iteration method [31, 32], the fractional complex method [33–37], and others [59–61],
the present method combines the following two advantages. The boundary conditions to
the governing equations are local fractional continuous (the functions are nondifferential
functions in fractal space) because we employ the local fractional Fourier series, derived from
local fractional calculus, to deal with them. The governing equations with fractal behaviors
in media are structured based on the local fractional calculus. The way plays a crucial role
in local fractional calculus. This technique is efficient for the applied scientists to process
these differential equations with the local fractional differential operators in fractal space.
This paper that is an outstanding example of application of local fractional Fourier series
to the local fractional differential operators is given to elucidate the solution processes and
reliable results.
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