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The nonlinear p-Laplace diffusion (p > 1) was considered in the Cohen-Grossberg neural network
(CGNN), and a new linear matrix inequalities (LMI) criterion is obtained, which ensures the
equilibrium of CGNN is stochastically exponentially stable. Note that , if p = 2, p-Laplace diffusion
is just the conventional Laplace diffusion in many previous literatures. And it is worth mentioning
that even if p = 2, the new criterion improves some recent ones due to computational efficiency. In
addition, the resulting criterion has advantages over some previous ones in that both the impulsive
assumption and diffusion simulation are more natural than those of some recent literatures.

1. Introduction and Preparation

It is well known that Cohen-Grossbeg neural network (CGNN)was proposed by Cohen and
Grossberg [1] in 1983. Since then there have been a lot of interested results obtained in many
literatures (see [2–9]) due to its general applications, such as pattern recognition, image
and signal processing, optimization automatic control, and artificial intelligence. Usually,
there exist the impulsive effect and time-varying delays phenomenon in various neural
networks [3, 5–7, 10–14]. Besides, diffusion effects cannot be avoided in the neural networks
when electrons are moving in asymmetric electromagnetic fields [15–18]. However, diffusion
disturbance was always simulated simply by linear Laplace diffusion [15–18]. Few papers
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involved the nonlinear reaction-diffusion [19]. So in this paper, we investigate the stability of
the following stochastic CGNN with nonlinear p-Laplace diffusion (p > 1):

du(t, x) =
{
∇ ·
(
D̃(t, x, u) ◦ ∇pu

)
−A(u(t, x))

×[B(u(t, x)) − Cf(u(t, x)) +Dg(u(t − τ(t), x))
]}

dt

+ σ(u(t, x))dw(t), t ∈ [tk, tk+1)

u
(
t+k, x

)
= Mu

(
t−, x

)
, t = tk

u(t0 + θ, x) = ϕ(θ, x), (θ, x) ∈ [−τ, 0] × ∂Ω

∂ui(t, x)
∂ν

= 0, (t, x) ∈ [−τ,+∞) × ∂Ω, i = 1, 2, . . . , n,

(1.1)

where Ω is a bounded subset in Rm with smooth boundary ∂Ω, and ∂ui(t, x)/∂ν =
((∂ui(t, x)/∂x1), (∂ui(t, x)/∂x2), . . . , (∂ui(t, x)/∂xm))

T denotes the outward normal derivative
on ∂Ω.

Remark 1.1. If p = 2, system (1.1)was studied by [5] though there is a little difference between
Dirichlet boundary condition and Neumann boundary condition. However, our impulsive
assumption u(t+

k
, x) = Mu(t−

k
, x) is more natural than that of [5], which will result in some

difference in methods.

Here,M is a diagonal matrix,Ω ∈ Rm is a bounded compact set with smooth boundary,
u = (u1, u2, . . . , un)

T ∈ Rn, and w(t) = (w1(t), w2(t), . . . , wn(t))
T is a n-dimensional Brownian

motion defined on a complete probability space (Ω,F, P) with the natural filtration {Ft}t≥0
generated by the process {w(s) : 0 ≤ s ≤ t}. We associate Ω with the canonical space
generated by all {wi(t)} and denoted by F the associated σ-algebra generated by w(t) with
the probability measure p. A(u(t, x)) presents an amplification function, B(u(t, x)) is an
appropriately behavior function, and f and g denote the activation function. τ(t) (0 ≤ τ(t) ≤
τ) corresponds to the transmission delays at time, and tk is called the impulsive moment
with 0 < t1 < t2 < · · · < tk < · · · and limk→∞tk = +∞. We always assume u(t+k, x) =
u(tk, x). ∇pu = (∇pu1, . . . ,∇pun)

T , ∇pui = (|∇ui|p−2(∂ui/∂x1), . . . , |∇ui|p−2(∂ui/∂xm))
T , D̃ ◦

∇pu = (D̃ik|∇ui|p−2(∂ui/∂xk))n×m is Hadamard product of matrix D̃ and ∇pu [20]. Here,
the diffusion parameters matrix D̃(t, x, u) is denoted simply as D̃ = (D̃ik)n×m. Let Yi =
(yi1, . . . , yim)

T , i = 1, 2, . . . , n, and matrix Y = (Y1, . . . , Yn)
T , and we denote ∇ · Yi =∑m

k=1 ∂yik/∂xk, ∇ · Y = (∇ · Y1,∇ · Y2, . . . ,∇ · Yn)
T . Particularly, ∇pu = ∇u for the case of

p = 2.

Remark 1.2. Diffusion effects always occur in the neural networks when electrons are moving
in asymmetric electromagnetic fields [15–18], and diffusion behavior is so complicated that
it cannot always be simulated by linear Laplace diffusion. So in this paper, the nonlinear
p-Laplace diffusion is considered in System (1.1).
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Assume, in addition, the following.

(H1) A(u(t, x)) is a bounded, positive, and continuous diagonal matrix, that is, there
exist two positive diagonal matrices A and A such that 0 < A ≤ A(u(t, x)) ≤ A.

(H2) B(u(t, x)) = (b1(u1(t, x)), b2(u2(t, x)), . . . , bn(un(t, x)))
T such that there exists a

positive diagonal matrix B = diag(B1, B2, . . . , Bn) satisfying (bi(ui(t, x))/ui(t, x)) ≥
Bi for all i.

(H3) There exist two positive diagonal matrices F = diag(F1, F2, . . . , Fn) and G =
diag(G1, G2, . . . , Gn) such that

0 ≤ fi(r)
r

≤ Fi, 0 ≤ gi(r)
r

≤ Gi, ∀i. (1.2)

(H4) The null solution is the equilibrium point of system (1.1), that is, the following
conditions hold:

B(0) − Cf(0) −Dg(0) = 0, trace
[
σT (u(t, x))σ(u(t, x))

]
≤ uT (t, x)Qu(t, x), (1.3)

where the symmetrical matrix Q > 0.
For convenience’s sake, we introduce some standard notations

(i) L2(R)(R × Ω): the space of real Lebesgue measurable functions of R × Ω, it
is a Banach space for the 2-norm ‖u(t)‖2 = (

∑n
i=1 ‖ui(t)‖)1/2 with ‖ui(t)‖ =

(
∫
Ω |ui(t, x)|2dx)1/2, where |ui(t, x)| is Euclid norm.

(ii) L2
F0
([−τ, 0] × Ω;Rn): the family of all F0-measurable C([−τ, 0] × Ω;Rn-) value

random variable ξ = {ξ(θ, x) : −τ ≤ θ ≤ 0, x ∈ Ω} such that sup−τ≤θ≤0E‖ξ(θ)‖22 < ∞,
where E{·} stands for the mathematical expectation operator with respect to the
given probability measure p.

(iii) Q = (qij)n×n > 0 (<0): a positive (negative) definite symmetrical matrix, that is,
yTQy > 0 (<0) for any 0/=y ∈ Rn.

(iv) Q = (qij)n×n ≥ 0 (≤0): a semipositive (semi-negative) definite symmetrical matrix,
that is, yTQy ≥ 0 (≤0) for any y ∈ Rn.

(v) Q ≥ Q̃ (Q ≤ Q̃): this means Q − Q̃ is a semi-positive (semi-negative) symmetrical
definite matrix.

(vi) Q > Q̃ (Q < Q̃): this means Q − Q̃ is a positive (negative) symmetrical definite
matrix.

(vii) λmax(Φ), λmin(Φ) denotes the largest and smallest eigenvalue of symmetrical matrix
Φ, respectively.

(viii) I: identity matrix with compatible dimension.

(ix) Denote |C| = (|cij |)n×n for any matrix Cn×n; |u(t, x)| = (|u1|, |u2|, . . . , |un|) for any
u ∈ Rn.

Let u(t, x;ϕ) denote the state trajectory from the initial data u(t0 + θ, x;ϕ) = ϕ(θ, x) on
−τ ≤ θ ≤ 0 in L2

F0
([−τ, 0] ×Ω;Rn).
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Definition 1.3. The null solution of impulsive system (2.2) is globally stochastically
exponentially stable in the mean square if for every ϕ ∈ L2

F0
([−τ, 0] × Ω;Rn), there exists

scalars β > 0 and γ > 0 such that

E
(∥∥u(t, ϕ)∥∥22

)
≤ γe−βt sup

−τ≤θ≤0
E
(∥∥ϕ(θ)∥∥22

)
. (1.4)

Lemma 1.4 (see [11]). LetU,P be any matrices, ε > 0 is a positive number and matrixH = HT > 0,
then

PTU +UTP ≤ εPTHP + ε−1UTH−1U. (1.5)

Lemma 1.5 (Schur complement [3]). The LMI

(
Q(t) S(t)
ST (t) R(t)

)
> 0, (1.6)

where matrix S(t) and symmetrical matrices Q(t) and R(t) depend on t, is equivalent to any one of
the following conditions:

(L1) R(t) > 0, Q(t) − S(t)R−1(t)ST(t) > 0;

(L2) Q(t) > 0, R(t) − ST (t)Q−1(t)ST (t) > 0.

Lemma 1.6 (see [21]). Consider the following differential inequality:

D+v(t) ≤ −av(t) + b[v(t)]τ , t /= tk

v(tk) ≤ akv
(
t−k
)
+ bk

[
v
(
t−k
)]

τ
,

(1.7)

where v(t) ≥ 0, [v(tk)]τ = supt−τ≤s≤tv(s), [v(t
−
k)]τ = supt−τ≤s≤tv(s) and v(t) is continuous except

tk, k = 1, 2, . . ., where it has jump discontinuities. The sequence tk satisfies 0 = t0 < t1 < t2 < · · · <
tk < tk+1 < · · · , and limk→∞tk = ∞. Suppose that

(1) a > b ≥ 0;

(2) tk − tk−1 > δτ , where δ > 1, and there exist constants γ > 0, M > 0 such that

ρ1ρ2 · · · ρk+1 ≤ Meγtk , (1.8)

where ρi = max{1, ai + bie
λτ}, λ > 0 is the unique solution of equation λ = a − beλτ then

v(t) ≤ M[v(0)]τe
−(λ−γ)t. (1.9)

In addition, if θ = supk∈Z{1, ak + bke
λτ}, then

v(t) = θ[v(0)]τe
−(λ−(ln(θeλτ )/δτ))t, t ≥ 0. (1.10)

Computer simulation is shown in Figures 1, 2, 3, and 4.
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Figure 1: Computer simulation of the state u1(t, x) .
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Figure 2: Sectional curve of the state variable u1(t, x) .

2. Main Results

Theorem 2.1. If assumptions (H1)–(H4) hold, in addition, the following conditions are satisfied:

(C1) there exists diagonal matrices P1 = diag(p11, p12, . . . , p1n) > 0 and P2 > 0 such that

⎛
⎜⎝

−2P1AB + F2 + P1Q + P2 P1A|C| P1A|D|∣∣CT
∣∣AP1 −I 0∣∣DT
∣∣AP1 0 −I

⎞
⎟⎠ < 0; (2.1)

(C2) min{(λminΘ/λmaxP1), (1 − μ)} > (λmaxG
2/λminP2) ≥ 0, where Θ = 2P1AB −

P1A|C||C|TAP1 − P1A|D||D|TAP1 − F2 − P1Q − P2, where τ ′(t) ≤ μ < 1 for all t;
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Figure 3: Computer simulation of the state u2(t, x) .
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Figure 4: Sectional curve of the state variable u2(t, x) .

(C3) there exists a constant δ > 1 such that infk∈Z(tk − tk−1) > δτ , δ2τ > ln(ρeλτ) and
λ − (ln(ρeλτ)/δτ) > 0, where λ > 0 is the unique solution of the equation λ = a − beλτ ,
and ρ = max{1, (λmax(MP1M)/λminP1)+eλτ}, a = min{(λminΘ/λmaxP1), (1−μ)}, b =
λmaxG

2/λminP2, then the null solution of system (1.1) is stochastically exponentially stable
with convergence rate (1/2)(λ − (ln(ρeλτ)/δτ)).

Proof. First, we can get by Guass formula (see [20, Lemma 2.3])

∫

Ω
uTP1

(
∇ ·
(
D̃(t, x, u) ◦ ∇pu

)
dx

=
∫

Ω
uTP1

(
m∑
k=1

∂

∂xk

(
D̃1k|∇u1|p−2 ∂u1

∂xk

)
, . . . ,

m∑
k=1

∂

∂xk

(
D̃nk|∇un|p−2 ∂un

∂xk

))T

dx
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=
∫

Ω

n∑
j=1

p1juj

m∑
k=1

∂

∂xk

(
D̃jk

∣∣∇uj

∣∣p−2 ∂uj

∂xk

)
dx

= −
m∑
k=1

n∑
j=1

∫

Ω
p1j D̃jk

∣∣∇uj

∣∣p−2
(

∂uj

∂xk

)2

dx.

(2.2)

Construct the Lyapunov functional as follows:

V = V1 + V2, (2.3)

where

V1 =
∫

Ω
uT (t, x)P1u(t, x)dx =

∫

Ω

∣∣∣uT (t, x)
∣∣∣P1|u(t, x)|dx

V2 =
∫

Ω

∫ t

t−τ(t)
uT (s, x)P2u(s, x)dsdx.

(2.4)

Then

LV1 =
∫

Ω
−

m∑
k=1

n∑
j=1

2p1j D̃jk

∣∣∇uj

∣∣p−2
(

∂uj

∂xk

)2

dx

− 2
∫

Ω
uT (t, x)P1A(u(t, x))B(u(t, x))dx

+ 2
∫

Ω
uT (t, x)P1A(u(t, x))Cf(u(t, x))dx

+ 2
∫

Ω
uT (t, x)P1A(u(t, x))Dg(u(t − τ(t), x))dx

+
∫

Ω
trace

[
σT (u(t, x))P1σ(u(t, x))

]
dx

≤ − 2
∫

Ω

∣∣∣uT (t, x)
∣∣∣P1AB|u(t, x)|dx

+
∫

Ω

[∣∣∣uT (t, x)
∣∣∣P1A|C||C|TAP1|u(t, x)| +

∣∣∣fT (u(t, x))
∣∣∣
∣∣f(u(t, x))∣∣

]
dx

+
∫

Ω

[∣∣∣uT (t, x)
∣∣∣P1A|D||D|TAP |u(t, x)| + gT (u(t − τ(t), x))g(u(t − τ(t), x))

]
dx

+
∫

Ω
uT (t, x)P1Qu(t, x)dx
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≤ −
∫

Ω

∣∣∣uT (t, x)
∣∣∣
[
2P1AB − P1A|C||C|TAP1 − P1A|D||D|TAP1 − F2 − P1Q

]
|u(t, x)|dx

+
∫

Ω
uT (t − τ(t), x)G2u(t − τ(t), x)dx

LV2 =
∫

Ω

[
uT (t, x)P2u(t, x) −

(
1 − τ ′(t)

)
uT (t − τ(t))P2u(t − τ(t))

]
dx

≤
∫

Ω

∣∣∣uT (t, x)
∣∣∣P2|u(t, x)|dx +

(
μ − 1

) ∫

Ω
uT (t − τ(t))P2u(t − τ(t))dx.

(2.5)

And then we have

LV ≤ −
∫

Ω

∣∣∣uT (t, x)
∣∣∣Θ|u(t, x)|dx +

∫

Ω
uT (t − τ(t), x)

[
G2 +

(
μ − 1

)
P2

]
u(t − τ(t), x)dx. (2.6)

Next, we use the method similar as that of [22]. Since u(t, x) is the solution of system,
and V (u(t, x)) ∈ C2[Rm,R+] for all t, we can get by Itô formula

V (t) = V (tk) +
∫ t

tk

LV (u(s, x))ds +
∫ t

tk

∂V

∂u
σ(u(s, x))dw(s). (2.7)

Then we have

EV (u(t, x)) = EV (u(tk, x)) +
∫ t

tk

ELV (s, x)ds, t ∈ [tk, tk+1). (2.8)

Thus, for small enough Δt > 0, we have

EV (u(t + Δt, x)) = EV (u(tk, x)) +
∫ t+Δt

tk

ELV (s, x)ds, t ∈ [tk, tk+1), (2.9)

and then

EV (u(t + Δt, x)) − EV (u(t, x))

=
∫ t+Δt

t

ELV (s, x)ds

≤ E

∫ t+Δt

t

[
−
∫

Ω

∣∣∣uT (s, x)
∣∣∣Θ|u(s, x)|dx

+
∫

Ω
uT (s − τ(s), x)

[
G2 +

(
μ − 1

)
P2

]
u(s − τ(s), x)dx

]
ds, t ∈ [tk, tk+1).

(2.10)
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Since

∫

Ω

∣∣∣uT (t, x)
∣∣∣Θ|u(t, x)|dx +

∫

Ω
uT (t − τ(t), x)

(
1 − μ

)
P2u(t − τ(t), x)dx

≥ λminΘ
λmaxP1

∫

Ω

∣∣∣uT (t, x)
∣∣∣P1|u(t, x)|dx +

(
1 − μ

) ∫

Ω
uT (t − τ(t), x)P2u(t − τ(t), x)dx

≥ min
{

λminΘ
λmaxP1

,
(
1 − μ

)}
V

∫

Ω
uT (t − τ(t), x)G2u(t − τ(t), x)dx ≤ λmaxG

2

λminP2

∫

Ω
uT (t − τ(t), x)P2u(t − τ(t), x)dx,

(2.11)

Then,

D+EV (u(t, x)) ≤ −min
{

λminΘ
λmaxP1

,
(
1 − μ

)}
EV (t) +

λmaxG
2

λminP2
[EV (t)]τ , t ∈ [tk, tk+1). (2.12)

Next, we have

V (tk) =
∫

Ω
uT (tk, x)P1u(tk, x)dx +

∫

Ω
uT (tk − τ(tk), x)P2u(tk − τ(tk), x)dx

=
∫

Ω

[
uT(t−k, x

)
MP1Mu

(
t−k, x

)
dx +

∫

Ω
uT (tk − τ(tk), x)P2u(tk − τ(tk), x)dx

≤ λmax(MP1M)
λminP1

V
(
t−k
)
+
[
V
(
t−k
)]

τ
.

(2.13)

Now the conditions (C1)–(C3) and Lemma 1.6 deduce

EV (t) ≤ ρ[V (0)]τe
−(λ−(ln(ρeλτ )/δτ))t (2.14)

or

E‖u(t, x)‖2 ≤
(
ρ
λmaxP

λminP
sup

−τ≤s≤0
E
∥∥φ(s)∥∥22

)
e−(λ−(ln(ρe

λτ )/δτ))t (2.15)

which together with Definition 1.3 implies the accomplishment of the proof.

Remark 2.2. The nonlinear p-Laplace diffusion (p > 1) brings a great difficulties in judging
the stability. However, even if p = 2, Theorem 2.1 has more computational efficiency than [15,
Theorem 3.1] due to LMI criterion.



10 Journal of Applied Mathematics

3. Examples

Consider the following impulsive CGNN:

du(t, x) =
{
∇ ·
((

0.0005 0
0 0.0005

)
◦ ∇pu

)
−
(
1.65 + 0.5 sinu1 0

0 1.58 + 0.5 sinu2

)

×
[(

5.19u1 − 0.02u1 cosu1

5.18u2 − 0.01u2 cosu2

)
−
(

0.1 −0.03
−0.03 0.1

)
f(u(t, x))

−
(

0.1 −0.03
−0.03 0.1

)
g(u(t − τ(t), x))

]}
dt + σ(u(t, x))dw(t), t ∈ [tk, tk+1)

u
(
t+k
)
=
(
1.350 0
0 1.350

)
u
(
t−, x

)
, t = tk

u(t0 + θ, x) = φ(θ, x), (θ, x) ∈ [−0.65, 0] × ∂Ω

∂ui(t, x)
∂ν

= 0, (t, x) ∈ [−τ,+∞) × ∂Ω, i = 1, 2,

(3.1)

where Ω = {(x1, x2)
T ∈ R2 | − √

2 ≤ x1, x2 ≤
√
2}, and the corresponding matrices

F =
(
0.100 0
0 0.100

)
= G, Q =

(
0.0001 0

0 0.0001

)
. (3.2)

Wemight as well assume that t0 = 0, tk − tk−1 = 0.525, τ(t) = 0.65, τ ′(t) ≤ μ = 0.99 for all t ≥ t0,
and

f(u) = g(u) =

⎛
⎜⎜⎝

|u1 + 1| − |u1 − 1|
20

|u2 + 1| − |u2 − 1|
20

⎞
⎟⎟⎠,

φ(s, x) =
(
x(1 − cos(5πx))cos189(x − 0.25)e−100s

(1 − x)sin2(4πx)cos201(x − 0.55)e−100s

)
, −0.65 ≤ s ≤ 0,

A =
(
1 0
0 1

)
, A =

(
2 0
0 2

)
, B =

(
5.160 0
0 5.160

)
.

(3.3)

By way of MATLAB LMI Control Toolbox, we can solve the LMI condition in (C1) and get

P1 =
(
0.2392 0

0 0.2392

)
, P2 =

(
1.2291 0

0 1.2291

)
. (3.4)

Next, we will prove that such P1 and P2 make (C2) and (C3) hold. Indeed, by computing
directly, we can obtain a = 0.01, b = 0.0081, and then (C2) holds. Moreover, we might as well
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assume δ = 82, and then we have λ = 0.0019, ρ = 2.8235, thus (C3) is satisfied. Now from
Theorem 2.1 we can compute the convergence 9.3809 ∗ 10−0.004.

4. Conclusions

In this paper, we investigate the influence of impulse, time-delays and diffusion behaviors on
the stability of stochastic Cohen-Grossberg neural network (CGNN). The LMI conditions of
stochastic exponential stability of impulsive CGNN with p-Laplace reaction-diffusion terms
was given, and an illustrate example was also given to show the effectiveness of the obtained
result. Besides, the result obtained in this paper is also valid to the Laplace reaction-diffusion
(in the case of p = 2) and has more computational efficiency due to the LMI approach even if
p = 2 (Remark 2.2).
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