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Electronic circuit simulation, especially for radio frequency (RF) and microwave telecommu-
nications, is being challenged by increasingly complex applications presenting signals of very
different nature and evolving on widely separated time scales. In this paper, we will briefly
review some recently developed ways to address these challenges, by describing some advanced
numerical simulation techniques based on multirate Runge-Kutta schemes, which operate in the
one-dimensional time and also within multidimensional frameworks.

1. Introduction

In recent years, radio frequency (RF) and microwave electronic circuit simulation has been
conducted to an increasingly demanding scenario of heterogeneous broadband and strongly
nonlinear wireless communication circuits, presenting a wide variety of slowly varying
and fast changing state variables (node voltages and branch currents). In such circuits, the
baseband analog blocks, the digital blocks, and the RF blocks may be all intricately mixed.
Classical simulation tools are not capable of handling this kind of circuits in an efficient
way because they do not perform any distinction between nodes or blocks within the circuit,
considering their time constants and/or excitation regimes. Thus, all the blocks in the circuits
are treated in the same way, which means that the same numerical algorithm is required
to simultaneously compute the response of the digital blocks, the baseband analog blocks,
and the RF blocks. Taking into account that signals in different blocks (different parts of
the circuit) have completely different formats and evolve on widely separated time scales
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(which may differ from three, or more, orders of magnitude), it is easy to conclude that the
application of the same numerical scheme to all the blocks will result in high inefficiency.

To cope with this scenario, some innovative time-domain techniques have been
proposed in the literature in the last few years. In order to benefit from the different
rates of variation of slowly varying and fast-varying currents and voltages (circuits’ state
variables) in different parts of the circuit, several advanced numerical techniques based
on multirate Runge-Kutta schemes have been proposed to operate within one-dimensional
and multivariate frameworks. Such techniques include diverse circuit partitioning strategies,
which allow the simulator to automatically split the network into subcircuits according to the
different time rates of change of their state variables. In order to provide a general overview
on these simulation techniques, this paper is organized as follows.

After this brief introduction, Section 2 provides some general background material
on standard time-domain circuit simulation techniques commonly used for computing the
numerical solution of ordinary unirate problems. Then, Section 3 is essentially devoted to the
presentation of some mathematical details of the numerical simulation algorithms based on
multirate Runge-Kutta schemes. Finally, Section 4 concludes this paper.

2. Time-Domain Circuit Simulation Fundamentals

2.1. Mathematical Model of an Electronic Circuit

The behavior of an electronic circuit can be described with a system of equations involving
voltages, currents, charges, and fluxes. This system of equations can be constructed from a
circuit description, using, for example, nodal analysis, which involves applying the Kirchhoff
current law to each node in the circuit, and applying the constitutive or branch equations to
each circuit element. In general, systems generated this way have the form

p(y(t)) +
dq(y(t))

dt
= x(t), (2.1)

where x(t) ∈ R
n and y(t) ∈ R

n stand for the excitation (independent voltage and current
sources) and state variable (node voltages and branch currents) vectors, respectively. p(y(t))
represents memoryless linear or nonlinear elements, as resistors, nonlinear voltage-controlled
current sources, and so forth, while q(y(t)) models dynamic linear or nonlinear elements,
as capacitors (represented as linear or nonlinear voltage-dependent electric charges), or
inductors (represented as linear or nonlinear current-dependent magnetic fluxes).

The system of (2.1) is, in general, a differential algebraic equations’ (DAE) system. For
achieving an intuitive explanation of the mathematical formulation of (2.1), let us consider
the basic illustrative example depicted in Figure 1. This circuit is composed of a current
source connected to a linear inductance and two nonlinear circuit elements commonly used
when modeling semiconductor devices (a nonlinear capacitance and a nonlinear voltage-
dependent current source). These nonlinearities are assumed as quasistatic [1, 2] and thus
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Figure 1: Nonlinear dynamic circuit example.

are described by algebraic constitutive relations of voltage-dependent charge and voltage-
dependent current. A nodal analysis of this circuit leads to the following system of equations
in the capacitor voltage vC(t) and the inductor current iL(t):

iNL(vC(t)) + iL(t) +
d

dt
qNL(vC(t)) = is(t),

vC(t) +
d

dt
(−L · iL(t)) = 0.

(2.2)

This system can be seen as a particular case (in R
2) of the DAE system of (2.1), in which the

excitation vector, x(t), and the vector of state variables, y(t), are given by

x(t) =

[
is(t)

0

]
, y(t) =

[
vC(t)

iL(t)

]
. (2.3)

The DAE system of (2.1) may obviously be written in other forms. For instance, if we
apply the chain differentiation rule to the dynamic term of its left hand side, we can obtain

dq(y)
dy

dy(t)
dt

= x(t) − p(y(t)), (2.4)

or

M(y(t))
dy(t)
dt

= x(t) − p(y(t)), (2.5)

in which M(y(t)) is usually known as the mass matrix. If this matrix is nonsingular, then the
DAE system of (2.4) may degenerate into the following ordinary differential equations’ (ODE)
system:

dy(t)
dt

= M(y(t))−1[x(t) − p(y(t))], (2.6)

which can be rewritten in the classical form

dy(t)
dt

= f(t,y(t)), (2.7)
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commonly used in the mathematical literature. WhenM(y(t)) is singular, the DAE system of
(2.4) will not degenerate into an ODE system, but it is often possible to express it as a set of
algebraic equations combined with a set of differential equations of the form (2.7).

From the above, we conclude that, in many cases, electronic circuits may be described
by ODE systems instead of DAE systems. For example, if we return to the simple nonlinear
dynamic circuit of Figure 1 and rewrite (2.2) as

dqNL(vC)
dvC

dvC(t)
dt

= is(t) − iNL(vC(t)) − iL(t),

L
diL(t)
dt

= vC(t),

(2.8)

or, in its vector-matrix form, as

⎡
⎣dqNL(vC)

dvC
0

0 L

⎤
⎦
⎡
⎢⎣
dvC(t)
dt

diL(t)
dt

⎤
⎥⎦ =

[
iS(t) − iNL(vC(t)) − iL(t)

vC(t)

]
, (2.9)

we can easily see that if dqNL(vC)/dvC /= 0, then themassmatrix is nonsingular, and the circuit
may be described by an ODE system expressed in the classical form of (2.7), which, in this
case, will simply result in

dvC(t)
dt

=
[
dqNL(vc)

dvC

]−1
[iS(t) − iNL(vc(t)) − iL(t)].

diL(t)
dt

=
1
L
vc(t).

(2.10)

2.2. Transient Analysis: Time-Step Integration

Obtaining the solution of (2.1) over a specified time interval [t0, tFinal] with a specific initial
condition y(t0) = y0 is what is usually known as an initial value problem, and computing such
solution is frequently referred to as transient analysis. The most natural way to evaluate y(t) is
to numerically time-step integrate (2.1) directly in time domain. One possible way to do that
consists in simply converting the differential equations into difference equations, in which the
time derivatives are approximated by appropriate incremental ratios. With this strategy, the
nonlinear differential equations’ system of (2.1) is converted into a purely nonlinear algebraic
system.

The above formulation derives directly from the intuitive idea that derivatives can
be approximated, and thus simply replaced, by finite-difference schemes. Although this
technique can be used to compute the transient response of a generic electronic circuit
described by (2.1), there is as alternative strategy which is more often employed to find
the solution of initial value problems. Such strategy consists in using initial value solvers,
as linear multistep methods [2–5] or Runge-Kutta methods [3–5] (the most popular time-
step integrators). Both of these classes of methods can provide a wide variety of explicit and
implicit numerical schemes, with very distinct properties in terms of order (accuracy) and
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numerical stability. However, since a substantial part of the research work reviewed in this
paper is based on modern multirate Runge-Kutta schemes, we will restrict our presentation
to only these numerical techniques. Linear multistep methods will not be addressed.

2.3. Runge-Kutta Methods

In view of the fact that the well-established theory of numerical integration is oriented toward
the solution of standard ODEs, we will now consider the form of (2.7) for the mathematical
description of a circuit’s operation. So, let us consider a generic initial value problem with n
state variables, expressed in its classical form by the system of (2.7) and the initial condition
y(t0) = y0, that is,

dy(t)
dt

= f(t,y(t)), y(t0) = y0, t0 ≤ t ≤ tFinal, y(t) ∈ R
n. (2.11)

Definition 2.1 (Runge-Kutta (RK) method). A standard s-stage RK method expressed by its
Butcher tableau (b,A, c) [5]

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

(2.12)

for obtaining the numerical solution of (2.11) at the time instant t1 = t0 + h is defined as [3, 5]

y1 = y0 + h
s∑
i=1

biki � y(t0 + h), (2.13)

where

ki = f

⎛
⎝t0 + cih,y0 + h

s∑
j=1

aijkj

⎞
⎠, i = 1, 2, . . . , s. (2.14)

The algorithm defined by (2.13), (2.14) allows the numerical solution yi at any generic
time instant ti to be evaluated from its previous calculated value yi−1. If we have aij = 0 for
j ≥ i, i = 1, 2, . . . , s, then each of the ki in (2.14) is explicitly given in terms of the previously
computed kj , j = 1, 2, . . . , i−1, and the method is then an explicit Runge-Kutta method. If this
is not the case, then the method is implicit and, in general, it is necessary to solve a nonlinear
system of n × s algebraic equations to simultaneously compute all the ki. In general, any
iterative technique (e.g., fixed-point iteration or Newton-Raphson iteration) may be used to
solve the nonlinear system of (2.14).
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Runge-Kutta methods are universally utilized for time-step integrating initial value
problems and differ from linear multistep methods in several aspects. Since they present
a genuine one-step format, one of their main advantages is that there is no difficulty in
changing the steplength h in a dynamic time-step integration process (in opposition to
multistep methods where considerable difficulties may be encountered when we want to
change steplength [5]). It must be noted that small step sizes can provide a good accuracy
in the simulation results but may conduct to large computation times. On the contrary, large
step sizes will reduce the computation time but will definitely conduct to poorer accuracy. A
good compromise between accuracy and simulation time is achieved when h is dynamically
selected according to the solution’s rate of change. The automatic step size control is based on
the estimation of local errors, for which diverse techniques can be used, such as extrapolation
techniques or embedded RK formulas. All theoretical and technical details of implementation
of these techniques, as well as many other aspects of the RK methods, such as consistency,
convergence, order conditions, numerical stability, and so forth, can be seen, for example, in
[3] or [5].

2.4. Conventional Transient Circuit Simulation: SPICE

In the above, we have seen that the most natural way of simulating an electronic circuit is to
numerically time-step integrate the ordinary differential system describing its operation. So,
it should be of no surprise that this straightforward technique was used in the first digital
computer programs of circuit analysis and is still nowadays the most widely used numerical
method for that purpose. It is present in all SPICE (which means simulation program with
integrated circuit emphasis) [6] or SPICE-like computer programs.

SPICEwas initially developed at the Electronics Research Laboratory of the University
of California, Berkeley, in the early 1970s. The real popularity of SPICE started with SPICE2
[6] in 1975, which was a much-improved program than its original version (SPICE1),
containing several analyses (AC analysis, DC analysis, DC transfer curve analysis, transient
analysis, etc.) and device models needed to design integrated circuits of that time. Other
versions of SPICE have been developed along the years, and today many commercial
simulators are based on SPICE. However, its application to RF circuits may cause some
problems resulting from the specific behavior of RF systems. To understand this, we must
recall that RF signals are typically narrowband. This means that a data signal with a relatively
low bandwidth is transmitted at a very high carrier frequency. To simulate a sufficient portion
of the data signal, for example, to estimate bit error rate in modern wireless systems, a large
number of carrier periods must be time-step integrated, and thus a huge number of time
samples is required (a large consumption of memory and computational time).

2.5. Steady-State Analysis

Although some simulation tools focus on transient analysis (SPICE-like simulation), the
steady-state behavior of the circuits is of primary interest to RF and microwave designers.
The main reason for this is that wireless systems are expected to handle a sinusoidal RF
carrier modulated by a slowly varying envelope, so that most aspects of system performance
are easier to characterize and verify in the carrier’s steady state. For instance, harmonic
or intermodulation distortion, noise, power, and transfer characteristics such as gain, or
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impedance are examples of quantities that are best defined in the frequency domain and
thus measured when the circuit is in steady state.

Time-step integration engines, as the ones mentioned above, and which are tailored
for finding the circuit’s transient response, are not adequate for computing the steady-state.
As discussed above, time-step integration is a numerical technique intended to obtain the
solution of an initial value problem, as it evaluates y(t) for a set of successive time instants
(time steps) given an initial condition y(t0). However, if the objective is the determination
of the steady state, there is no alternative other than to pass through the lengthy process
of integrating all transients, and expecting them to vanish. In circuits presenting extremely
different time constants, or high Q resonances, as is typically the case of narrowband RF
and microwave circuits, time-step integration can be very inefficient. Indeed, in such cases,
frequencies in steady-state response are much higher than the rate at which the circuit
approaches this regime, or, in other words, the ratio between the state variables’ highest and
the lowest frequency components is very large. Thus, the number of discretization time steps
used by the numerical integration scheme will be enormous, because the time interval over
which the differential equationsmust be numerically integrated is set by the lowest frequency,
or by how long the circuit spends in achieving the steady state, while the size of the time steps
is determined by the highest frequency component.

If the steady-state response of a circuit consists of generic waveforms presenting a
common period, then the circuit is said to be in periodic steady-state. Computing the periodic
steady state response of an electronic circuit involves finding the initial condition, y(t0), for
the differential system that describes the circuit’s operation, such that the solution at the end
of one period matches the initial condition, that is, y(t0) = y(t0 + T), where T is the period.
Problems of this form, that is, those of finding the solution to a system of ordinary differential
equations that satisfies constraints at two or more distinct points in time, are referred to as
boundary value problems. In this particular case, we have a periodic boundary value problem
that can be formulated as

p(y(t)) +
dq(y(t))

dt
= x(t),

y(t0) = y(t0 + T), t0 ≤ t ≤ t0 + T, y(t) ∈ R
n,

(2.15)

or, in the classical ODE form, as

dy(t)
dt

= f(t,y(t)),

y(t0) = y(t0 + T), t0 ≤ t ≤ t0 + T, y(t) ∈ R
n,

(2.16)

where the condition y(t0) = y(t0 + T) is known as the periodic boundary condition.
Solving (2.16) involves computing a numerical solution that simultaneously satisfies

the differential system and the two-point periodic boundary condition. Certainly, there
is no shortage of mathematical literature describing methods for solving boundary value
problems. However, a particular technique has been found especially useful for electronic
circuit problems. This technique is known as the shooting-Newton method [7].
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2.6. The Shooting-Newton Method

The time-domain method most commonly used for numerically evaluating the periodic
steady-state solution of an electronic circuit is the shooting method. Shooting solves boundary
value problems by computing the solution to a succession of initial value problems with
progressively improved guesses of an initial condition, which ultimately results in the steady
state. In a circuit’s steady-state simulation, shooting begins by simulating the circuit for
one period using some guessed initial condition (generally determined from a previous DC
analysis). Then, the computed solution at the end of the period is checked, and if it does not
agree with the initial condition, the initial condition is wisely modified. The circuit is then
resimulated with the adjusted initial condition, and this process is repeated until the solution
after one period matches the initial condition.

In order to provide some mathematical details on the implementation of the shooting
method, let us consider (2.16). Now suppose that we want to numerically time-step integrate
the differential system in (2.16) with an initial value solver. As stated above, time-step
integration is tailored for transient analysis but is inadequate for computing steady-state
responses. The problem comes from the fact that we do not know a priori which initial
condition y(t0) must be considered that will lead to the steady-state solution in the period
T , that is, that will satisfy the periodic boundary condition y(t0) = y(t0 + T). So, we are trying
to solve a boundary value problem with an initial value solution technique. One possible
way to convert the initial value solution procedure into a boundary value problem solver
consists of guessing the initial estimate of y(t0), or shooting for y(t0), time-step integrating
the differential system from t = t0 until t = t0 +T , comparing the resulting y(t0 +T)with y(t0),
and then wisely updates the initial estimate. So, shooting is an iterative solver that uses an
initial value technique to solve a boundary value problem. In the end, it relies on finding the
solution of

y(t0) = y(t0 + T) ⇐⇒ y(t0) − y(t0 + T) = 0. (2.17)

Let us now define y(t0 + T) = φ(y(t0), T) and rewrite (2.17) as

φy((t0), T) − y(t0) = 0, (2.18)

where φ is the state-transition function [7, 8]. An easy way to solve (2.18) consists in using the
fixed-point iteration solver, which, in this case, would simply result in

y[r+1](t0) = φ
(
y[r](t0), T

)
. (2.19)

However, shooting with the fixed-point iteration technique is obviously equivalent to
integrating the original differential system from t = t0 until all transients decay. So, it is
generally a useless technique because the convergence to the periodic steady-state solution
may be extremely slow. A well-known tactic to accelerate the route to steady state, that is, to
accelerate the convergence of (2.18) to its solution, is the so-called shooting-Newton technique.
As happens with any other shooting technique, shooting Newton is based on guessing
initial conditions. However, it can take advantage of the fact that, although electronic circuits
can be strongly nonlinear, their state-transition functions are usually only mildly nonlinear.
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This means that slight perturbations on the initial condition (starting state) produce almost
proportional perturbations in the subsequent time states. Taking this into account, it is easy to
conclude that (2.18) can be iteratively solved in an efficient way with the Newton’s method,
which in this case will lead us to

φ
(
y[r](t0), T

)
− y[r](t0) +

[
∂φ(y(t0), T)

∂y(t0)
− I

]∣∣∣∣
y(t0)=y[r](t0)

[
y[r+1](t0) − y[r](t0)

]
= 0, (2.20)

where I is the n × n identity matrix. The only entity of (2.20) that is difficult to compute is
the Jacobian of the state-transition function (usually referred to as the sensitivity matrix). In
order to compute this matrix, we must take into consideration the chain differentiation rule.
In fact, since φ(y(t0), T) is nothing but the numerical value yK, withK being the total number
of time steps in the interval [t0, t0 + T], which depends on the previous value yK−1, which,
itself, depends on yK−2, and so forth, the sensitivity matrix can be given by

∂φ(y(t0), T)
∂y(t0)

=
∂yK
∂yK−1

· ∂yK−1
∂yK−2

· · · ∂y1
∂y0

. (2.21)

It is easy to see that all the matrices in (2.21) can be individually computed along
the time-step integration process. For concreteness, let us suppose that a standard Runge-
Kutta method (2.13), (2.14) is being used to perform time-step integration on the consecutive
iterations of the shooting method. If, for example, we want to evaluate the first matrix, then
we have

∂y1
∂y0

= I + h
s∑
i=1

bi
∂ki

∂y0
. (2.22)

Now, if we rewrite (2.14) as

ki = f

⎛
⎝t0 + cih,y0 + h

s∑
j=1

aijkj

⎞
⎠ = f(t0 + cih,Yi), i = 1, 2, . . . , s, (2.23)

we obtain

∂ki

∂y0
=

∂f
∂y

∣∣∣∣
t0+cih,Yi

· ∂Yi

∂y0
, i = 1, 2, . . . , s, (2.24)

with

∂Yi

∂y0
= I + h

s∑
j=1

aij

∂kj

∂y0
. (2.25)

Although solving (2.20) and computing the sensitivity matrix may involve some
extracomputational cost, shooting Newton converges to the steady-state solution much faster
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than the normal time-step integration procedure (shooting with fixed-point iteration). This
is the reason why it is the time-domain steady-state engine most widely used in circuit
simulation.

3. Numerical Simulation Algorithms Based on Multirate
Runge-Kutta Schemes

3.1. Time-Step Integration with Different Step Sizes

As stated above, dynamic behavior of some electronic circuits involves signals with widely
separated rates of variation. Analog circuits presenting extremely different time constants,
coupled systems of analog and digital networks, or combined technologies of RF and
baseband analog (or even digital) blocks in the same circuit are typical examples where the
corresponding state variables may evolve according to very distinct time scales. In such cases,
node voltages or branch currents presenting slow (latent) and very fast (active) time evolution
ratesmay coexist in the same problem. This phenomenon, inwhich some of the state variables
are varying very slowly (or even being practically constant) within a specific time interval,
while other variables exhibit fast variations in that interval, is frequently referred to as time-
domain latency [9–15]. Another common situation where time-domain latency can be found
refers to purely digital circuits. For example, in large-scale integration (LSI) or very large-
scale integration (VLSI) applications, usually, only a small part of the circuits (a small number
of state variables) is active in a certain time interval, whereas the majority is latent (a large
number of state variables may possibly remain practically constant within that interval). In
summary, many kinds of electronic circuits may exhibit time-domain latency.

As described in Section 2, time-step integration is a conventional technique that is
used by SPICE-like computer programs for simulating electronic circuits. However, when
integrating differential systems whose components (state variables) evolve according to
different time rates, one would like to use numerical schemes that do not expend unnecessary
work on slowly changing components. In fact, in such cases, traditional time-step integrators,
like standard Runge-Kutta or linear multistep methods—which use the same step size for
all system’s components—become inefficient. To cope with this, some modern multirate
Runge-Kutta (MRK) schemes have been proposed in the literature in the recent years [11–
14]. These powerful schemes split the differential system of (2.11) into coupled active and
latent subsystems

dyA(t)
dt

= fA(t,yA,yL), yA(t0) = yA,0,

dyL(t)
dt

= fL(t,yA,yL), yL(t0) = yL,0,

(3.1)

with

y =

[
yA

yL

]
, yA ∈ R

nA , yL ∈ R
nL , nA + nL = n, (3.2)
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(a)
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H = m · h

· · · · · ·
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yA,2
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yA,λ
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yL,1 yL(t)

yA(t)

yL,0

(b)

Figure 2: (a) Single step in a standard Runge-Kutta integrator. (b) Micro- and macrosteps in a multirate
Runge-Kutta integrator [16].

where yA is the active (fast-varying) state-variable components’ vector, and yL is the
latent (slowly varying) state-variable components’ vector. The active components are then
integrated with a small step size h (microstep), while the latent components are integrated
with a much larger step sizeH (macrostep). The number of microsteps within each macrostep
is an integer that will be denoted bym, that is to say,H = m · h. This is illustrated in Figure 2.

In summary, the vector of active state variables is calculated at each of the time instants
t0 + h, t0 + 2h, t0 + 3h, . . . , t1 = t0 + mh, defined in the fine grid t = t0 + λh, λ = 1, 2, . . . , m,
whereas the vector of latent state variables is evaluated only in the coarse time instant t1 =
t0 + H. A general definition of a multirate Runge-Kutta time-step integrator is presented in
the following.

Definition 3.1 (multirate Runge-Kutta (MRK) method). Consider two Runge-Kutta methods
of s and s stages, that can be, but do not necessarily have to be, the same, expressed by their
Butcher tableaus (b,A, c) and (b,A, c):

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

. (3.3)
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The resulting multirate Runge-Kutta method for obtaining the numerical solution of the
partitioned system of (3.1), using a microstep h for the active components and a macrostep
H for the latent components, is defined as follows [11, 12]:

(i) the active (fast-varying) components yA are given by

yA,λ+1 = yA,λ + h
s∑
i=1

bikλ
A,i � yA(t0 + (λ + 1)h), λ = 0, 1, . . . , m − 1, (3.4)

where

kλ
A,i = fA

⎛
⎝t0 + (λ + ci)h,yA,λ + h

s∑
j=1

aijkλ
A,j , Ỹ

λ
L,i

⎞
⎠, i = 1, 2, . . . s, (3.5)

with

Ỹλ
L,i � yL(t0 + (λ + ci)h), ci =

s∑
j=1

aij , (3.6)

(ii) the latent (slowly varying) components yL are given by

yL,1 = yL,0 +H
s∑
i=1

bikL,i � yL(t0 +H), (3.7)

where

kL,i = fL

⎛
⎝t0 + ciH, ỸA,i,yL,0 +H

s∑
j=1

aijkL,j

⎞
⎠, i = 1, 2, . . . , s, (3.8)

with

ỸA,i � yA(t0 + ciH), ci =
s∑

j=1

aij . (3.9)

As can be seen, the coupling between the active and latent subsystems is performed
by the intermediate stage values Ỹλ

L,i and ỸA,i. There are several strategies for computing
these values, as the ones suggested in [9, 10], which are based on interpolation and/or
extrapolation techniques, or the ones more recently proposed in [11, 12] or [13], which are
based on coupling coefficients.

It must be noted that, in general, the partition into fast and slow subsystems, as well as
the number of microsteps within a macrostep, may vary throughout the integration process.
Technical details of MRK code implementation, such as active-latent partitioning strategies,
step size control tools, or even stiffness detection stratagems, are described in detail, for
example, in [11] or [15].
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3.2. Multitime Formulation

Signals handled by wireless communication systems can be usually described by a high-
frequency RF carrier modulated by some kind of baseband information signals, as amplitude
and/or phase signals. The general form of an amplitude and phase-modulated signal can be
expressed as

x(t) = e(t) cos
(
ωCt + φ(t)

)
, (3.10)

where e(t) and φ(t) are, respectively, the slowly varying amplitude and phase baseband
signals (the complex envelope in a constellation diagram), modulating the cos(ωCt) fast-
varying carrier.

Circuits driven by envelope- (amplitude and/or phase-) modulated signals, or
presenting themselves state variables of this type, are common in RF and microwave
applications. Since the baseband signals have a spectral content of much lower frequency
than the carrier, that is, because they are typically slowly varying signals, while the carrier
is a fast-varying entity, simulating nonlinear circuits—in a computationally efficient way—
containing this kind of signals is often a very challenging task. Because the aperiodic nature
of the envelope modulation signals obviates the use of any steady-state technique, one might
think that conventional time-step integration (SPICE-like transient simulation) would be the
natural method for simulating such circuits, as long as the time scale of the signals’ slowly
varying components is comparable to the larger time constants involved. However, the large
time constants of the bias networks determine long transient regimes and, as a result, the
obligation of simulating a large number of carrier periods. In addition, computing the RF
carrier oscillations long enough to obtain information about its envelope properties is, itself,
a colossal task. Time-step integration is thus inadequate for simulating this kind of problems.

In this section, we will introduce a powerful strategy for analyzing nonlinear circuits
handling multirate signals, that is, signals containing two, or more, entities running on
widely separated time scales. This strategy is suitable to deal with the above-described
amplitude and/or phase-modulated signals, as also with any other kind of multirate signals.
It uses multiple time variables to describe multirate behavior, and it is based on the fact that
multirate signals can be represented much more efficiently if they are defined as functions of
two or more time variables, that is, if they are defined as multivariate functions [17, 18]. As we
will see, with this multivariate formulation, circuits will be no longer described by ordinary
differential systems in the one-dimensional time t, but, instead, by partial differential systems.

The advantages of using multivariate representations are easily illustrated by
considering a bidimensional problem. Thus, let us consider, for example, an amplitude
modulated RF carrier of the form

x(t) = e(t) sin
(
2πfCt

)
, (3.11)

where e(t) is an envelope, slowly varying in time, while sin(2πfCt) is a fast-varying RF
carrier. As explained, simulating a circuit with this kind of stimulus, and using conventional
time-step integration schemes, tends to be highly inefficient because it requires time steps
closely spaced in time (for representing each fast RF cycle accurately) and during a very long
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time window determined by the envelope. So, let us now consider a bivariate representation
for x(t), defined as

x̂(t1, t2) = e(t1) sin
(
2πfCt2

)
, (3.12)

where t1 is the slow envelope time scale, and t2 is the fast carrier time scale. In this particular
case, x̂(t1, t2) is a periodic function with respect to t2 but not to t1, that is,

x̂(t1, t2) = x̂(t1, t2 + T2), T2 =
1
fC

. (3.13)

Figures 3 and 4 depict the univariate and bivariate forms defined in (3.11) and (3.12),
respectively, for a [0, 50μs] time interval and a rectangular region [0, 50μs] × [0, T2]. An
envelope e(t) = 5 sinc(40 000(t − 35 × 10−6)) + 2.5 and a carrier frequency of fC = 1MHz,
were considered in this basic illustrative example.

By comparing Figures 3 and 4, it can be seen that x̂(t1, t2) does not have as many
undulations as x(t), allowing thus a more compact representation with fewer samples.
Furthermore, due to the periodicity of x̂(t1, t2) in t2, we know that its plot repeats over the
rest of this time axis. Thus, the bivariate form plotted in Figure 4 contains all the information
necessary to recover the original univariate form depicted in Figure 3. In order to get a
realistic idea of the savings that can be achieved by using the bivariate formulation, let us
suppose that 20 points were sufficient to represent the slowly varying envelope signal e(t)
accurately in the [0, 50μs] interval, and that 20 points were also used per each carrier cycle.
In such case, the total number of samples required to represent the bivariate form x̂(t1, t2)will
be 20 × 20 = 400. On the other hand, since there are 50 carrier cycles in the [0, 50μs] interval,
the number of samples required to represent the univariate form x(t) will be 50 × 20 = 1000.
Now, if we consider a realistic RF scenario, with a much higher value for the carrier frequency
(e.g., fC = 1GHz), then the number of points necessary to represent x(t) will considerably
increase to 50000 × 20 = 106, while the number of points necessary to represent x̂(t1, t2) will
remain exactly the same (20 × 20 = 400).

Let us now consider a general nonlinear RF circuit described by the differential
algebraic equations’ (DAE) system of (2.1), and let us suppose that this circuit is driven by an
envelope-modulated signal of the form (3.11). Taking the above considerations into account,
we will adopt the following procedure: for the slowly varying parts (envelope time scale) of
the expressions of x(t) and y(t), t is replaced by t1; for the fast-varying parts (RF carrier time
scale), t is replaced by t2. This results in bivariate representations for the excitation x̂(t1, t2),
and the solution ŷ(t1, t2) and the application of this bivariate strategy to the system of (2.1)
converts it into the following multirate partial differential algebraic equations’ (MPDAE) system
[17, 18]:

p(ŷ(t1, t2)) +
∂q(ŷ(t1, t2))

∂t1
+
∂q(ŷ(t1, t2))

∂t2
= x̂(t1, t2). (3.14)

The mathematical relation between (2.1) and (3.14) establishes that if x̂(t1, t2) and
ŷ(t1, t2) satisfy (3.14), then the univariate forms x(t) = x̂(t, t) and y(t) = ŷ(t, t) satisfy (2.1)
[17]. Therefore, univariate solutions of (2.1) are available on diagonal lines t1 = t, t2 = t, along
the bivariate solutions of (3.14), that is, y(t)may be retrieved from its bivariate form ŷ(t1, t2),
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Figure 4: Bivariate representation of the amplitude-modulated RF carrier.

by simply setting t1 = t2 = t. Consequently, if we want to obtain the univariate solution in the
generic [0, tFinal] interval, due to the periodicity of the problem in the t2 dimension, we will
have

y(t) = ŷ(t, t mod T2), (3.15)

on the rectangular domain [0, tFinal] × [0, T2], where t mod T2 represents the remainder of
division of t by T2. Equation (3.15) defines the sawtooth path illustrated in Figure 5.

The multivariate formulation can be employed to solve many types of multirate
problems. It can be adopted to deal with either weakly or strongly nonlinear regimes, as well
as with a large class of multirate signals. The main advantage of this MPDAE approach is that
it can result in significant improvements in simulation speed when compared to DAE-based
alternatives [16–22].
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Figure 5: Sawtooth path in the t1t2 plane, for recovering the univariate solution from its bivariate form.

3.3. Envelope following Methods Using RK Schemes

In order to compute the bivariate solutions, some initial/boundary conditions must be
added to (3.14). These are determined by the existence, or not, of periodicity in the signal
components. As stated above, a typical case of significant practical interest is the envelope-
modulated regime, which leads to an initial-boundary value problem. Indeed, envelope-
modulated responses to excitations of the form of (3.10) correspond to a combination of
initial and periodic boundary conditions in (3.14). This means that the bivariate forms of
these solutions can be obtained by numerically solving the following initial-boundary value
problem [17]:

p(ŷ(t1, t2)) +
∂q(ŷ(t1, t2))

∂t1
+
∂q(ŷ(t1, t2))

∂t2
= x̂(t1, t2),

ŷ(0, t2) = g(t2),

ŷ(t1, 0) = ŷ(t1, T2),

(3.16)

on the rectangle [0, tFinal] × [0, T2]. g(·) is a given initial-condition function defined on [0, T2],
satisfying g(0) = g(T2) = y(0) [17], and the periodic boundary condition ŷ(t1, 0) = ŷ(t1, T2) is
due to the periodicity of the problem in the t2 fast carrier time scale.

The envelope transient over shooting [16, 17, 19, 23, 24] is an efficient time-domain
method that can be used to obtain the numerical solution of circuits described by initial-
boundary value problems of the form (3.16). This method is a particular implementation of a
general technique that is often referred to as envelope following [25] and consists in replacing
the derivatives of the t1 slow aperiodic time scale by finite-difference approximations (e.g.,
the Backward Euler rule), to then obtain a set of successive boundary value problems with
periodic boundary conditions

p(ŷi(t2)) +
q(ŷi(t2)) − q(ŷi−1(t2))

h1,i
+
dq(ŷi(t2))

dt2
= x̂(t1,i, t2), ŷi(0) = ŷi(T2), (3.17)

where ŷi(t2) = ŷ(t1,i, t2), h1,i = t1,i − t1,i−1, and T2 is the period in the periodic fast time scale
t2. This means that once ŷi−1(t2) is known, the solution on the next slow time instant ŷi(t2)
is obtained by solving (3.17). Thus, for obtaining the whole solution ŷ(t1, t2) in the entire
domain [0, tFinal] × [0, T2], a total of K1 boundary value problems have to be solved, with
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K1 being the number of steps in t1. With the envelope transient over shooting technique,
each of the periodic boundary value problems of (3.17) is solved using the shooting method
described in Section 2.6, where RK methods can be used to perform the successive time-step
integrations in the consecutive shooting iterations.

3.4. Envelope following Methods Using MRK Schemes

Recently, a very powerful computer-aided design tool especially conceived for the efficient
time-domain simulation of highly heterogeneous nonlinear RF circuits has been proposed
[16, 19]. This technique is based on an ingenious modification of the above-described
envelope transient over shooting technique. It splits the circuits into two distinct parts,
according to the time rates of change of their state variables, and, instead if using classical
time-step integrators, it uses modern multirate Runge-Kutta (MRK) schemes to perform
time-step integration with different step sizes in each of the consecutive shooting iterations
needed to solve (3.17). Indeed, the system of (3.17) is partitioned into the following active
and latent subsystems:

pA(ŷA,i(t2), ŷL,i(t2)) +
qA(ŷA,i(t2), ŷL,i(t2)) − qA(ŷA,i−1(t2), ŷL,i−1(t2))

h1,i

+
dqA(ŷA,i(t2), ŷL,i(t2))

dt2
= x̂(t1,i, t2),

pL(ŷA,i(t2), ŷL,i(t2)) +
qL(ŷA,i(t2), ŷL,i(t2)) − qL(ŷA,i−1(t2), ŷL,i−1(t2))

h1,i

+
dqL(ŷA,i(t2), ŷL,i(t2))

dt2
= x̂(t1,i, t2),

(3.18)

where

ŷi(t2) =

[
ŷA,i(t2)

ŷL,i(t2)

]
, ŷA,i(t2) ∈ R

nA , ŷL,i(t2) ∈ R
nL , nA + nL = n. (3.19)

ŷA,i(t2) is the active (fast-varying) state variable components’ vector at the slow time instant
t1,i, and ŷL,i(t2) is the latent (slowly varying) state variable components’ vector at the same
slow time instant. The active components will be integrated in t2 with a small step size h2

(microstep), while the latent components will be integrated with a much larger step size
H2 = m · h2 (macrostep).

In summary, this powerful technique (envelope transient over shooting with MRK)
can be seen as a multirate scheme (different time-step integration sizes to state variables that
present significantly disparate rates of change) coupled with a multirate excitation regime
(multiple time-scale representations). Consequently, it is able to benefit from the circuits’
heterogeneities, and also from the stimuli time-rate disparities, to significantly reduce the
computational effort required for simulating the circuits.
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Figure 6: Simplified power amplifier schematic used in wireless polar transmitters [16].

3.5. Performance of the Methods

The performance and the efficiency of all the numerical algorithms based on MRK schemes
described in this paper were already successfully attested through their application to
several illustrative examples of practical relevance. Indeed, electronic circuits with distinct
configurations and levels of complexity were especially selected to illustrate the significant
gains in computation speed that can be achieved when simulating the circuits with these
methods.

Until 2006, multirate Runge-Kutta methods were only used to obtain the numerical
solution of univariate initial value problems (transient electronic circuit simulation in the one-
dimensional time). For example, in [11, 13], or [15], multirate Runge-Kutta methods were
used to obtain, in an efficient way, the numerical solution of two digital electronic circuits: a
digital inverter chain and a pulse generator. Significant reductions in the computational effort
were obtained with the methods when compared to standard RK schemes.

Since 2007, multirate Runge-Kutta methods were also included in numerical
algorithms conceived for operating in multivariate frameworks, that is, for solving multi-
dimensional problems described by partial differential systems. For example, in [16, 19]
multirate Runge-Kutta methods were used within a bidimensional envelope following
technique to efficiently compute the numerical solution of two RF circuits operating in two
distinct time scales: a resistive field effect transistor (FET)mixer and a polar power amplifier
used inwireless transmitters. Later, in [20, 21]multirate Runge-Kuttamethodswere also used
within a three-dimensional envelope following technique to simulate a polar power amplifier
operating in three separated time scales. The efficiency gains provided by the use of different
step sizes (MRK schemes) within the classical univariate time-step integration, but mostly
within the bivariate formulation, were also evidenced in [22].

In order to provide a realistic idea of the efficiency (in terms of computational speed) of
the methods reviewed in this paper, we decided to include in this section a brief comparison
between standard RK and multirate MRK schemes, within the univariate and bivariate
formulations. For that, we considered the RF polar transmitter PA described in [16], and
depicted in Figure 6, as our illustrative application example. The most relevant components’
values of this circuit are vDD = 25 V, L1 = 2μH, C1 = 3.2 nF, L2 = 40 nH, C2 = 16 pF, L3 = 0.4 nH,
C3 = 16 pF, and R = 50Ω. The MOSFETs (metal-oxide semiconductor field effect transistors)
are represented by the following simplified nonlinear device model:

iDS(vGS, vDS) = β
1
2
[
v + ln

(
ev + e−v

)]
tanh(αvDS), v = KT (vGS − VT ), (3.20)
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Table 1: Computation times simulation of the RF polar transmitter PA depicted in Figure 6.

Simulation time interval Univariate time-step integration Bivariate envelope following methods
with RK (SPICE) with MRK ETS with RK ETS with MRK

[0, 200 ns] 39m 30 s 10m 08 s 5m 44 s 32 s
[0, 800 ns] >2 h 41m 55 s 26m 01 s 2m 38 s

with α = 1V−1, β=0.25A/V, KT = 2, and VT = 3 V. Similarly, the diode current-voltage
characteristic is given by

iD(vD) = IS
(
evD/ηVTemp − 1

)
, (3.21)

where IS = 1μA, η = 2, and VTemp = 0.026V.
In this circuit, we have a combination of periodic (RF carrier and digital clock) and

aperiodic [AM(t) and PM(t)] forcing functions, of very distinct time scales, with a mixture
of heterogeneous state variables with widely disparate rates of variation. For instance, while
voltages and currents in the output band-pass filter are all very fast (active state variables),
voltages and currents in the AM branch are much slower (latent state variables). The circuit
was simulated in MATLAB, and numerical computation times for two different simulation
time intervals are presented in Table 1. These results were obtained using (i) a time-step
integrator based on a RK scheme (SPICE-like simulation), (ii) a time-step integrator based
on an MRK scheme, (iii) an envelope transient over shooting (ETS) algorithm using an RK
scheme and (iv) an ETS algorithm using an MRK scheme. Standard RK and modern MRK
schemes of order 3 based on the Bogacki-Shampine formulas [26] were used to perform the
necessary numerical time-step integration.

Table 1 evidences the efficiency gains that can be achieved with the use of MRK
schemes, in comparison to classical RK ones, within the univariate and the bivariate
formulations. It also shows the advantage of operating with multiple time variables, instead
of working in the natural one-dimensional time. It must be noted that these gains in
computational speed were obtained without compromising the accuracy of the results.
Indeed, the maximum discrepancy between the solutions obtained with any of the methods
under analysis was of the order 10−8 for all the circuit’s state variables.

4. Conclusion

Despite the scientific field of numerical simulation of electronic problems has appeared in
the 1970s with the advent of SPICE, this subject is still today a hot topic. Indeed, serious
difficulties arise when we have heterogeneous circuits composed of different types of blocks
and/or operating in multiple time scales. In this paper, we have briefly reviewed some ways
to circumvent these difficulties, operating strictly in the time domain, and which consist in
using multirate Runge-Kutta schemes encapsulated in (i) one-dimensional engines and (ii)
multidimensional algorithms (by decoupling the components of the signals into different
time dimensions). A key aspect that contributes to the success of these numerical methods is
the partitioning of the circuits into subcircuits according to the time rates of change of their
state variables.
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