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We introduce a new iterative algorithm for solving a common solution of the set of solutions of
fixed point for an infinite family of nonexpansive mappings, the set of solution of a system of
mixed equilibrium problems, and the set of solutions of the variational inclusion for a β-inverse-
strongly monotone mapping in a real Hilbert space. We prove that the sequence converges strongly
to a common element of the above three sets under some mild conditions. Furthermore, we give a
numerical example which supports our main theorem in the last part.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product 〈·, ·〉 and the
norm ‖ · ‖. Let F be a bifunction of C×C into R, where R is the set of real numbers, ϕ : C → R
be a real-valued function. Let Λ be arbitrary index set. The system of mixed equilibrium problem
is for finding x ∈ C such that

Fk

(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, k ∈ Λ, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by SMEP(Fk), that is,

SMEP(Fk) =
{
x ∈ C := Fk

(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, k ∈ Λ, ∀y ∈ C

}
. (1.2)
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If Λ is a singleton, then problem (1.1) becomes the following mixed equilibrium problem: finding
x ∈ C such that

F
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by MEP(F).
If ϕ ≡ 0, the problem (1.3) is reduced into the equilibrium problem [1] for finding x ∈ C

such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP(F). This problem contains fixed-point problems,
includes as special cases numerous problems in physics, optimization, and economics. Some
methods have been proposed to solve the system of mixed equilibrium problem and the
equilibrium problem, please consult [2–19].

Recall that, a mapping S : C → C is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, (1.5)

for all x, y ∈ C. If C is a bounded closed convex and S is a nonexpansive mapping of C into
itself, then F(S) is nonempty [20]. Let A : C → H be a mapping, the Hartmann-Stampacchia
variational inequality for finding x ∈ C such that

〈
Ax, y − x

〉 ≥ 0, ∀y ∈ C. (1.6)

The set of solutions of (1.6) is denoted by VI(C,A). The variational inequality has been
extensively studied in the literature [21–28].

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems. Convex minimization problems have a great impact and
influence on the development of almost all branches of pure and applied sciences. A typical
problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

θ(x) =
1
2
〈Ax, x〉 − 〈

x, y
〉
, ∀x ∈ F(S), (1.7)

where A is a linear bounded operator, F(S) is the fixed point set of a nonexpansive mapping
S, and y is a given point in H [29].

We denote weak convergence and strong convergence by notations ⇀ and → ,
respectively. A mapping A of C into H is called monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, (1.8)
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for all x, y ∈ C. A mapping A of C into H is called α-inverse-strongly monotone if there exists a
positive real number α such that

〈
Ax −Ay, x − y

〉 ≥ α
∥
∥Ax −Ay

∥
∥2

, (1.9)

for all x, y ∈ C. It is obvious that any α-inverse-strongly monotone mappings A are monotone
and Lipschitz continuous mapping. A linear bounded operator A is strongly positive if there
exists a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2, (1.10)

for all x ∈ H. A self-mapping f : C → C is a contraction on C if there exists a constant
α ∈ (0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ α

∥∥x − y
∥∥, (1.11)

for all x, y ∈ C. We use ΠC to denote the collection of all contraction on C. Note that each
f ∈ ΠC has a unique fixed point in C.

Let B : H → H be a single-valued nonlinear mapping and M : H → 2H be a set-
valued mapping. The variational inclusion problem is to find x ∈ H such that

θ ∈ B(x) +M(x), (1.12)

where θ is the zero vector in H. The set of solutions of problem (1.12) is denoted by I(B,M).
The variational inclusion has been extensively studied in the literature, see, for example, [30–
32] and the reference therein.

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ M(x),
and g ∈ M(y) impling 〈x − y, f − g〉 ≥ 0. A monotone mapping M is maximal if its graph
G(M) := {(f, x) ∈ H × H : f ∈ M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping M is maximal if and only if
for (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(M) impling f ∈ M(x).

Let B be an inverse-strongly monotone mapping of C into H, and let NCv be normal
cone to C at v ∈ C, that is, NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, for all u ∈ C}, and define

Tv =

⎧
⎨

⎩

Bv +NCv, if v ∈ C,

∅, if v /∈ C.
(1.13)

Then, T is a maximal monotone and θ ∈ Tv if and only if v ∈ VI(C,B) (see [33]).
Let M : H → 2H be a set-valued maximal monotone mapping, then the single-valued

mapping JM,λ : H → H defined by

JM,λ(x) = (I + λM)−1(x), x ∈ H, (1.14)

is called the resolvent operator associated with M, where λ is any positive number and I is
the identity mapping. It is worth mentioning that the resolvent operator is nonexpansive,
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1-inverse-strongly monotone, and that a solution of problem (1.12) is a fixed point of the
operator JM,λ(I − λB) for all λ > 0, (for more details see [34]).

In 2000, Moudafi [35] introduced the viscosity approximation method for nonexpan-
sive mappings and proved that if H is a real Hilbert space, the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ C is chosen arbitrarily,

xn+1 = αnf(xn) + (1 − αn)Sxn, n ≥ 0, (1.15)

where {αn} ⊂ (0, 1) satisfies certain conditions and converges strongly to a fixed point of S
(say x ∈ C), which is then a unique solution of the following variational inequality:

〈(
I − f

)
x, x − x

〉 ≥ 0, ∀x ∈ F(S). (1.16)

In 2006, Marino and Xu [29] introduced a general iterative method for nonexpansive
mapping. They defined the sequence {xn} generated by the algorithm x0 ∈ C,

xn+1 = αnγf(xn) + (I − αnA)Sxn, n ≥ 0, (1.17)

where {αn} ⊂ (0, 1), and A is a strongly positive linear bounded operator. They proved that
if C = H, and the sequence {αn} satisfies appropriate conditions, then the sequence {xn}
generated by (1.17) converges strongly to a fixed point of S (say x ∈ H) which is the unique
solution of the following variational inequality:

〈(
A − γf

)
x, x − x

〉 ≥ 0, ∀x ∈ F(S), (1.18)

which is the optimality condition for the minimization problem

min
x∈F(S)∩EP(F)

1
2
〈Ax, x〉 − h(x), (1.19)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
For finding a common element of the set of fixed points of nonexpansive mappings

and the set of solution of the variational inequalities. Let PC be the projection of H onto C. In
2005, Iiduka and Takahashi [36] introduced the following iterative process for x0 ∈ C,

xn+1 = αnu + (1 − αn)SPC(xn − λnAxn), ∀n ≥ 0, (1.20)

where u ∈ C, {αn} ⊂ (0, 1), and {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2β. They
proved that under certain appropriate conditions imposed on {αn} and {λn}, the sequence
{xn} generated by (1.20) converges strongly to a common element of the set of fixed points of
a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-
strongly monotone mapping (say x ∈ C) which solve some variational inequality

〈x − u, x − x〉 ≥ 0, ∀x ∈ F(S) ∩ VI(C,A). (1.21)
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In 2008, Su et al. [37] introduced the following iterative scheme by the viscosity ap-
proximation method in a real Hilbert space: x1, un ∈ H

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)SPC(un − λnAun),

(1.22)

for all n ∈ N, where {αn} ⊂ [0, 1) and {rn} ⊂ (0,∞) satisfing some appropriate conditions.
Furthermore, they proved that {xn} and {un} converge strongly to the same point z ∈ F(S) ∩
VI(C,A) ∩ EP(F), where z = PF(S)∩VI(C,A)∩EP(F)f(z).

Let {Ti} be an infinite family of nonexpansive mappings of H into itself, and let {λi}
be a real sequence such that 0 ≤ λi ≤ 1 for every i ∈ N. For n ≥ 1, we defined a mapping Wn

of H into itself as follows:

Un,n+1 := I,

Un,n := λnTnUn,n+1 + (1 − λn)I,

...

Un,k := λkTkUn,k+1 + (1 − λk)I,

...

Un,2 := λ2T2Un,3 + (1 − λ2)I,

Wn := Un,1 := λ1T1Un,2 + (1 − λ1)I.

(1.23)

In 2011, He et al. [38] introduced the following iterative process for {Tn : C → C}
which is a sequence of nonexpansive mappings. Let {zn} be the sequence defined by

zn+1 = εnγf(zn) + (I − εn)WnK
1
r1,nK

2
r2,n · · · · ·KK

rK,nzn, ∀n ∈ N. (1.24)

The sequence {zn} defined by (1.24) converges strongly to a common element of the set of
fixed points of nonexpansive mappings, the set of solutions of the variational inequality,
and the generalized equilibrium problem. Recently, Jitpeera and Kumam [39] introduced
the following new general iterative method for finding a common element of the set of
solutions of fixed point for nonexpansive mappings, the set of solution of generalized mixed
equilibrium problems, and the set of solutions of the variational inclusion for a β-inverse-
strongly monotone mapping in a real Hilbert space.

In this paper, we modify the iterative methods (1.17), (1.22), and (1.24) by purposing
the following new general viscosity iterative method: x0, un ∈ C,

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC

[
εnγf(xn) + (I − εnA)WnJM,λ(un − λBun)

]
,

(1.25)
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for all n ∈ N, where {αn} ⊂ (0, 1), {rn} ⊂ (0, 2σ), and λ ∈ (0, 2β) satisfy some appropriate
conditions. The purpose of this paper shows that under some control conditions the sequence
{xn} converges strongly to a common element of the set of common fixed points of nonex-
pansive mappings, the solution of the system of mixed equilibrium problems, and the set of
solutions of the variational inclusion in a real Hilbert space. Moreover, we apply our results
to the class of strictly pseudocontractive mappings. Finally, we give a numerical example
which supports our main theorem in the last part. Our results improve and extend the
corresponding results of Marino and Xu [29], Su et al. [37], He et al. [38], and some authors.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed and convex subset of H. Recall that
the (nearest point) projection PC from H onto C assigns to each x ∈ H and the unique point
in PCx ∈ C satisfies the property

‖x − PCx‖ = min
y∈C

∥∥x − y
∥∥, (2.1)

which is equivalent to the following inequality

〈
x − PCx, PCx − y

〉 ≥ 0, ∀y ∈ C. (2.2)

The following characterizes the projection PC. We recall some lemmas which will be needed
in the rest of this paper.

Lemma 2.1. The function u ∈ C is a solution of the variational inequality if and only if u ∈ C satisfies
the relation u = PC(u − λBu) for all λ > 0.

Lemma 2.2. For a given z ∈ H, u ∈ C, u = PCz ⇔ 〈u − z, v − u〉 ≥ 0, ∀v ∈ C.
It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

∥∥PCx − PCy
∥∥2 ≤ 〈

PCx − PCy, x − y
〉
, ∀x, y ∈ H. (2.3)

Moreover, PCx is characterized by the following properties: PCx ∈ C and for all x ∈ H,y ∈ C,

〈
x − PCx, y − PCx

〉 ≤ 0. (2.4)

Lemma 2.3 (see [40]). LetM : H → 2H be a maximal monotone mapping, and let B : H → H be
a monotone and Lipshitz continuous mapping. Then the mapping L = M+B : H → 2H is a maximal
monotone mapping.

Lemma 2.4 (see [41]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality lim infn→∞‖xn − x‖ < lim infn→∞‖xn − y‖, hold for each
y ∈ H with y /=x.
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Lemma 2.5 (see [42]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (
1 − γn

)
an + δn, ∀n ≥ 0, (2.5)

where {γn} ⊂ (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞,

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

Lemma 2.6 (see [43]). Let C be a closed convex subset of a real Hilbert spaceH, and let T : C → C
be a nonexpansive mapping. Then I − T is demiclosed at zero, that is,

xn −→ x, xn − Txn −→ 0, (2.6)

implying x = Tx.

For solving the mixed equilibrium problem, let us assume that the bifunction F : C ×
C → R and the nonlinear mapping ϕ : C → R satisfy the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each fixed y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(A4) for each fixed x ∈ C, y �→ F(x, y) is convex and lower semicontinuous;

(B1) for each x ∈ C and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such that
for any z ∈ C \Dx,

F
(
z, yx

)
+ ϕ

(
yx

) − ϕ(z) +
1
r

〈
yx − z, z − x

〉
< 0, (2.7)

(B2) C is a bounded set.

Lemma 2.7 (see [44]). Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
F : C × C → R be a bifunction mapping satisfying (A1)–(A4), and let ϕ : C → R be a convex and
lower semicontinuous function such that C ∩ domϕ/= ∅. Assume that either (B1) or (B2) holds. For
r > 0 and x ∈ H, then there exists u ∈ C such that

F
(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, u − x

〉 ≥ 0. (2.8)

Define a mapping Kr : H → C as follows:

Kr(x) =
{
u ∈ C : F

(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, u − x

〉 ≥ 0, ∀y ∈ C

}
, (2.9)
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for all x ∈ H. Then, the following hold:

(i) Kr is single-valued;

(ii) Kr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Krx −Kry‖2 ≤ 〈Krx−Kry, x−y〉;
(iii) F(Kr) = MEP(F);

(iv) MEP(F) is closed and convex.

Lemma 2.8 (see [29]). Assume A is a strongly positive linear bounded operator on a Hilbert space
H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ .

Lemma 2.9 (see [38]). Let C be a nonempty closed and convex subset of a strictly convex Banach
space. Let {Ti}i∈N be an infinite family of nonexpansive mappings of C into itself such that
∩i∈NF(Ti)/= ∅, and let {λi} be a real sequence such that 0 ≤ λi ≤ b < 1 for every i ∈ N. Then
F(W) = ∩i∈NF(Ti)/= ∅.

Lemma 2.10 (see [38]). Let C be a nonempty closed and convex subset of a strictly convex Banach
space. Let {Ti} be an infinite family of nonexpansive mappings of C into itself, and let {λi} be a real
sequence such that 0 ≤ λi ≤ b < 1 for every i ∈ N. Then, for every x ∈ C and k ∈ N, the limit
limn→∞Un,k exist.

In view of the previous lemma, we define

Wx := lim
n→∞

Un,1x = lim
n→∞

Wnx. (2.10)

3. Strong Convergence Theorems

In this section, we show a strong convergence theorem which solves the problem of finding
a common element of the common fixed points, the common solution of a system of mixed
equilibrium problems and variational inclusion of inverse-strongly monotone mappings in a
Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and C a nonempty close and convex subset ofH, and let
B be a β-inverse-strongly monotone mapping. Let ϕ : C → R be a convex and lower semicontinuous
function, f : C → C a contraction mapping with coefficient α (0 < α <1), and M : H → 2H a
maximal monotone mapping. LetA be a strongly positive linear bounded operator ofH into itself with
coefficient γ > 0. Assume that 0 < γ < γ/α and λ ∈ (0, 2β). Let {Tn} be a family of nonexpansive
mappings of H into itself such that

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ I(B,M)/= ∅. (3.1)

Suppose that {xn} is a sequence generated by the following algorithm for x0 ∈ C arbitrarily and

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC

[
εnγf(xn) + (I − εnA)WnJM,λ(un − λBun)

]
,

(3.2)
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for all n = 1, 2, 3, . . ., where

KFi
ri,n(x) =

{
un ∈ C : Fi

(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
ri,n

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C

}
,

i = 1, 2, 3, . . . ,N,

(3.3)

and the following conditions are satisfied

(C1): {εn} ⊂ (0, 1), limn→ 0εn = 0,
∑∞

n=1 εn = ∞,
∑∞

n=1 |εn+1 − εn| < ∞;

(C2): {rn} ⊂ [c, d] with c, d ∈ (0, 2σ) and
∑∞

n=1 |rn+1 − rn| < ∞.

Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf + I − A)(q) which
solves the following variational inequality:

〈(
γf −A

)
q, p − q

〉 ≤ 0, ∀p ∈ θ, (3.4)

which is the optimality condition for the minimization problem

min
q∈θ

1
2
〈
Aq, q

〉 − h
(
q
)
, (3.5)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. For condition (C1), we may assume without loss of generality, and εn ∈ (0, ‖A‖−1) for
all n. By Lemma 2.8, we have ‖I − εnA‖ ≤ 1− εnγ . Next, we will assume that ‖I −A‖ ≤ ‖1− γ‖.

Next, we will divide the proof into six steps.

Step 1. First, we will show that {xn} and {un} are bounded. Since B is β-inverse-strongly
monotone mappings, we have

∥∥(I − λB)x − (I − λB)y
∥∥2 =

∥∥Ix − λBx − Iy + λBy
∥∥2

=
∥∥x − y − λBx + λBy

∥∥2

=
∥∥(x − y

) − λ
(
Bx + By

)∥∥2

≤ ∥∥x − y
∥∥2 − 2λ

〈
x − y

〉〈
Bx + By

〉
+ λ2∥∥Bx − By

∥∥2

≤ ∥∥x − y
∥∥2 − 2λβ

∥∥Bx + By
∥∥2 + λ2∥∥Bx − By

∥∥2

≤ ∥∥x − y
∥∥2 + λ

(
λ − 2β

)∥∥Bx + By
∥∥2

,

(3.6)

if 0 < λ < 2β, then I − λB is nonexpansive.
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Put yn := JM,λ(un − λBun), n ≥ 0. Since JM,λ and I − λB are nonexpansive mapping, it
follows that

∥
∥yn − q

∥
∥ =

∥
∥JM,λ(un − λBun) − JM,λ

(
q − λBq

)∥∥

≤ ∥
∥(un − λBun) −

(
q − λBq

)∥∥

≤ ∥
∥un − q

∥
∥.

(3.7)

By Lemma 2.7, we have

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, for n ≥ 0

τkn = KFk
rk,n ·KFk−1

rk−1,n · · · · ·KF2
r2,n ·KF1

r1,n, for k ∈ {0, 1, 2, . . . ,N},
(3.8)

and τ0
n = I for all n ∈ N, q = τFk

rk,nq, un = τNrk,Nxn Then, we have

∥∥un − q
∥∥2 =

∥∥∥τNrk,nxn − τFk
rk,nq

∥∥∥
2

=
∥∥xn − q

∥∥2
.

(3.9)

Hence, we get

∥∥yn − q
∥∥ ≤ ∥∥xn − q

∥∥. (3.10)

From (3.2), we deduce that

∥∥xn+1 − q
∥∥ =

∥∥PC

(
εnγf(xn) + (I − εnA)Wnyn

) − PCq
∥∥

≤ ∥∥εn
(
γf(xn) −Aq

)
+ (I − εnA)

(
Wnyn − q

)∥∥

≤ εn
∥∥γf(xn) −Aq

∥∥ +
(
1 − εnγ

)∥∥yn − q
∥∥

≤ εγεn
∥∥xn − q

∥∥ + εn
∥∥γf

(
g
) −Aq

∥∥

+
(
1 − εnγ

)∥∥xn − q
∥∥

=
(
1 − (

γ − γε
)
εn

)∥∥xn − q
∥∥ − εn

∥∥γf
(
q
) −Aq

∥∥

=
(
1 − (

γ − γε
)
εn

)∥∥xn − q
∥∥ +

(
γ − γε

)
εn

∥∥γf
(
q
) −Aq

∥∥

γ − γε

...

≤ max

{
∥∥xn − q

∥∥,

∥∥γf
(
q
) −Aq

∥∥

γ − γε

}

.

(3.11)
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It follows by induction that

∥
∥xn − q

∥
∥ ≤ max

{
∥
∥x0 − q

∥
∥,

∥
∥γf

(
q
) −Aq

∥
∥

γ − γε

}

, n ≥ 0. (3.12)

Therefore {xn} is bounded, so are {yn}, {Bun}, {f(xn)}, and {AWnyn}.

Step 2. We claim that limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖yn+1 −yn‖ = 0. From (3.2), we have

‖xn+1 − xn‖ =
∥
∥PC

(
εnγf(xn) + (I − εnA)Wnyn

) − PC

(
εn−1γf(xn−1) + (I − εn−1A)Wnyn−1

)∥∥

≤ ∥
∥(I − εnA)

(
Wnyn −Wnyn−1

) − (εn − εn−1)AWnyn−1

+γεn
(
f(xn) − f(xn−1)

)
+ γ(εn − εn−1)f(xn−1)

∥∥

≤ (
1 − εnγ

)∥∥yn − yn−1
∥∥ + |εn − εn−1|

∥∥AWnyn

∥∥ + γεεn‖xn − xn−1‖
+ γ |εn − εn−1|

∥∥f(xn−1)
∥∥.

(3.13)

Since JM,λ and I − λB are nonexpansive, we also have

∥∥yn − yn−1
∥∥ = ‖JM,λ(un − λBun) − JM,λ(un−1 − λBun−1)‖
≤ ‖(un − λBun) − (un−1 − λBun−1)‖
≤ ‖un − un−1‖.

(3.14)

On the other hand, from un−1 = τNrk,n−1xn−1 and un = τNrk,nxn, it follows that

F
(
un−1, y

)
+ ϕ

(
y
) − ϕ(un−1) +

1
rn−1

〈
y − un−1, un−1 − xn−1

〉 ≥ 0, ∀y ∈ C, (3.15)

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.16)

Substituting y = un into (3.15) and y = un−1 into (3.16), we get

F(un−1, un) + ϕ(un) − ϕ(un−1) +
1

rn−1
〈un − un−1, un−1 − xn−1〉 ≥ 0,

F(un, un+1) + ϕ(un+1) − ϕ(un) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0.

(3.17)
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From (A2), we obtain

〈
un − un−1,

un−1 − xn−1

rn−1
− un − xn

rn

〉
≥ 0,

〈
un − un−1, un−1 − xn−1 − rn−1

rn
(un − xn)

〉
≥ 0,

(3.18)

so,

〈
un − un−1, un−1 − un + un − xn−1 − rn−1

rn
(un − xn)

〉
≥ 0. (3.19)

It follows that

〈
un − un−1, un−1 − un + un − xn − rn−1

rn
(un − xn)

〉
≥ 0,

〈un − un−1, un−1 − un〉 +
〈
un − un−1,

(
1 − rn−1

rn

)
(un − xn)

〉
≥ 0.

(3.20)

Without loss of generality, let us assume that there exists a real number c such that rn−1 > c >
0, for all n ∈ N. Then, we have

‖un − un−1‖2 ≤
〈
un − un−1,

(
1 − rn−1

rn

)
(un − xn)

〉

≤ ‖un − un−1‖
{∣∣∣∣1 − rn−1

rn

∣∣∣∣‖un − xn‖
}
,

(3.21)

and hence

‖un − un−1‖ ≤ ‖xn − xn−1‖ + 1
rn
|rn − rn−1|‖un − xn‖

≤ ‖xn − xn−1‖ + M1

c
|rn − rn−1|,

(3.22)

where M1 = sup{‖un − xn‖ : n ∈ N}. Substituting (3.22) into (3.14), we have

∥∥yn − yn−1
∥∥ ≤ ‖xn − xn−1‖ + M1

c
|rn − rn−1|. (3.23)
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Substituting (3.23) into (3.13), we get

‖xn+1 − xn‖ ≤ (
1 − εnγ

)
(
‖xn − xn−1‖ + M1

c
|rn − rn−1|

)
+ |εn − εn−1|

∥
∥AWnyn−1

∥
∥

+ γεεn‖xn − xn−1‖ + γ |εn − εn−1|
∥
∥f(xn−1)

∥
∥

=
(
1 − εnγ

)‖xn − xn−1‖ +
(
1 − εnγ

)M1

c
|rn − rn−1| + |εn − εn−1|

∥
∥AWnyn−1

∥
∥

+ γεεn‖xn − xn−1‖ + γ |εn − εn−1|
∥
∥f(xn−1)

∥
∥

≤ (
1 − (

γ − γε
)
εn

)‖xn − xn−1‖ + M1

c
|rn − rn−1| + |εn − εn−1|

∥
∥AWnyn−1

∥
∥

+ γ |εn − εn−1|
∥
∥f(xn−1)

∥
∥

≤ (
1 − (

γ − γε
)
εn

)‖xn − xn−1‖ + M1

c
|rn − rn−1| +M2|εn − εn−1|,

(3.24)

where M2 = sup{max{‖AWnyn−1‖, ‖f(xn−1)‖ : n ∈ N}}. Since conditions (C1)-(C2) and by
Lemma 2.5, we have ‖xn+1 − xn‖ → 0 as n → ∞. From (3.23), we also have ‖yn+1 − yn‖ → 0
as n → ∞.

Step 3. Next, we show that limn→∞‖Bun − Bq‖ = 0.
For q ∈ θ hence q = JM,λ(q − λBq). By (3.6) and (3.9), we get

∥∥yn − q
∥∥2 =

∥∥JM,λ(un − λBun) − JM,λ

(
q − λBq

)∥∥2

≤ ∥∥(un − λBun) −
(
q − λBq

)∥∥2

≤ ∥∥un − q
∥∥2 + λ

(
λ − 2β

)∥∥Bun − Bq
∥∥2

≤ ∥∥xn − q
∥∥2 + λ

(
λ − 2β

)∥∥Bun − Bq
∥∥2
.

(3.25)

It follows that

∥∥xn+1 − q
∥∥2 =

∥∥PC

(
εnγf(xn) + (I − εnA)Wnyn

) − PC

(
q
)∥∥2

≤ ∥∥εn
(
γf(xn) −Aq

)
+ (I − εnA)

(
Wnyn − q

)∥∥2

≤ (
εn

∥∥γf(xn) −Aq
∥∥ +

(
1 − εnγ

)∥∥yn − q
∥∥)2

≤ εn
∥∥γf(xn) −Aq

∥∥2 +
(
1 − εnγ

)∥∥yn − q
∥∥2

+ 2εn
(
1 − εnγ

)∥∥γf(xn) −Aq
∥∥∥∥yn − q

∥∥
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≤ εn
∥
∥γf(xn) −Aq

∥
∥2 + 2εn

(
1 − εnγ

)∥∥γf(xn) −Aq
∥
∥
∥
∥yn − q

∥
∥

+
(
1 − εnγ

)(∥∥xn − q
∥
∥2 + λ

(
λ − 2β

)∥∥Bun − Bq
∥
∥2

)

≤ εn
∥
∥γf(xn) −Aq

∥
∥2 + 2εn

(
1 − εnγ

)∥∥γf(xn) −Aq
∥
∥
∥
∥yn − q

∥
∥

+
∥
∥xn − q

∥
∥2 +

(
1 − εnγ

)
λ
(
λ − 2β

)∥∥Bun − Bq
∥
∥2
.

(3.26)

So, we obtain

(
1 − εnγ

)
λ
(
2β − λ

)∥∥Bun − Bq
∥
∥2 ≤ εn

∥
∥γf(xn) −Aq

∥
∥2

+ ‖xn − xn+1‖
(∥∥xn − q

∥∥ +
∥∥xn+1 − q

∥∥) + ξn,
(3.27)

where ξn = 2εn(1−εnγ)‖γf(xn)−Aq‖‖yn−q‖. By conditions (C1), (C3) and limn→∞‖xn+1−xn‖ =
0, then, we obtain that ‖Bun − Bq‖ → 0 as n → ∞.

Step 4. We show the following:

(i) limn→∞‖xn − un‖ = 0;

(ii) limn→∞‖un − yn‖ = 0;

(iii) limn→∞‖yn −Wnyn‖ = 0.

Since Krn(x) is firmly nonexpansive and (2.3), we observe that

∥∥un − q
∥∥2 =

∥∥∥τNrn,nxn − τNrn,nq
∥∥∥

2

≤ 〈
xn − q, un − q

〉

=
1
2

(∥∥xn − q
∥∥2 +

∥∥un − q
∥∥2 − ∥∥xn − q − un − q

∥∥2
)

≤ 1
2

(∥∥xn − q
∥∥2 +

∥∥un − q
∥∥2 − ‖xn − un‖2

)
,

(3.28)

it follows that

∥∥un − q
∥∥2 ≤ ∥∥xn − q

∥∥2 − ‖xn − un‖2. (3.29)
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Since JM,λ is 1-inverse-strongly monotone and by (2.3), we compute

∥
∥yn − q

∥
∥2 =

∥
∥JM,λ(un − λBun) − JM,λ

(
q − λBq

)∥∥2

≤ 〈
(un − λBun) −

(
q − λBq

)
, yn − q

〉

=
1
2

(∥
∥(un − λBun) −

(
q − λBq

)∥∥2 +
∥
∥yn − q

∥
∥2

−∥∥(un − λBun) −
(
q − λBq

) − (
yn − q

)∥∥2
)

≤ 1
2

(∥∥un − q
∥∥2 +

∥∥yn − q
∥∥2 − ∥∥(un − yn

) − λ
(
Bun − Bq

)∥∥2
)

=
1
2

(∥
∥un − q

∥
∥2 +

∥
∥yn − q

∥
∥2 − ∥

∥un − yn

∥
∥2

+2λ
〈
un − yn, Bun − Bq

〉 − λ2∥∥Bun − Bq
∥∥2

)
,

(3.30)

which implies that

∥∥yn − q
∥∥2 ≤ ∥∥un − q

∥∥2 − ∥∥un − yn

∥∥2 + 2λ
∥∥un − yn

∥∥∥∥Bun − Bq
∥∥. (3.31)

Substituting (3.31) into (3.26), we have

∥∥xn+1 − q
∥∥2 ≤ εn

∥∥γf(xn) −Aq
∥∥2 +

∥∥yn − q
∥∥2 + 2εn

(
1 − εnγ

)∥∥γf(xn) −Aq
∥∥∥∥yn − q

∥∥

≤ εn
∥∥γf(xn) −Aq

∥∥2 +
(∥∥un − q

∥∥2 − ∥∥un − yn

∥∥2 + 2λn
∥∥un − yn

∥∥∥∥Bun − Bq
∥∥
)

+ 2εn
(
1 − εnγ

)∥∥γf(xn) −Aq
∥∥∥∥yn − q

∥∥.
(3.32)

Then, we derive

‖xn − un‖2 +
∥∥un − yn

∥∥2 ≤ εn
∥∥γf(xn) −Aq

∥∥2 +
∥∥xn − q

∥∥2 − ∥∥xn+1 − q
∥∥2

+ 2λ
∥∥un − yn

∥∥∥∥Bun − Bq
∥∥ + 2εn

(
1 − εnγ

)∥∥γf(xn) −Aq
∥∥∥∥yn − q

∥∥.

= εn
∥∥γf(xn) −Aq

∥∥2 + ‖xn − xn+1‖
(∥∥xn − q

∥∥ +
∥∥xn+1 − q

∥∥)

+ 2λ
∥∥un − yn

∥∥∥∥Bun − Bq
∥∥ + 2εn

(
1 − εnγ

)∥∥γf(xn) −Aq
∥∥∥∥yn − q

∥∥.
(3.33)

By condition (C1), limn→∞‖xn − xn+1‖ = 0 and limn→∞‖Bun − Bq‖ = 0.
So, we have ‖xn − un‖ → 0, ‖un − yn‖ → 0 as n → ∞. It follows that

∥∥xn − yn

∥∥ ≤ ‖xn − un‖ +
∥∥un − yn

∥∥ −→ 0, as n −→ ∞. (3.34)
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From (3.2), we have

∥
∥xn −Wnyn

∥
∥ ≤ ∥

∥xn −Wnyn−1
∥
∥ +

∥
∥Wnyn−1 −Wnyn

∥
∥

≤ ∥
∥PC

(
εn−1γf(xn−1) + (I − αn−1A)Wnyn−1

) − PC

(
Wnyn−1

)∥∥ +
∥
∥yn−1 − yn

∥
∥

≤ εn−1
∥
∥γfxn−1 −AWnyn−1

∥
∥ +

∥
∥yn−1 − yn

∥
∥.

(3.35)

By condition (C1) and limn→∞‖yn−1 − yn‖ = 0, we obtain that ‖xn −Wnyn‖ → 0 as n → ∞.
Hence, we have

‖xn −Wnxn‖ ≤ ∥
∥xn −Wnyn

∥
∥ +

∥
∥Wnyn −Wnxn

∥
∥

≤ ∥
∥xn −Wnyn

∥
∥ +

∥
∥yn − xn

∥
∥.

(3.36)

By (3.34) and limn→∞‖xn −Wnyn‖ = 0, we obtain ‖xn −Wnxn‖ → 0 as n → ∞.
Moreover, we also have

∥∥yn −Wnyn

∥∥ ≤ ∥∥yn − xn

∥∥ +
∥∥xn −Wnyn

∥∥. (3.37)

By (3.34) and limn→∞‖xn −Wnyn‖ = 0, we obtain ‖yn −Wnyn‖ → 0 as n → ∞.

Step 5. We show that q ∈ θ :=
⋂∞

n=1 F(Tn)∩ (
⋂N

k=1 SMEP(Fk))∩ I(B,M) and lim supn→∞〈(γf −
A)q,Wnyn − q〉 ≤ 0. It is easy to see that Pθ(γf + (I −A)) is a contraction of H into itself.

Indeed, since 0 < γ < γ/ε, we have

∥∥Pθ

(
γf + (I −A)

)
x − Pθ

(
γf + (I −A)

)
y
∥∥ ≤ γ

∥∥f(x) − f
(
y
)∥∥ + ‖I −A‖∥∥x − y

∥∥

≤ γε
∥∥x − y

∥∥ +
(
1 − γ

)∥∥x − y
∥∥

≤ (
1 − γ + γε

)∥∥x − y
∥∥.

(3.38)

Since H is complete, then there exists a unique fixed point q ∈ H such that q = Pθ(γf + (I −
A))(q). By Lemma 2.2, we obtain that 〈(γf −A)q,w − q〉 ≤ 0 for all w ∈ θ.

Next, we show that lim supn→∞〈(γf −A)q,Wnyn − q〉 ≤ 0, where q = Pθ(γf + I −A)(q)
is the unique solution of the variational inequality 〈(γf − A)q,w − q〉 ≥ 0 for all w ∈ θ. We
can choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈(
γf −A

)
q,Wnyn − q

〉
= lim

i→∞
〈(
γf −A

)
q,Wnyni − q

〉
. (3.39)

As {yni} is bounded, there exists a subsequence {ynij
} of {yni} which converges weakly to w.

We may assume without loss of generality that yni ⇀ w.
Next we claim that w ∈ θ. Since ‖yn−Wnyn‖ → 0, ‖xn−Wnxn‖ → 0, and ‖xn−yn‖ →

0, and by Lemma 2.6, we have w ∈ ⋂∞
n=1 F(Tn).
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Next, we show that w ∈ ⋂∞
k=1 SMEP(Fk). Since un = τNrk,nxn, for k = 1, 2, 3, . . . ,N, we

know that

Fk

(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.40)

It follows by (A2) that

ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ Fk

(
y, un

)
, ∀y ∈ C. (3.41)

Hence, for k = 1, 2, 3, . . . ,N, we get

ϕ
(
y
) − ϕ(uni) +

1
rni

〈
y − uni , uni − xni

〉 ≥ Fk

(
y, uni

)
, ∀y ∈ C. (3.42)

For t ∈ (0, 1] and y ∈ H, let yt = ty + (1 − t)w. From (3.42), we have

0 ≥ ϕ
(
yt

)
+ ϕ(uni) −

1
rni

〈
yt − uni , uni − xni

〉
+ Fk

(
yt, uni

)
. (3.43)

Since ‖uni − xni‖ → 0, from (A4) and the weakly lower semicontinuity of ϕ, (uni −
xni )/rni → 0 and uni ⇀ w. From (A1) and (A4), we have

0 = Fk

(
yt, yt

) − ϕ
(
yt

)
+ ϕ

(
yt

)

≤ tFk

(
yt, y

)
+ (1 − t)Fk

(
yt,w

)
+ tϕ

(
y
)
+ (1 − t)ϕ(w) − ϕ

(
yt

)

≤ t
[
Fk

(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
.

(3.44)

Dividing by t, we get

Fk

(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

) ≥ 0. (3.45)

The weakly lower semicontinuity of ϕ for k = 1, 2, 3, . . . ,N, we get

Fk

(
w,y

)
+ ϕ

(
y
) ≥ ϕ(w). (3.46)

So, we have

Fk

(
w,y

)
+ ϕ

(
y
) − ϕ(w) ≥ 0, ∀k = 1, 2, 3, . . . ,N. (3.47)

This implies that w ∈ ⋂N
k=1 SMEP(Fk).

Lastly, we show that w ∈ I(B,M). In fact, since B is β-inverse strongly monotone,
hence B is a monotone and Lipschitz continuous mapping. It follows from Lemma 2.3 that
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M + B is a maximal monotone. Let (v, g) ∈ G(M + B), since g − Bv ∈ M(v). Again since
yni = JM,λ(uni − λBuni), we have uni − λBuni ∈ (I + λM)(yni), that is, (1/λ)(uni − yni − λBuni) ∈
M(yni). By virtue of the maximal monotonicity of M + B, we have

〈
v − yni , g − Bv − 1

λ

(
uni − yni − λBuni

)
〉

≥ 0, (3.48)

and hence

〈
v − yni , g

〉 ≥
〈
v − yni , Bv +

1
λ

(
uni − yni − λBuni

)
〉

=
〈
v − yni , Bv − Byni

〉
+
〈
v − yni , Byni − Buni

〉
+
〈
v − yni ,

1
λ

(
uni − yni

)
〉
.

(3.49)

It follows from limn→∞‖un−yn‖ = 0, we have limn→∞‖Bun−Byn‖ = 0 and yni ⇀ w, it follows
that

lim sup
n→∞

〈
v − yn, g

〉
=

〈
v −w, g

〉 ≥ 0. (3.50)

It follows from the maximal monotonicity of B+M that θ ∈ (M+B)(w), that is, w ∈ I(B,M).
Therefore, w ∈ θ. We observe that

lim sup
n→∞

〈(
γf −A

)
q,Wnyn − q

〉
= lim

i→∞
〈(
γf −A

)
q,Wnyni − q

〉
=

〈(
γf −A

)
q,w − q

〉 ≤ 0.

(3.51)

Step 6. Finally, we prove xn → q. By using (3.2) and together with Schwarz inequality, we
have

∥∥xn+1 − q
∥∥2 =

∥∥PC

(
εnγf(xn) + (I − εnA)Wnyn

) − PC

(
q
)∥∥2

≤ ∥∥εn
(
γf(xn) −Aq

)
+ (I − εnA)

(
Wnyn − q

)∥∥2

≤ (I − εnA)2∥∥(Wnyn − q
)∥∥2 + ε2

n

∥∥γf(xn) −Aq
∥∥2

+ 2εn
〈
(I − εnA)

(
Wnyn − q

)
, γf(xn) −Aq

〉

≤ (
1 − εnγ

)2∥∥yn − q
∥∥2 + ε2

n

∥∥γf(xn) −Aq
∥∥2

+ 2εn
〈
Wnyn − q, γf(xn) −Aq

〉 − 2ε2
n

〈
A
(
Wnyn − q

)
, γf(xn) −Aq

〉

≤ (
1 − εnγ

)2∥∥xn − q
∥∥2 + ε2

n

∥∥γf(xn) −Aq
∥∥2 + 2εn

〈
Wnyn − q, γf(xn) − γf

(
q
)〉

+ 2εn
〈
Wnyn − q, γf

(
q
) −Aq

〉 − 2ε2
n

〈
A
(
Wnyn − q

)
, γf(xn) −Aq

〉
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≤ (
1 − εnγ

)2∥∥xn − q
∥
∥2 + ε2

n

∥
∥γf(xn) −Aq

∥
∥2 + 2εn

∥
∥Wnyn − q

∥
∥
∥
∥γf(xn) − γf

(
q
)∥∥

+ 2εn
〈
Wnyn − q, γf

(
q
) −Aq

〉 − 2ε2
n

〈
A
(
Wnyn − q

)
, γf(xn) −Aq

〉

≤ (
1 − εnγ

)2∥∥xn − q
∥
∥2 + ε2

n

∥
∥γf(xn) −Aq

∥
∥2 + 2γεεn

∥
∥yn − q

∥
∥
∥
∥xn − q

∥
∥

+ 2εn
〈
Wnyn − q, γf

(
q
) −Aq

〉 − 2ε2
n

〈
A
(
Wnyn − q

)
, γf(xn) −Aq

〉

≤ (
1 − εnγ

)2∥∥xn − q
∥
∥2 + ε2

n

∥
∥γf(xn) −Aq

∥
∥2 + 2γεεn

∥
∥xn − q

∥
∥2

+ 2εn
〈
Wnyn − q, γf

(
q
) −Aq

〉 − 2ε2
n

〈
A
(
Wnyn − q

)
, γf(xn) −Aq

〉

≤
((

1 − εnγ
)2 + 2γεεn

)∥
∥xn − q

∥
∥2

+ εn
{
εn

∥
∥γf(xn) −Aq

∥
∥2 + 2

〈
Wnyn − q, γf

(
q
) −Aq

〉

−2εn
∥∥A

(
Wnyn − q

)∥∥∥∥γf(xn) −Aq
∥∥
}

=
(
1 − 2

(
γ − γε

)
εn

)∥∥xn − q
∥∥2

+ εn
{
εn

∥∥γf(xn) −Aq
∥∥2 + 2

〈
Wnyn − q, γf

(
q
) −Aq

〉

− 2εn
∥∥A

(
Wnyn − q

)∥∥∥∥γf(xn) −Aq
∥∥

+εnγ
2∥∥xn − q

∥∥2
}
.

(3.52)

Since {xn} is bounded, where η ≥ ‖γf(xn) −Aq‖2 − 2‖A(Wnyn − q)‖‖γf(xn) − Aq‖ +
γ2‖xn − q‖2 for all n ≥ 0. It follows that

∥∥xn+1 − q
∥∥2 ≤ (

1 − 2
(
γ − γε

)
εn

)∥∥xn − q
∥∥2 + εnδn, (3.53)

where δn = 2〈Wnyn − q, γf(q) − Aq〉 + ηαn. Since lim supn→∞〈(γf − A)q,Wnyn − q〉 ≤ 0, we
get lim supn→∞δn ≤ 0. Applying Lemma 2.5, we can conclude that xn → q. This completes
the proof.

Corollary 3.2. Let H be a real Hilbert space and C a nonempty closed and convex subset of H. Let
B be β-inverse-strongly monotone and ϕ : C → R a convex and lower semicontinuous function. Let
f : C → C be a contraction with coefficient α (0 < α < 1), M : H → 2H a maximal monotone
mapping, and {Tn} a family of nonexpansive mappings ofH into itself such that

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ I(B,M)/= 0. (3.54)
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Suppose that {xn} is a sequence generated by the following algorithm for x0, un ∈ C arbitrarily:

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC

[
εnf(xn) + (I − εn)WnJM,λ(un − λBun)

]
,

(3.55)

for all n = 0, 1, 2, . . ., and the conditions (C1)–(C3) in Theorem 3.1 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(f + I)(q) which solves the

following variational inequality:

〈(
f − I

)
q, p − q

〉 ≤ 0, ∀p ∈ θ. (3.56)

Proof. Putting A ≡ I and γ ≡ 1 in Theorem 3.1, we can obtain the desired conclusion immedi-
ately.

Corollary 3.3. Let H be a real Hilbert space and C a nonempty closed and convex subset of H. Let
B be β-inverse-strongly monotone, ϕ : C → R a convex and lower semicontinuous function, and
M : H → 2H a maximal monotone mapping. Let {Tn} be a family of nonexpansive mappings of H
into itself such that

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ I(B,M)/= 0. (3.57)

Suppose that {xn} is a sequence generated by the following algorithm for x0, u ∈ C and un ∈ C:

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC[εnu + (I − εn)WnJM,λ(un − λBun)],
(3.58)

for all n = 0, 1, 2, . . ., and the conditions (C1)–(C3) in Theorem 3.1 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(q) which solves the

following variational inequality:

〈
u − q, p − q

〉 ≤ 0, ∀p ∈ θ. (3.59)

Proof. Putting f(x) ≡ u, for all x ∈ C in Corollary 3.2, we can obtain the desired conclusion
immediately.

Corollary 3.4. Let H be a real Hilbert space and C a nonempty closed and convex subset of H, and
let B be β-inverse-strongly monotone mapping and A a strongly positive linear bounded operator of
H into itself with coefficient γ > 0. Assume that 0 < γ < γ/α. Let f : C → C be a contraction with
coefficient α(0 < α < 1) and {Tn} be a family of nonexpansive mappings of H into itself such that

θ :=
∞⋂

n=1

F(Tn) ∩ VI(C,B)/= ∅. (3.60)
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Suppose that {xn} is a sequence generated by the following algorithm for x0 ∈ C arbitrarily:

xn+1 = PC

[
εnγf(xn) + (I − εnA)WnPC(xn − λBxn)

]
, (3.61)

for all n = 0, 1, 2, . . ., and the conditions (C1)–(C3) in Theorem 3.1 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf + I − A)(q) which

solves the following variational inequality:

〈(
γf −A

)
q, p − q

〉 ≤ 0, ∀p ∈ θ. (3.62)

Proof. Taking F ≡ 0, ϕ ≡ 0, un = xn, and JM,λ = PC in Theorem 3.1, we can obtain the desired
conclusion immediately.

Remark 3.5. Corollary 3.4 generalizes and improves the result of Klin-Eam and Suantai [45].

4. Applications

In this section, we apply the iterative scheme (1.25) for finding a common fixed point of
nonexpansive mapping and strictly pseudocontractive mapping.

Definition 4.1. A mapping S : C → C is called a strictly pseudocontraction if there exists a
constant 0 ≤ κ < 1 such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (4.1)

If κ = 0, then S is nonexpansive. In this case, we say that S : C → C is a κ-strictly
pseudocontraction. Putting B = I − S. Then, we have

∥∥(I − B)x − (I − B)y
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥Bx − By

∥∥2
, ∀x, y ∈ C. (4.2)

Observe that

∥∥(I − B)x − (I − B)y
∥∥2 =

∥∥x − y
∥∥2 +

∥∥Bx − By
∥∥2 − 2

〈
x − y, Bx − By

〉
, ∀x, y ∈ C. (4.3)

Hence, we obtain

〈
x − y, Bx − By

〉 ≥ 1 − κ

2
∥∥Bx − By

∥∥2
, ∀x, y ∈ C. (4.4)

Then, B is a ((1 − κ)/2)-inverse-strongly monotone mapping.

Using Theorem 3.1, we first prove a strongly convergence theorem for finding a com-
mon fixed point of a nonexpansive mapping and a strictly pseudocontraction.
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Theorem 4.2. Let H be a real Hilbert space and C a nonempty closed and convex subset of H, and
let B be an β-inverse-strongly monotone, ϕ : C → R a convex and lower semicontinuous function,
and f : C → C a contraction with coefficient α (0 < α < 1), and let A be a strongly positive linear
bounded operator of H into itself with coefficient γ > 0. Assume that 0 < γ < γ/α. Let {Tn} be a
family of nonexpansive mappings ofH into itself, and let S be a κ-strictly pseudocontraction of C into
itself such that

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ F(S)/= 0. (4.5)

Suppose that {xn} is a sequence generated by the following algorithm for x0, un ∈ C arbitrarily:

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC

[
εnγf(xn) + (I − εnA)Wn(1 − λ)xn + λSxn

]
,

(4.6)

for all n = 0, 1, 2, . . ., and the conditions (C1)–(C3) in Theorem 3.1 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf + I − A)(q) which

solves the following variational inequality:

〈(
γf −A

)
q, p − q

〉 ≤ 0, ∀p ∈ θ, (4.7)

which is the optimality condition for the minimization problem

min
q∈θ

1
2
〈
Aq, q

〉 − h
(
q
)
, (4.8)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. Put B ≡ I − T , then B is (1 − κ)/2 inverse-strongly monotone and F(S) = I(B,M), and
JM,λ(xn − λBxn) = (1 − λ)xn + λTxn. So by Theorem 3.1, we obtain the desired result.

Corollary 4.3. LetH be a real Hilbert space andC a closed convex subset ofH, and let B be β-inverse-
strongly monotone and ϕ : C → R a convex and lower semicontinuous function. Let f : C → C be
a contraction with coefficient α (0 < α < 1) and Tn a nonexpansive mapping of H into itself, and let
S be a κ-strictly pseudocontraction of C into itself such that

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ F(S)/= 0. (4.9)
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Suppose that {xn} is a sequence generated by the following algorithm for x0 ∈ C arbitrarily:

un = KFN
rn,n ·KFN−1

rn−1,n ·KFN−2
rn−2,n · · · · ·KF2

r2,n ·KF1
r1,n · xn, ∀n ∈ N

xn+1 = PC

[
εnf(xn) + (I − εn)Wn((1 − λ)un + λSun)

]
,

(4.10)

for all n = 0, 1, 2, . . ., and the conditions (C1)–(C3) in Theorem 3.1 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(f + I)(q) which solves the

following variational inequality:

〈(
f − I

)
q, p − q

〉 ≤ 0, ∀p ∈ θ, (4.11)

which is the optimality condition for the minimization problem

min
q∈θ

1
2
〈
Aq, q

〉 − h
(
q
)
, (4.12)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. Put A ≡ I and γ ≡ 1 in Theorem 4.2, we obtain the desired result.

5. Numerical Example

Now, we give a real numerical example in which the condition satisfies the ones of
Theorem 3.1 and some numerical experiment results to explain the main result Theorem 3.1
as follows.

Example 5.1. Let H = R, C = [−1, 1], Tn = I, λn = β ∈ (0, 1), n ∈ N, Fk(x, y) = 0, for all
x, y ∈ C, rn,n = 1, k ∈ {1, 2, 3, . . . ,N}, ϕ(x) = 0, for all x ∈ C,B = A = I, f(x) = (1/5)x, for all
x ∈ H, λ = 1/2 with contraction coefficient α = 1/10, εn = 1/n for every n ∈ N, and γ = 1.
Then {xn} is the sequence generated by

xn+1 =
(

1
2
− 3

10n

)
xn, (5.1)

and xn → 0 as n → ∞, where 0 is the unique solution of the minimization problem

min
x∈C

=
2
5
x2 + q. (5.2)

Proof. We prove Example 5.1 by Step 1, Step 2, and Step 3. By Step 4, we give two numerical
experiment results which can directly explain that the sequence {xn} strongly converges to 0.

Step 1. We show

KFN
rn,nx = PCx, ∀x ∈ H, FN ∈ {1, 2, 3, . . . ,N}, (5.3)
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where

PCx =

⎧
⎨

⎩

x

|x| , x ∈ H \ C
x, x ∈ C.

(5.4)

Indeed, since Fk(x, y) = 0 for all x, y ∈ C, n ∈ {1, 2, 3, . . . ,N}, due to the definition of
Kr(x), for all x ∈ H, as Lemma 2.7, we have

Kr(x) =
{
u ∈ C :

〈
y − u, u − x

〉 ≥ 0, ∀y ∈ C
}
. (5.5)

Also by the equivalent property (2.2) of the nearest projection PC from H → C, we
obtain this conclusion, when we take x ∈ C, KFN

rn,nx = PCx = Ix. By (iii) in Lemma 2.7, we
have

N⋂

k=1

SMEP(Fk) = C. (5.6)

Step 2. We show that

Wn = I. (5.7)

Indeed. By (1.23), we have

W1 = U11 = λ1T1U12 + (1 − λ1)I = λ1T1 + (1 − λ1)I,

W2 = U21 = λ1T1U22 + (1 − λ1)I = λ1T1(λ2T2U23 + (1 − λ2)I) + (1 − λ1)I

= λ1λ2T1T2 + λ1(1 − λ2)T1 + (1 − λ1)I,

W3 = U31 = λ1T1U32 + (1 − λ1)I = λ1T1(λ2T2U33 + (1 − λ2)I) + (1 − λ1)I

= λ1λ2T1T2U33 + λ1(1 − λ2)T1 + (1 − λ1)I,

= λ1λ2T1T2(λ3T3U34 + (1 − λ3I)) + λ1(1 − λ2)T1 + (1 − λ1)I,

= λ1λ2λ3T1T2T3 + λ1λ2(1 − λ3)T1T2 + λ1(1 − λ2)T1 + (1 − λ1)I.

(5.8)

Computing in this way by (1.23), we obtain

Wn = Un1 = λ1λ2 · · ·λnT1T2 · · · Tn + λ1λ2 · · ·λn−1(1 − λn)T1T2 · · · Tn−1

+ λ1λ2 · · ·λn−2(1 − λn−1)T1T2 · · · Tn−2 + · · · + λ1(1 − λ2)T1 + (1 − λ1)I.
(5.9)

Since Tn = I, λn = β, n ∈ N, thus

Wn =
[
βn + βn−1(1 − β

)
+ · · · + β

(
1 − β

)
+
(
1 − β

)]
I = I. (5.10)
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Table 1: This table shows the value of sequence {xn} on each iteration step (initial value x1 = 1).

n xn n xn

1 1.000000000000000 31 0.000000000054337
2 0.200000000000000 32 0.000000000026643
3 0.070000000000000 33 0.000000000013072
4 0.028000000000000 34 0.000000000006417
...

...
...

...
19 0.000000301580666 39 0.000000000000184
20 0.000000146028533 40 0.000000000000091
21 0.000000070823839 41 0.000000000000045
...

...
...

...
29 0.000000000226469 47 0.000000000000001
30 0.000000000110892 48 0.000000000000000

Step 3. We show that

xn+1 =
(

1
2
− 3

10n

)
xn, xn+1 −→ 0, as n −→ ∞, (5.11)

where 0 is the unique solution of the minimization problem

min
x∈C

2
5
x2 + q. (5.12)

Indeed, we can see that A = I is a strongly position bounded linear operator with
coefficient γ = 1/2 and γ is a real number such that 0 < γ < γ/α, so we can take γ = 1. Due to
(5.1), (5.4), and (5.7), we can obtain a special sequence {xn} of (3.2) in Theorem 3.1 as follows:

xn+1 =
(

1
2
− 3

10n

)
xn. (5.13)

Since Tn = I, n ∈ N, so,

∞⋂

n=1

F(Tn) = H, (5.14)

combining with (5.6), we have

θ :=
∞⋂

n=1

F(Tn) ∩
(

N⋂

k=1

SMEP(Fk)

)

∩ I(B,M) = C = [−1, 1]. (5.15)
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Table 2: This table shows the value of sequence {xn} on each iteration step (initial value x1 = 1/2).

n xn n xn

1 0.500000000000000 31 0.000000000027168
2 0.100000000000000 32 0.000000000013321
3 0.035000000000000 33 0.000000000006536
4 0.014000000000000 34 0.000000000003208
...

...
...

...
19 0.000000150790333 39 0.000000000000092
20 0.000000073014267 40 0.000000000000045
21 0.000000035411919 41 0.000000000000022
...

...
...

...
29 0.000000000113235 46 0.000000000000001
30 0.000000000055446 47 0.000000000000000
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Figure 1: The iteration comparison chart of different initial values. (a) x1 = 1 and (b) x1 = 1/2.

By Lemma 2.5, it is obviously that zn → 0, 0 is the unique solution of the minimization
problem

min
x∈C

2
5
x2 + q, (5.16)

where q is a constant number.

Step 4. We give the numerical experiment results using software Mathlab 7.0 and get Table 1
to Table 2, which show that the iteration process of the sequence {xn} is a monotone-
decreasing sequence and converges to 0, but the more the iteration steps are, the more showily
the sequence {xn} converges to 0.

Now, we turn to realizing (3.2) for approximating a fixed point of T . We take the initial
valued x1 = 1 and x1 = 1/2, respectively. All the numerical results are given in Tables 1 and
2. The corresponding graph appears in Figures 1(a) and 1(b).
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The numerical results support our main theorem as shown by calculating and plotting
graphs using Matlab 7.11.0.
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