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We consider the SIMPLE preconditioning for block two-by-two generalized saddle point problems;
this is the general nonsymmetric, nonsingular case where the (1,2) block needs not to equal the
transposed (2,1) block, and the (2,2) block may not be zero. The eigenvalue analysis of the SIMPLE
preconditioned matrix is presented. The relationship between the two different formulations
spectrum of the SIMPLE preconditioned matrix is established by using the theory of matrix
eigenvalue, and some corresponding results in recent article by Li and Vuik (2004) are extended.

1. Introduction

Consider the two-by-two generalized saddle point problems
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]
≡
[
A BT

C −D
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]
=

[
f

g

]
, (1.1)

where A ∈ R
n×n is nonsingular, B,C ∈ R

m×n (m ≤ n), D ∈ R
m×m.

Systems of the form (1.1) arise in a variety of scientific and engineering applications,
such as linear elasticity, fluid dynamics, electromagnetics, and constrained quadratic
programming [1–4]. We refer the reader to [5] for more applications and numerical solution
techniques of (1.1).

Since the coefficient matrix of (1.1) is often large and sparse, it may be attractive to
use iterative methods. In particular, Krylov subspace methods might be used. As known,
Krylov subspace methods are considered as one kind of the important and efficient iterative
techniques for solving the large sparse linear systems because these methods are cheap to
be implemented and are able to fully exploit the sparsity of the coefficient matrix. It is well
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known that the convergence speed of Krylov subspace methods depends on the eigenvalue
distribution of the coefficient matrix [6]. Since the coefficient matrix of (1.1) is often extremely
ill-conditioned and highly indefinite, the convergence speed of Krylov subspace methods can
be unacceptably slow. In this case, Krylov subspace methods are not competitive without a
good preconditioner. That is, preconditioning technique is a key ingredient for the success of
Krylov subspace methods in applications.

To efficiently and accurately solve (1.1), Semi-implicit method for pressure linked
equations (SIMPLE) were presented in [7] by Patankar. Subsequently, combining the
SIMPLE(R) algorithm and Krylov subspace method GCR [8], Vuik et al. [9] proposed the
GCR-SIMPLE(R) algorithm for solving (1.1). In this algorithm, the SIMPLE iteration is used
as a preconditioner in the GCR method. Numerical experiments show that the SIMPLE(R)
preconditioning is effective and competitive.

It is well known that the spectral properties of the preconditioned matrix give impor-
tant insight in the convergence behavior of the preconditioned Krylov subspace methods. In
[10], the eigenvalue analysis was given for the SIMPLE preconditioned matrix with B = C
and D = 0, and two different formulations spectrum of the preconditioned matrix were
derived. The relationship between the two different formulations has been built by using the
theory ofmatrix singular value decomposition. IfB /=C andD/= 0, usingmatrix singular value
decomposition to establish the relationship between the two different formulations is invalid.
On this occasion, we present the relationship between the two different formulations by using
the theory of matrix eigenvalue and overcome the shortcomings of [10]. Some corresponding
results in [10] are extended to two-by-two generalized saddle point problems.

2. Spectral Analysis

For simplicity, σ(·) denotes the set of all eigenvalues of a matrix, and the diagonal entries of
A are not equal to zero. If the SIMPLE algorithm is used as preconditioning, it is equivalent
to choose the preconditioner P as

P = MB−1, (2.1)

where

B =

[
I −Q−1BT

0 I

]
, M =

[
A 0

C R

]
, Q = diag(A), R = −

(
D + CQ−1BT

)
. (2.2)

On the nonsingular of A and P we have the following proposition.

Proposition 2.1. The matrices A and P, respectively, in (1.1) and (2.1) are nonsingular if and only
if the Schur complements −(D + CA−1BT ) and −(D + CQ−1BT ), respectively, are nonsingular.

In this paper, we assume that A and P are nonsingular and that B and C are of full
rank.

Proposition 2.2. If the right preconditioner P is defined by (2.1), then the preconditioned matrix is

Ã = AP−1 =

[
I − (

I −AQ−1)BTR−1CA−1 (
I −AQ−1)BTR−1

0 I

]
. (2.3)
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Therefore, the spectrum of the SIMPLE preconditioned matrix Ã is

σ
(
Ã
)
= {1} ∪ σ

(
I −

(
I −AQ−1

)
BTR−1CA−1

)
. (2.4)

Proof. By simple computations, it is easy to verify that

M−1 =

[
A−1 0

−R−1CA−1 R−1

]

σ
(
Ã
)
=

[
A BT

C −D

][
I −Q−1BT

0 I

][
A−1 0

−R−1CA−1 R−1

]

=

[
I − (

I −AQ−1)BTR−1CA−1 (
I −AQ−1)BTR−1

0 I

]
.

(2.5)

Further, it is easy to find that the form of the spectrum of σ(Ã) is described by (2.4).

By the similarity invariance of the spectrum of the matrix, we have

σ
(
I −

(
I −AQ−1

)
BTR−1CA−1

)
= σ

(
I −

(
A−1 −Q−1

)
BTR−1C

)

= σ
(
I −Q−1(Q −A)A−1BTR−1C

)

= σ
(
I − JA−1BTR−1C

)
,

(2.6)

where the matrix J = Q−1(Q − A) is the Jacobi iteration matrix of the matrix A. Further, we
have the following proposition.

Proposition 2.3. For the SIMPLE preconditioned matrix Ã,

(1) 1 is an eigenvalue with multiplicity at least of m,

(2) the remaining eigenvalues are 1 − μi, i = 1, 2, . . . , n, where μi is the ith eigenvalue of

ZEx = μx, (2.7)

where

Z = JA−1 ∈ R
n×n, E = BTR−1C ∈ R

n×n. (2.8)
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In fact, we also have the following result.

Proposition 2.4. For the SIMPLE preconditioned matrix Ã,

(1) 1 is an eigenvalue with (algebraic and geometric) multiplicity of n,

(2) the remaining eigenvalues are defined by the generalized eigenvalue problem

Sx = λRx, (2.9)

where S = −(D + CA−1BT ) is the Schur complement of the matrixA.

Proof. Note that AP−1 is the same spectrum as P−1A. So, it is only needed to consider the
following generalized eigenvalue problem

Ax = λPx, (2.10)

where

A =

[
A BT

C −D

]
, P =

[
A AQ−1BT

C −D

]
. (2.11)

The generalized eigenvalue problem (2.10) can be written as

[
A BT

C −D

][
u

p

]
= λ

[
A AQ−1BT

C −D

][
u

p

]
, (2.12)

that is,

Au + BTp = λ
(
Au +AQ−1BTp

)
, (2.13)

Cu −Dp = λ
(
Cu −Dp

)
. (2.14)

From (2.13) and (2.14), it is easy to see that λ = 1 is an eigenvalue of (2.12). If the matrix
Q−1 −A−1 is nonsingular with λ = 1 and rank (BT ) = m, from (2.13)we have p = 0. Therefore,
the eigenvectors corresponding to eigenvalue 1 are

νi =

[
ui

0

]
, ui ∈ R

n, i = 1, 2, . . . , n, (2.15)

where {ui}ni is a basis of R
n.

For λ/= 1, from (2.13)we obtain

u =
1

1 − λ
A−1

(
λAQ−1BTp − BTp

)
. (2.16)
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Substituting it into (2.14) yields

Sp = λRp, (2.17)

where S = −(D + CA−1BT ) is the Schur complement of the matrix A.

From Propositions 2.3 and 2.4, two different generalized eigenvalue problems (2.7)
and (2.9) have been derived to describe the spectrum of Ã. Subsequently, we will investigate
the relationship between both spectral formulations for the nonsymmetric case. Here we will
make use of the theory of matrix eigenvalue to establish the relationship of the two different
formulations spectrum of the SIMPLE preconditioned matrix. To this end, the following
lemma is required.

Lemma 2.5 (See [11]). Suppose that M ∈ R
m×n and N ∈ R

n×m with m ≤ n. Then NM has the
same eigenvalues asMN, counting multiplicity, together with an additional n −m eigenvalues equal
to 0.

By (2.7), it follows that

ZE = Zn×n
(
BT

)n×m(
R−1

)m×m
Cm×n ∈ R

n×n,

(
R−1

)m×m
Cm×nZn×n

(
BT

)n×m ∈ R
m×m.

(2.18)

From Lemma 2.5, we have

σ(ZE) = {0} ∪ σ
(
R−1CZBT

)
, (2.19)

where the eigenvalue 0 is with multiplicity of n −m and

σ
(
R−1CZBT

)
= σ

(
R−1CQ−1(Q −A)A−1BT

)

= σ
(
R−1C

(
A−1 −Q−1

)
BT

)

= σ
(
R−1

(
CA−1BT − CQ−1BT

))

= σ
(
R−1

[(
CA−1BT +D

)
−
(
CQ−1BT +D

)])

= σ
(
R−1(R − S)

)

= σ
(
I − R−1S

)

= ∪{1 − λi}, i = 1, 2, . . . , m.

(2.20)
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These relations lead to the following proposition.

Proposition 2.6. For two generalized eigenvalue problems (2.7) and (2.9), suppose that μi ∈ σ(ZE),
i = 1, 2, . . . , n, and λi ∈ σ(R−1S), i = 1, 2, . . . , m, the relationship between two problems is that μ = 0
is an eigenvalue of (2.7) with multiplicity of n − m, which can be denoted as μm+1 = μm+2 = · · · =
μn = 0, and that λi = 1 − μi, i = 1, 2, . . . , m, holds for the remaining m eigenvalues.

Some remarks on Proposition 2.6 are given as follows.

(i) In [10], the relationship between two different formulations spectrum of the pre-
conditioned matrix with B = C and D = 0 was built by using the theory of matrix
singular value decomposition, but for the nonsymmetric case, the above strategy
is invalid. Whereas, using the theory of matrix eigenvalue not only establishes
the relationship between the two different formulations, but also overcomes the
shortcomings of [10]. In this way, Propositions 2.2–2.6 can be regarded as the
extension of Propositions 2–5 [10].

(ii) In [10], the diagonal entries of matrix A must be positive. But, in this paper, the
diagonal entries of Q are only not equal to zero. Clearly, this assumption is weaker
than that of [10]. If the diagonal entries of matrix A are complex and not equal to
zero, then the diagonal entries of Q take the absolute diagonal entries of A. This
idea is based on an absolute diagonal scaling technique, which is cheaply easy to
implement, reducing computation times and amount of memory.

(iii) Recently, although Li et al. in [12] discussed the SIMPLE preconditioning for
the generalized nonsymmetric saddle point problems and provided some results
above the spectrum of the SIMPLE preconditioned matrix, some conditions of the
supporting propositions may be defective. In fact, if A is nonsingular with rank
(BT ) = rank (C) = m, then R and P may be singular. For a counterexample, we
take C = [1 0], A = Q = 2I and B = [0 1], then R = CQ−1BT = 0. That is, this paper
corrects some results in [12].

(iv) In fact,Q is not necessary the diagonal entries ofA; in this case, the diagonal entries
of A can be equal to zero. In actual implements, the choice of matrix Q is that
the eigenvalue of the generalized eigenvalue problem (2.9) is close to one; Krylov
subspace methods such as GMRES will converge quickly.

3. Conclusion

In this paper, the SIMPLE preconditioner for the nonsymmetric generalized saddle point
problems is discussed. The relationship of the two different formulations spectrum of the
SIMPLE preconditioned matrix has been built by using the theory of matrix eigenvalue.
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