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In the setting of Ben-Tal’s generalized algebraic operations, this paper deals with Mond-Weir type
dual theorems of multiobjective programming problems involving generalized invex functions.
Two classes of functions, namely, (h, ϕ)-pseudoinvex and (h, ϕ)-quasi-invex, are defined for a
vector function. By utilizing these two classes of functions, some dual theorems are established
for conditionally proper efficient solution in (h, ϕ)-multiobjective programming problems.

1. Introduction

The theory and applications of multiobjective programming problems have been closely tied
with convex analysis. Optimality conditions and duality theorems were established for the
class of problems involving the optimizations of convex objective functions over convex fea-
sible regions. Such assumptions were very convenient because of the known separation the-
orems and the guarantee that necessary conditions for optimality were sufficient under con-
vexity. However, not all practical problems, when formulated asmultiobjective programs, ful-
fill the requirements of convexity. Fortunately, such problems were often found to have some
characteristics in common with convex problems, and these properties could be exploited
to establish theoretical results or develop algorithms. Many notions of generalized convexity
having some useful properties sharedwith convexity have been defined by a sizeable number
of researchers. A meaningful generalization of convex functions is the introduction of invex
functions, which was given by Hanson [1], for the scalar case. Nowadays, with and without
differentiability, the invex functions are extended to vector functions in finite dimensions or
infinite dimensions abstract spaces, and sufficient optimality criteria and duality results are
obtained for multiobjective programming or vector optimization, respectively, see [1–15].
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In 1976, Ben-Tal [8] introduced certain generalized operations of addition and multi-
plication. This kind of generalized algebraic means has many applications in pure and appl-
ied mathematical fields, see [6, 7, 10–16]. The biggest advantage under Ben-Tal’s generalized
means is that the function has some transformable properties. As pointed out in literature [12]
that a function is not convex or differentiable, however it may be transformed into convex
function or differentiable function in the setting of Ben-Tal’s generalized algebraic opera-
tions. In this way, Ben-Tal’s generalized means provided a manner in extension of convexity.
Recently, more and more interest has been paid on dealing with optimality and duality of
multiobjective program problems involving generalized convexity under Ben-Tal’s general-
ized means circumstances, for instance, see [10–16].

The properness of the efficient solution of the multiobjective programming problem
is of importance. In 1991, Singh and Hanson [9] introduced conditionally properly efficiency
for multiobjective programming problems. This kind of proper efficiency has specific signifi-
cance in the optimal problem with multicriteria. In present paper, we first extend the notions
of the conditionally proper efficiency for multiobjective programming problems, pseudoin-
vexity and quasi-invexity for vector functions in the setting of Ben-Tal’s generalized means.
Then, for a class of constraint multiobjective program problem, we will establish several
duality results by using the new defined proper efficient solutions and generalized invex
functions. This paper is organized as follows. In Section 2, we present some preliminaries and
related results which will be used in the rest of the paper. In Section 3, some duality theorems
are derived.

2. Preliminaries

Let R
n be the n-dimensional Euclidean space and R++ be the set of all positive real numbers.

Throughout this paper, the following convention for vector in R
n will be used:

x > y iff xi > yi, i = 1, 2, . . . , n,

x � y iff xi � yi, i = 1, 2, . . . , n,

x � y iff xi � yi, i = 1, 2, . . . , n, but x /=y.

(2.1)

We first present the generalized algebraic operations given by Ben-Tal [8].

Definition 2.1 (see [6, 8]). Let h : R
n → R

n be a continuous vector function. Suppose that the
inverse function h−1 of h exists. Then the h-vector addition of x, y ∈ R

n defined by

x ⊕ y = h−1(h(x) + h
(
y
))
, (2.2)

and the h-scalar multiplication of x ∈ R
n and α ∈ R is defined by

α ⊗ x = h−1(αh(x)). (2.3)

Similarly, generalized algebraic operations for scalar-valued functions can be defined
as follows.
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Definition 2.2 (see [6, 8]). Let ϕ : R → R be a continuous and scalar function. Suppose that
the inverse function ϕ−1 of ϕ exists. Then the ϕ-addition of α ∈ R and β ∈ R, is given by

α[+]β = ϕ−1(ϕ(α) + ϕ
(
β
))
, (2.4)

and the ϕ-scalar multiplication of α ∈ R and β ∈ R as

β[·]α = ϕ−1(βϕ(α)
)
. (2.5)

Definition 2.3 (see [6, 8]). The (h, ϕ)-inner product of vector x, y ∈ Rn is defined as

(
xTy
)

h,ϕ
= ϕ−1

(
h(x)Th

(
y
))

. (2.6)

In this paper, we denote

m⊕

i=1

xi = x1 ⊕ x2 ⊕ · · · ⊕ xm, xi ∈ Rn, i = 1, 2, . . . , m,

[
m∑

i=1

]

αi = α1[+]α2[+] · · · [+]αm, αi ∈ R, i = 1, 2, . . . , m,

α[−]β = α[+]
(
(−1)[·]β), α, β ∈ R.

(2.7)

For the differentiability of a real-valued function in the setting of generalized algebraic
means, Avriel [6] introduced the following important concept.

Definition 2.4 (see [6]). Let f be a real-valued function defined on R
n, denote f̂(t) =

ϕ(f(h−1(t))), t ∈ Rn. For simplicity, write f̂(t) = ϕfh−1(t). The function f is said to be (h, ϕ)-
differentiable at x ∈ Rn, if f̂(t) is differentiable at t = h(x), and denoted by ∇∗f(x) =
h−1(∇f̂(t)|t=h(x)). In addition, It is said that f is (h, ϕ)-differentiable onX ⊂ R

n if it is (h, ϕ)-dif-
ferentiable at each x ∈ X. A vector-valued function is called (h, ϕ)-differentiable on X ⊂ R

n if
each of its components is (h, ϕ)-differentiable at each x ∈ X.

We collect some basic properties concerning Ben-Tal’s generalized means from the
literatures [12, 14], which will be used in the squeal.

Lemma 2.5 (see [12, 14]). Suppose that f, fi are real-valued functions defined on Rn, for i = 1, 2,
. . . , m, and (h, ϕ)-differentiable at x ∈ Rn. Then, the following statements hold:

(1) ∇∗(λ[·]f(x)) = λ ⊗ ∇∗f(x), for λ ∈ R,

(2) ((
⊗m

i=1λi ⊗ ∇∗f(x))Ty)h,ϕ = [
∑m

i=1](∇∗(λi[·]f(x))Ty)h,ϕ, for y ∈ Rn, λi ∈ R.

Lemma 2.6 (see [12, 14]). Let i = 1, 2, . . . , m. The following statements hold:

(1) λ[·](μ[·]α) = μ[·](λ[·]α) = λμ[·]α, for λ, μ, α ∈ R;

(2) λ[·](α[−]β) = λ[·]α[−]λ[·]β, for λ, α, β ∈ R;

(3) [
∑m

i=1](αi[−]βi) = [
∑m

i=1]αi[−][
∑m

i=1]βi , for αi, βi ∈ R.
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Lemma 2.7 (see [12, 14]). Suppose that function ϕ, which appears in Ben-Tal generalized algebraic
operations, is strictly monotone with ϕ(0) = 0. Then, the following statements hold:

(1) let λ � 0, α, β ∈ R, and α � β. Then λ[·]α � λ[·]β;
(2) let λ > 0, α, β ∈ R, and α < β. Then λ[·]α < λ[·]β;
(3) let λ < 0, α, β ∈ R, and α � β. Then λ[·]α � λ[·]β;
(4) let αi, βi ∈ R, i = 1, 2, . . . , m. If αi � βi for any i ∈ M, then

[
m∑

i=1

]

αi �
[

m∑

i=1

]

βi. (2.8)

If αi � βi for any i = 1, 2, . . . , m, and there exists at least an index k such that xk < yk, then

[
m∑

i=1

]

αi <

[
m∑

i=1

]

βi. (2.9)

Lemma 2.8 (see [12, 14]). Suppose that ϕ is a continuous one-to-one strictly monotone and onto
function with ϕ(0) = 0. Let α, β ∈ R. Then,

(1) α < β if and only if α[−]β < 0,

(2) α[+]β = 0 if and only if α = (−1)[·]β.

Throughout the rest of this paper, one further assumes that h is a continuous one-to-
one and onto function with h(0) = 0. Similarly, suppose that ϕ is a continuous one-to-one
strictly monotone and onto function with ϕ(0) = 0. Under the above assumptions, it is clear
that 0[·]α = α[·]0 = 0.

LetX be a nonempty subset ofR
n and the functions f = (f1, . . . , fp)

T : X → R
p and g =

(g1, . . . , gm)
T : X → R

m are (h, ϕ)-differentiable on the set X with respect to the same (h, ϕ).
Consider the following (h, ϕ)-multiobjective programming problem:

min f(x) =
(
f1(x), f2(x), . . . , fp(x)

)T
, x ∈ X ⊂ R

n

s.t. g(x) � 0.
(MOP)h,ϕ

Definition 2.9. A point x is said to be an efficient solution for (MOP)h,ϕ if x ∈ X and f(x) �

f(x) for all x ∈ X.
Singh and Hanson [9] introduced the concept of conditionally properly efficient for

multiobjective optimization. Now, we extend this notion under Ben-Tal’s generalized alge-
braic operations as follows.

Definition 2.10. The point x is said to be (h, ϕ)-conditionally proper efficient solution for
(MOP)h,ϕ if x is an efficient solution and there exists a positive functionM(x) such that, for i,
one has

fi(x)[−]fi(x)
fj(x)[−]fj(x)

� M(x), (2.10)
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for some j such that fj(x) > fj(x), whenever x ∈ X and

fi(x) < fi(x). (2.11)

Example 2.11. Consider the following multiobjective problem:

min f(x) =
(
f1(x), f2(x)

)T =
(
x1

x2
,
x2

x1

)T

s.t. g(x) =
(
g1(x), g2(x)

)T = (x1, x2)T � 1

x = (x1, x2)T ∈ R
2.

(MOP)′h,ϕ

Taking h(x) = x, ϕ(t) = t3, it can be shown that every point of the feasible region is efficient.
Let x∗ = (a, b)T be an efficient solution. Choosing M(x) � (bx2/ax1), where x = (x1, x2)

T .
For i = 1, we get

f2(x∗)[−]f2(x)
f1(x)[−]f1(x∗)

=
3
√
(b/a)3 − (x2/x1)

3

3
√
(x1/x2)

3 − (a/b)3
=

bx2

ax1
� M(x), (2.12)

for j = 2 such that f2(x) = x2/x1 > b/a = f2(x∗) whenever x = (x1, x2)
T is feasible and

f1(x) =
x1

x2
<

a

b
= f1(x∗). (2.13)

Thus, x∗ is (h, ϕ)-conditionally proper efficient solution.
Xu and Liu [10] introduced (h, ϕ)-Kuhn-Tucker constraint qualification and used it to

establish Kuhn-Tucker necessary condition for (h, ϕ)-multiobjective programming problems,
for more details concerning (h, ϕ)-Kuhn-Tucker constraint qualification, please see [10]. We
now state this result as the following (Lemma 2.12).

Lemma 2.12 (Kuhn-Tucker-type necessary condition). Let fi for i = 1, 2, . . . , p, gj for j =
1, 2, . . . , m be (h, ϕ)-differentiable on R

n, x be an efficient solution of (MOP)h,ϕ and the (h, ϕ)-
Kuhn-Tucker constraint qualification be satisfied at x. Then there exist τ = (τ1, τ2, . . . , τp)

T > 0 and
λ = (λ1, λ2, . . . , λm)

T � 0 such that

(
m⊕

i=1

τi ⊗ ∇∗fi(x)

)

⊕
⎛

⎝
m⊕

j=1

λj ⊗ ∇∗gj(x)

⎞

⎠ = 0,

λj[·]gj(x) = 0, j = 1, 2, . . . , m.

(2.14)

Jeyakumar and Mond [2] introduced the notion of V -invexity for a vector function
f = (f1, f2, . . . , fp) and discussed its applications to a class of constrained multi-objective
optimization problems. One now gives the definitions of generalized V -invexity for a vector
function in the setting of Ben-Tal’s generalized algebraic operations as follows.
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Definition 2.13. A vector function f : X ⊂ R
n → R

p is said to be (h, ϕ)-V -invex at x ∈ X if
there exist functions η : X ×X → R

n and αi : X ×X → R++ such that for each x ∈ X and for
i = 1, 2, . . . , p,

fi(x)[−]fi(x) � αi(x, x)[·]
(
∇∗fi(x)

Tη(x, x)
)

h,ϕ
. (2.15)

If we take h and ϕ as the identity functions, the above definitions reduce to the V -invex
function given by Jeyakumar and Mond [2].

Example 2.14. The functions f : R → R
2, f(x) = (f1(x), f2(x))

T = (|x|,
√
|x|)T . Let h(x) = x

and ϕ(t) = t3. Then, f is (h, ϕ)-V -invex function at x = 0 with respect to any η(x, x) and αi(x,
x), i = 1, 2.

Definition 2.15. A vector function f : X ⊂ R
n → Rp is said to be (h, ϕ)-V -pseudoinvex at x ∈

X if there exist functions η : X ×X → Rn and βi : X ×X → R++ such that for each x ∈ X and
for i = 1, 2, . . . , p,

[
p∑

i=1

](
∇∗fi(x)

Tη(x, x)
)

h,ϕ
� 0 =⇒

[
p∑

i=1

]

βi(x, x)[·]fi(x) �
[

p∑

i=1

]

βi(x, x)[·]fi(x). (2.16)

If in the above definition x /=x and (2.16) is satisfied as

[
p∑

i=1

](
∇∗fi(x)

Tη(x, x)
)

h,ϕ
� 0 =⇒

[
p∑

i=1

]

βi(x, x)[·]fi(x) >
[

p∑

i=1

]

βi(x, x)[·]fi(x), (2.17)

then we say that f is strictly (h, ϕ)-V -pseudoinvex at x ∈ X.

Example 2.16. The functions f : (0, 1] → R2, f(x) = (f1(x), f2(x)) = (cos2(x),−sin2(x)). Let
h(t) = t and ϕ(α) = arctan(α). Then, f is (h, ϕ)-V -quasi-invex function at x = 1 with respect to
η(x, x) = 0 and any βi(x, x) > 0 (i = 1, 2). In fact, observing that ϕ−1(α) = tan(α) and h(0) = 0,
ϕ(0) = ϕ−1(0) = 0. In this case, we have

0 =

[
2∑

i=1

](
∇∗fi(1)T0

)

h,ϕ
� 0, (2.18)

and for x ∈ (0, 1], it follows that

f1(x)[−]f1(1) = tan
(
arctan

(
cos2(x)

)
− arctan

(
cos2(1)

))
=

cos2(x) − cos2(1)
1 + cos2(x)cos2(1)

� 0,

f2(x)[−]f2(1) = tan
(
arctan

(
−sin2(x)

)
− arctan

(
−sin2(1)

))
=

−sin2(x) −
(
−sin2(1)

)

1 + sin2(x)sin2(1)
� 0.

(2.19)
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Thus, we get from Lemmas 2.6 and 2.7 that

[
2∑

i=1

]

βi(x, x)[·]fi(x) �
[

2∑

i=1

]

βi(x, x)[·]fi(x). (2.20)

By Definition 2.15, we have shown that f is (h, ϕ)-V -pseudoinvex at x = 1.

Definition 2.17. A vector function f : X ⊂ R
n → Rp is said to be (h, ϕ)-V -quasi-invex at x ∈ X

if there exist functions η : X × X → Rn and δi : X × X → R++ such that for each x ∈ X
and for i = 1, 2, . . . , p,

[
p∑

i=1

]

δi(x, x)[·]fi(x) �
[

p∑

i=1

]

δi(x, x)[·]fi(x) =⇒
[

p∑

i=1

](
∇∗fi(x)

Tη(x, x)
)

h,ϕ
� 0. (2.21)

Example 2.18. The function f : R → R is defined as f(x) = x3. Taking h(x) = x3 and ϕ(t) = t,
then, f is (h, ϕ)-V -quasi-invex at x = 0 with respect to η(x, x) = x � x and any δ(x, x) > 0.

3. Duality

In this section, we will establish the weak and strong duality theorems under the generalized
(h, ϕ)-V -invexity assumptions for Mond and Weir type dual model in relation to (MOP)h,ϕ
Considering the following dual problem:

max f(u) =
(
f1(u), f2(u), . . . , fm(u)

)T (DMOP)h,ϕ

s.t.

(
p⊕

i=1

τi ⊗ ∇∗fi(u)

)

⊕
⎛

⎝
p⊕

j=1

λj ⊗ ∇∗gj(u)

⎞

⎠ = 0, (3.1)

λj[·]gj(u) � 0, (3.2)

τ > 0, τ =
(
τ1, τ2, . . . , τp

)T
, (3.3)

λ � 0, λ = (λ1, λ2, . . . , λm)
T (3.4)

u ∈ X ⊂ R
n. (3.5)

Theorem 3.1 (weak duality). Let x and (u, τ, λ) be any feasible solutions for (MOP)h,ϕ and
(DMOP)h,ϕ, respectively. Let either (a) or (b) below hold:

(a) (τ1[·]f1, τ2[·]f2, . . . , τp[·]fp)T is (h, ϕ)-V -pseudoinvex and (λ1[·]g1, λ2[·]g2, . . . , λm
gm)

T is (h, ϕ)-V -quasi-invex at u with respect to same η;

(b) (τ1[·]f1, τ2[·]f2, . . . , τp[·]fp)T is (h, ϕ)-V -quasi-invex and (λ1[·]g1, λ2[·]g2, . . . ,
λm[·]gm)T is strictly (h, ϕ)-V -pseudoinvex at u with respect to same η. Then

f(x)f(u). (3.6)
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Proof. Since (u, τ, λ) is a feasible solution for (DMOP)h,ϕ, by Lemma 2.5 and (3.1), for all x′ ∈
R

n we obtain that

[
p∑

i=1

](
∇∗(τi[·]fi(u)

)T
η
(
x′, u

))

h,ϕ
[+]

⎡

⎣
m∑

j=1

⎤

⎦
(
∇∗(λj[·]gj(u)

)T
η
(
x′, u

))

h,ϕ
= 0. (3.7)

(a) Let x be feasible for (MOP)h,ϕ and f(x) � f(u). Since τ > 0 and βi(x, u) > 0, for all
i = 1, . . . , p, it follows from Lemmas 2.6 and 2.7 that

[
p∑

i=1

]

βi(x, u)[·]τi[·]fi(x) <
[

p∑

i=1

]

βi(x, u)[·]τi[·]fi(u), (3.8)

and (h, ϕ)-V -pseudoinvexity at u of (τ1[·]f1, . . . , τp[·]fp)T implies

[
p∑

i=1

](
∇∗(τi[·]fi(u)

)T
η(x, u)

)

h,ϕ
< 0. (3.9)

Observing that x and (u, τ, λ) are feasible of (MOP)h,ϕ and (DMOP)h,ϕ, respectively,
we get from Lemma 2.7 that

λj[·]gj(u) � 0 � λj[·]gj(x), ∀j = 1, 2, . . . m. (3.10)

Again, since δj(x, u) > 0, for all j = 1, 2, . . . , m, it follows from Lemma 2.7 that

⎡

⎣
m∑

j=1

⎤

⎦δj(x, u)[·]λj[·]gj(x) �

⎡

⎣
m∑

j=1

⎤

⎦δj(x, u)[·]λj[·]gj(u). (3.11)

Now, (h, ϕ)-V -quasi-invexity at u of (λ1[·]g1, . . . , λm[·]gm)T implies that

⎡

⎣
m∑

j=1

⎤

⎦
(
∇∗(λj[·]gj(u)

)T
η(x, u)

)

h,ϕ
� 0. (3.12)

Together with (3.9) and (3.12), it yields from Lemma 2.7 that

[
p∑

i=1

](
∇∗(τi[·]fi(u)

)T
η(x, u)

)

h,ϕ
[+]

⎡

⎣
m∑

j=1

⎤

⎦
(
∇∗(λj[·]gj(u)

)T
η(x, u)

)

h,ϕ
< 0, (3.13)

which contradicts to (3.7)
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(b) Let x be feasible for (MOP)h,ϕ and (u, τ, λ) feasible for (DMOP)h,ϕ. Suppose that
f(x) � f(u). Since δi(x, u) > 0, for all i = 1, . . . , p, and τ > 0, we get from
Lemmas 2.6 and 2.7 that

[
p∑

i=1

]

δi(x, u)[·]τi[·]fi(x) <
[

p∑

i=1

]

δi(x, u)[·]τi[·]fi(u). (3.14)

The (h, ϕ)-V -quasi-invexity at u of (τ1[·]f1, . . . , τp[·]fp)T implies that

[
p∑

i=1

](
∇∗(τi[·]fi(u)

)T
η(x, u)

)

h,ϕ
� 0. (3.15)

By (3.7), we get from Lemmas 2.7 and 2.8 that

⎡

⎣
m∑

j=1

⎤

⎦
(
∇∗(λj[·]gj(u)

)T
η(x, u)

)

h,ϕ
� 0. (3.16)

and since (λ1[·]g1, . . . , λm[·]gm)T is strictly (h, ϕ)-V -pseudoinvex, we have

⎡

⎣
m∑

j=1

⎤

⎦β(x, u)j[·]λj[·]gj(x) >
⎡

⎣
m∑

j=1

⎤

⎦β(x, u)j[·]λj[·]gj(u). (3.17)

According to Lemma 2.7, this is a contradiction, since λj[·]gj(x) � 0, λj[·]gj(u) � 0
and β(x, u)j > 0, for all j = 1, 2, . . . , m.

Theorem 3.2. If x is feasible for (MOP)h,ϕ and (u, τ, λ) feasible for (DMOP)h,ϕ such that f(x) =
f(u). Let neither (a’) or (b’) bellow hold:

(a’) (τ1[·]f1, τ2[·]f2, . . . , τp[·]fp)T is (h, ϕ)-V -pseudoinvex and (λ1[·]g1, λ2[·]g2, . . . ,
λm[·]gm)T is (h, ϕ)-V -quasi-invex at u with respect to same η;

(b’) (u1[·]f1, u2[·]f2, . . . , up[·]fp)T is (h, ϕ)-V -quasi-invex and (λ1[·]g1, λ2[·]g2, . . . ,
λm[·]gm)T is strictly (h, ϕ)-V -pseudoinvex at u with respect to same η.

Then x is (h, ϕ)-conditionally properly efficient for (MOP)h,ϕ and (u, τ, λ) is (h, ϕ)-con-
ditionally properly efficient solution for (DMOP)h,ϕ.

Proof. Suppose x is not an efficient solution for (MOP)h,ϕ, then there exists x feasible for
(MOP)h,ϕ such that

f(x) � f(x). (3.18)
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Using the assumption f(x) = f(u), a contradiction to Theorem 3.1 is obtained. Hence, x is an
efficient solution for (MOP)h,ϕ. Similarly it can be ensured that (u, τ, λ)) is an efficient solution
for (DMOP)h,ϕ.

Now suppose that x is not (h, ϕ)-conditionally properly efficient solution for (MOP)h,ϕ.
Therefore, for every positive function M(x) > 0, there exists x̂ ∈ X feasible for (MOP)h,ϕ and
an index i such that

fi(x)[−]fi(x̂) > M(x)[·](fj(x̂)[−]fj(x)
)
, (3.19)

for all j satisfying fj(x̂) > fj(x), whenever fi(x̂) < fi(x). This shows that fi(x)[−]fi(x̂) can
be made arbitrarily large and hence for τ > 0 and βi(x̂, u) > 0, for all i = 1, 2, . . . , p, the
inequality

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]
(
fi(x)[−]fi(x̂)

)
> 0. (3.20)

is obtained. Consequently, we ge from Lemmas 2.7 and 2.8 that

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(x) >
[

p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(x̂). (3.21)

Now from feasibility conditions, we have

λj[·]gj(x̂) � λj[·]gj(u), ∀j = 1, . . . , m. (3.22)

Since δj(x̂, u) > 0, for all j = 1, . . . , m,

⎡

⎣
m∑

j=1

⎤

⎦δj(x̂, u)[·]λj[·]gj(x̂) �

⎡

⎣
m∑

j=1

⎤

⎦δj(x̂, u)[·]λj[·]gj(u). (3.23)

Suppose that the hypothesis (a’) holds at u, we can get from (h, ϕ)-V -quasi-invexity at u of
(λ1[·]g1, λ2[·]g2, . . . , λ[·]gm)T that

⎡

⎣
m∑

j=1

⎤

⎦
(
∇∗
(
λj[·]gj(u)

)T
η(x̂, u)

)

h,ϕ

� 0. (3.24)

Therefore, from (3.1), we get from Lemmas 2.5, 2.7, and 2.8 that

[
p∑

i=1

](
∇∗(τi[·]fi(u)

)T
η(x̂, u)

)

h,ϕ
� 0. (3.25)
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Since (τ1[·]f1, τ2[·]f2, . . . , τp[·]fp)T is (h, ϕ)-V -pseudoinvex and (λ1[·]g1, λ2[·]g2, . . . ,
λm[·]gm)T is (h, ϕ)-V -quasi-invex at u, we have

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(x̂) �
[

p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(u). (3.26)

On using the assumption f(x) = f(u) in the above equation, we get

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(x̂) �
[

p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(x), (3.27)

which is a contradiction to (3.21). Hence x is a (h, ϕ)-conditionally properly efficient solution
for (MOP)h,ϕ.

We now suppose that (u, τ, λ) is not (h, ϕ)-conditionally properly efficient solution for
(DMOP)h,ϕ. Therefore, for every positive function M(x) > 0, there exists a feasible (û, τ̂ , λ̂)
feasible for (DMOP)h,ϕ and an index i such that

fi(û)[−]fi(u) > M(x)[·](fj(u)[−]fj(û)
)
, (3.28)

for all j satisfying fj(û)[−]fj(u) > 0 whenever fi(û)[−]fi(u) < 0. This means fi(û)[−]fi(u)
can be made arbitrarily large and hence for τ > 0 and βi(x̂, u) > 0, for all i = 1, 2, . . . , p, the
inequality

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(û) >
[

p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(u) (3.29)

is obtained. Since x and (u, τ, λ) are feasible for (MOP)h,ϕ and (DMOP)h,ϕ, respectively, it fol-
lows that as in first part:

[
p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(û) �
[

p∑

i=1

]

βi(x̂, u)[·]τi[·]fi(u), (3.30)

which contradicts (3.29). Hence, (u, τ, λ) is (h, ϕ)-conditionally properly efficient solution for
(DMOP)h,ϕ.

Assuming that the hypothesis (b’) holds, we can finish the proof with the similar argu-
ment.

Theorem 3.3 (strong duality). Let x be an efficient solution for (MOP)h,ϕ. If the (h, ϕ)-Kuhn-Tuck-

er constraint qualification is satisfied, then there are τ > 0, λ � 0 such that (x, τ, λ) is feasible for
(DMOP)h,ϕ and the objective values of (MOP)h,ϕ and (DMOP)h,ϕ are equal at x. Furthermore, if the

hypothesis (a’) or (b’) of Theorem 3.2 hold at x, then (x, τ, λ) is (h, ϕ)-conditionally properly
efficient for the problem (DMOP)h,ϕ.



12 Journal of Applied Mathematics

Proof. Since x is an efficient solution for (MOP)h,ϕ at which the (h, ϕ)-Kuhn-Tucker-type nec-

essary conditions are satisfied, it follows from Lemma 2.12 that there exist τ > 0, λ � 0 such
that (x, τ, λ) is feasible for (DMOP)h,ϕ. Evidently, the objective values of (MOP)h,ϕ and
(DMOP)h,ϕ are equal at x, since the objective functions for both problems are the same. The

(h, ϕ)-conditionally proper efficiency of (x, τ, λ) for the problem (DMOP)h,ϕ yields from
Theorem 3.2.
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