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The first step in the analysis of a structure is to generate its configuration. Different means are
available for this purpose. The use of graph products is an example of such tools. In this paper, the
use of product graphs is extended for the formation of different types of structural models. Here
weighted graphs are used as the generators and the connectivity properties of different models are
expressed in terms of the properties of their generators through simple algebraic relationships. In
this paper by using graph product concepts and spatial structuredmatrices, a new algebraic closed
form is proposed for mathematical formulation and presentation of structures. For clarification
some examples are included.

1. Introduction

Data generation is the first step in the analysis of every structure. Configuration processing
of large scale problems without automatic approaches can be erroneous and occasionally
impossible. Formex configuration processing is one such a means introduced by Nooshin [1]
and further developed byNooshin et al. [2] andNooshin and Disney [3]. Similar methods are
developed based on set theory by Behravesh et al. [4]. Kaveh applied graph theory for this
formation [5] (see also Kaveh et al. [6]). The use of product graphs in structural mechanics is
suggested in [7, 8] and application of the corresponding concepts utilizing the directed and
looped generators is due to Kaveh and Koohestani [9], weighted graph products by Kaveh
and Nouri [10] and weighted triangular and circular graph products employed by Kaveh
and Beheshti [11].

There are many other references in the field of data generation; however, most of
them are prepared for specific classes of a problem. For example, many algorithms have been
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Figure 1: Examples of simple and weighted graphs.

developed and successfully implemented on mesh or grid generation; a complete review of
which may be found in a paper by Thacker [12] and in the books by Thompson et al. [13],
Liseikin [14], and Topping et al. [15].

In this paper the configuration processing of regular structures is considered. A
structure is called regular if it can be considered as the product of two or three subgraphs
(generators) [16]. The weighted graph products developed in [10] and their application are
extended. Weighted paths and cycles are considered as the generators, and it is shown that
many such product graphs can algebraically be expressed by simple relationships and a new
algebraic closed form proposed for mathematical formulation and presentation of structures.
Once this is done, then the existing methods can be applied to eigensolution and analysis
of such structures [17–19]. However, this paper is limited to the generalization of product
graphs for configuration processing of space structures. The methods of this paper can easily
be adopted in the mesh generation of the finite element models.

2. Definitions from Graph Theory

A graph S(N,M) consists of a set of elements,N(S), called nodes and a set of elements,M(S),
calledmembers, together with a relation of incidence which associates two distinct nodes with
eachmember, known as its ends. If weights are assigned to themembers and nodes of a graph,
then it becomes a weighted graph, (Figure 1). Two nodes of a graph are called adjacent if these
nodes are the end nodes of a member. A member is called incident with a node if that node
is an end node of the member. The degree of a node is the number of members incident with
that node. A subgraph Si of a graph S is a graph for whichN(Si) ⊆ N(S) andM(Si) ⊆ M(S),
and each member of Si has the same ends as in S. A path graph P is a simple connected graph
with N(P) = M(P) + 1 that can be drawn in a way that all of its nodes and members lie on
a single straight line. A path graph with n nodes is denoted by Pn, and a weighted path is
shown by Pnw. A cycle graph C is a simple connected graph with identical number of nodes
and members that can be drawn so that all of its nodes and members lie on a circle. A cycle
graph with n nodes is shown by Cn, and a weighted cycle is denoted by Cnw. Examples of
these graphs are shown in Figure 1. For further definitions the reader may refer to Kaveh
[7, 20].
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3. Algebraic Representation of Path and Cycles

Most of the space structures can be viewed as the product of some weighted paths and cycles.
Therefore in this section some simple mathematical relationships are presented for defining
such generators.

3.1. Weighted Path

The adjacency matrix of a path in general can be expressed as

adj(Pnw) =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1 W1,2

W2,1 W2 W2,3
. . . . . . . . .

Wn−1,n−2 Wn−1 Wn−1,n
Wn,n−1 Wn

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

=

⎡
⎢⎢⎣

. . . . . . . . .
L D U

. . . . . . . . .

⎤
⎥⎥⎦,

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

W2,1

W3,2
...

Wn−1,n−2
Wn,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(n−1)×1

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2
...

Wn−1
Wn

⎤
⎥⎥⎥⎥⎥⎥⎦

n×1

, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1,2

W2,3
...

Wn−2,n−1
Wn−1,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(n−1)×1

,

(3.1)

where the weights are divided into 3 groups, L, D, and U.
Using this definition a weighted path, in general, can be expressed as

Pnw

⎡
⎣
LT

DT

UT

⎤
⎦. (3.2)

3.2. Weighted Cycle

The adjacency matrix of a weighted cycle can similarly be expressed as

adj(Cnw) =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1 W1,2 W1,n

W2,1 W2 W2,3
. . . . . . . . .

Wn−1,n−2 Wn−1 Wn−1,n
Wn,1 Wn,n−1 Wn

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

=

⎡
⎢⎢⎣

. . . . . . . . .
L D U

. . . . . . . . .

⎤
⎥⎥⎦,

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

W2,1

W3,2
...

Wn,n−1
W1,n

⎤
⎥⎥⎥⎥⎥⎥⎦

n×1

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2
...

Wn−1
Wn

⎤
⎥⎥⎥⎥⎥⎥⎦

n×1

, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1,2

W2,3
...

Wn−1,n
Wn,1

⎤
⎥⎥⎥⎥⎥⎥⎦

n×1

,

(3.3)

where the weights are also divided into 3 groups L, D, and U.
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Considering these, a weighted cycle, in general, can be shown as

Cnw

⎡
⎣
LT

DT

UT

⎤
⎦. (3.4)

3.3. Unit and Zero Vectors

The unit vector is defined as the following.
En is an n by 1 vector with all entries being 1. In addition En(i) is a vector of the same

dimension with all entries as 1 except the entry at ith row which is zero:

En =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×1

, En(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
...
0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×1

−→ i′th row. (3.5)

The zero vector is defined as the following.
On is an n by 1 vector with all entries being 0. In addition On(i) is a vector of the same

dimension with all entries as 0 except the entry at the ith row which is 1:

On =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×1

, On(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×1

−→ i′th row. (3.6)

3.4. Extension of the Zero and Unit Vectors

In this section the zero and unit vectors are extended to represent [L,D,U] in an efficient
manner.

If we want to create a vector with some entries as 1 and the remaining also as 0, we
use the following expression:

On(1, 2, i, k) = On(1) +On(2) +On(i) +On(k), i, k ≤ n. (3.7)

If we want to create a vector with the I, i + k, i + 2k, . . . as 1 and the remaining entries
as 0, we use the following expression:

On(i : k) = On(i) +On(i + k) +On(i + 2k) +On(i + 3k) + · · · +On(m), n − k ≤ m ≤ n. (3.8)
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Figure 2: Some weighted graphs.

For creating a vector with the I, i+ k, i+ 2k, . . . , i+m ∗ k as 1 and the remaining entries
as 0, we use the following expression:

On(i : k : m) = On(i) +On(i + k) +On(i + 2k) +On(i + 3k) + · · · +On(i +mk), i +mk ≤ n
(3.9)

For creating a vector with the (I, j, . . .), (i + k, j + k, . . .), (i + 2k, j + 3k, . . .), . . ., and
(i +mk, j +mk, . . .) as 1 and the remaining entries as 0, we use the following expression:

On

(
i, j, . . . : k : m

)

=
[
On(i) +On

(
j
)
+ · · · ] + [

On(i + k) +On

(
j + k

)
+ · · · ]

+
[
On(i + 2k) +On

(
j + 2k

)
+ · · · ] + · · · + [

On(i +mk) +On

(
j +mk

)
+ · · · ].

(3.10)

In general case the following relation exists between the zero and unit vectors:

En(i) = En −On(i). (3.11)

As an example the weighted graphs shown in Figure 2 are expressed in algebraic form.
In compact algebraic representation the difference between a simple and a weighted

graph is illustrated. As an example, for Figures 2(a) and 2(a1), which are both simple paths,
a is weighted and a1 is simple, the algebraic representations are as follows:

(a) =⇒ P7w

⎡
⎢⎢⎢⎢⎢⎣

L : ET
6

D : OT
7

U : ET
6

⎤
⎥⎥⎥⎥⎥⎦
, (a1) =⇒ P7. (3.12)
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Table 1: Operators of graph products.

Product Operator
Cartesian ×
Strong Cartesian ⊗
Direct ©

For the weighted case L,D, and U are ET
6 , O

T
7 , E

T
6 , respectively.

In Figure 2(i) a weighted cycle is shown, where L, D, and U are
ET
5 (4, 5), O

T
5 (1, 4, 5), E

T
5 (2), respectively. In the following weighted paths and cycles of

Figure 2 are represented algebraically:

(a, a1) =⇒ P7 = P7w

⎡
⎢⎢⎢⎢⎢⎣

ET
6

OT
7

ET
6

⎤
⎥⎥⎥⎥⎥⎦
, (b) =⇒ P7w

[
L : ET

6 (1 : 2)
]
, (c) =⇒ P7w

[
D : OT

7 (2, 3 : 3)
]
,

(d) =⇒ P7w

⎡
⎢⎢⎣
L : ET

6 (1, 2 : 3)

D : OT
7 (1 : 2)

⎤
⎥⎥⎦, (e, e1) =⇒ C5 = C5w

⎡
⎢⎢⎢⎢⎢⎣

ET
5

OT
5

ET
5

⎤
⎥⎥⎥⎥⎥⎦
, (f) =⇒ C5w

[
D : ET

5

]
,

(
g
)
=⇒ C5w

⎡
⎢⎢⎣
L : OT

5

D : ET
5

⎤
⎥⎥⎦, (h) =⇒ C5w

⎡
⎢⎢⎣
D : ET

5

U : OT
5

⎤
⎥⎥⎦, (i) =⇒ C5w

⎡
⎢⎢⎢⎢⎢⎣

ET
5 (4, 5)

OT
5 (1, 4, 5)

ET
5 (2)

⎤
⎥⎥⎥⎥⎥⎦
.

(3.13)

4. Graph Products

In this section, weighted graph products which are introduced in [10] are formulated and
generalized for configuration processing of structural models. These products are formulated
in the algebraic form defined in Section 3. The operators used for each product are provided
in Table 1.

Graph products of simple and weighted graphs are fully explained in [10]. For
weighted case the first step is the formation of the coordinates of the nodes using the nodes
of the generators. As an example, for two paths these nodes are generated in Figure 3.

4.1. Weighted Cartesian Product

In this product after the formation of the nodes according to the nodes of the generators
(Figure 3), a member is added between two typical nodes (Ui, Vj) and (Uk, Vl), (Figure 4), if
the following conditions are fulfilled.
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Figure 4: Two random nodes selected from a product domain.

We use the weights −1, 0, and +1 to assign to the nodes and elements in order to control
the generation of the members and nodes:

if [
(
Ui = Uk & Wi = −1 &

(
Wj & Wl

)
/= − 1 &

(
Wjl orWlj

)
/= 0

)
or

(
Vj = Vl & Wj = −1 & (Wi & Wk)/= − 1 & (Wik orWki)/= 0

)
] or

if
[(
Ui = Uk & Wi = 0 &

(
Wjl & Wlj

)
/= 0

)
or
(
Vl = Vj & Wj = 0 & (Wik & Wki)/= 0

)]
or

if
[(
Ui = Uk & Wi = 1 &

(
Wljx orWjl

)
/= 0

)
or
(
Vl = Vj & Wj = 1 & (Wikx orWki)/= 0

)]
.

(4.1)

As an example, Figure 5 illustrates some weighted Cartesian products and their
compact representation.

4.2. Weighted Strong Cartesian Product

In this product after the formation of the nodes, according to the nodes of the generator,
(Figure 3), a member is added between two typical nodes (Ui, Vj) and (Uk, Vl), (Figure 4), if
the following conditions are fulfilled:

if
(
Ui = Uk &

(
Wjl orWlj

)
/= 0

)
&

[
Wi = 0 or

(
Wi = −1 &

(
Wj & Wl

)
/= − 1

)]
or

if
(
Vj = Vl & (Wik orWki)/= 0

)
&

[
Wj = 0 or

(
Wj = −1 & (Wi & Wk)/= − 1

)]
or

((
Wik orWjl

)
/= 0 or

(
Wki & Wlj

)
/= 0

)
.

(4.2)
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Examples of strong Cartesian products of weighted graphs and their compact
presentations are provided in Figure 6. As it can be observed, the compact products of paths
and/or cycles are a powerful means for configuration processing and can be employed
similarly to Formex configuration processing of Nooshin [1].

4.3. Weighted Direct Product

In this product after the formation of the nodes according to the nodes of the generator
(Figure 3), a member is added between two typical nodes (Uk, Vl) and (Ui, Vj), (Figure 4),
if the following conditions are fulfilled:

if
[((

Wi & Wj

)
/= − 1 or (Wk & Wl)/= − 1

)
&

((
Wik & Wjl

)
/= 0 or

(
Wki & Wlj

)
/= 0

)]
.
(4.3)

Some examples of these weighted products and their compact representations are
illustrated in Figure 7.

5. Geometrical Transformation of Graph Products

In this section using simple transformations, the weighted graph products of the previous
section are employed for configuration processing of different types of space structures.

5.1. Transformation between Cartesian Coordinate
System and Oblique System

In Cartesian coordinate systems (or rectangular coordinates), the “address” of a point P is
given by two real numbers indicating the positions of the perpendicular projections from



Journal of Applied Mathematics 9

1 2 3 4 5
1

2

3

4

5

6 7 8 9

6

7

8

9

0

0

0

0

0

0

0

0

0 0 0 0
0 0 0 0
−1

−1

−1

−1

−1 −1

(a) P9w

ET
8 (1 : 2

⊗
P9w

ET
8 (1 : 2

−OT
9 (3, 5, 7) −OT

9 (3, 5, 7)

ET
8 (2 : 2) ET

8 (2 : 2)

1
1 1 1 1 1 1 1

2 3 4 5
1

2

3

4

5

6 7 8 9

6

7

(b) P9w[D : ET
8 (2 : 1 : 6)]

⊗
P7

1 2
0 0

0
0

0 0
0

0 3 4 5
1

2

3

4

5

6 7 8 9

6

7

0

0

0

0

0

0

(c) P9w
L : ET

8 (1 : 2 ⊗
P7w

L : ET
6 (1 : 2

U : ET
8 (2 : 2) U : ET

6 (2 : 2)

1
2

3

4

5

6

7
8

9
10

11

12

13

14

15
16

00
0

0

0 0
0

0
0

0

0

0
0

0

0

0

1 2 3 4 5 6 7 8 90000

0 0

1

0 0

(d) P9w
L : ET

8 (2 : 2 ⊗
C16w

L : ET
16(2 : 2

U : ET
8 (1 : 2) U : ET

16(1 : 2)

Figure 6: Different weighted strong Cartesian products of two simple weighted graphs.

the point to two fixed perpendicular lines, known as the x-axis and the y-axis, and we write
P = (x, y), (Figure 8).

In this figure P = (4, 3), Q = (−1.3, 2.5), R = (−1.5,−1.5), S = (3.5,−1), and T = (4.5, 0).
The axes divide the plane into four quadrants: P is in the first quadrant, Q in the second, R
in the third, and S in the fourth. T is on the positive x-axis.

The following generalization of Cartesian coordinates is useful for configuration
processing of space structures. Consider two axes, intersecting at the origin but not
necessarily perpendicularly. Let the angle between these axes be ω. In this system of oblique
coordinates, a point P is given by two real numbers indicating the positions of the projections
from the point to each axis, in the direction of the other axis (Figure 9). The first axis (x-axis)
is generally drawn horizontally. The case ω = 90◦ yields a Cartesian coordinate system.

In this coordinate system we have P = (4, 3), Q = (−1.3, 2.5), R = (−1.5,−1.5), S =
(3.5,−1), and T = (4.5, 0). Compare to Figure 8.
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Figure 11: Geometrical conditions and transformation between Cartesian and oblique coordinate systems
applied to a weighted graph product.

Connectivity and topological properties of a graph do not depend on its view in a
coordinate system. One can present a graph with the same connectivity and different shapes
in a different coordinate system.

We use Cartesian and oblique coordinate systems and the transformation between
these systems for configuration processing of the space structures, as illustrated in Figure 10.

5.2. Coordinate Conditions

Additing or restricting the conditions on the domains of the weighted graph products result
in different configurations. As an example, additing of the condition (i + j ≤ 6) on P5w[L :
ET
4 ] ⊗ P5w[U : ET

4 ] and transforming the coordinate system, one can obtain the configuration
shown in Figure 11.

5.3. Stretching of Nodal Point

Moving certain nodes in a graph model can produce different suitable configurations.
Examples of such operations from [10] are shown in Figure 12.
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6. Generalized Weighted Graph Products

In this section using the previously defined products, transforming the coordinate systems,
moving the nodes, adding new conditions to the conditions of different graph products, and
also using generalized coordinate systems, the domain of the applications of graph products
in configuration processing of space structures is extended.

For configuration processing using the graph products, we extend the forms by
defining the coordinate systems shown in Figure 13.

Product of adjacent axes of each coordinate system’s new weighted graph products
can be produced. As an example some products of this kind are illustrated in Figure 14. The
algebraic form of each configuration is shown in Table 2.

Figure 14(a) is obtained by the multiplication of axis 1 and axis 2, where the
characteristics of the axes are shown in algebraic form in Table 2. Figure 14(b) is formed by
multiplication of axis 1 by 2, axis 2 by 3, and axis 3 by 1. The remaining configurations of
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(a) P15w[D : OT
15(4 : 4)]

⊗
P15w[D : OT

15(4 : 4)] (b) P16w

ET
15(1 : 2

⊗
P15w

ET
15(1 : 2

−OT
16(4 : 4) −OT

16(4 : 4)

ET
15(2 : 2) ET

15(2 : 2)

(c) P8 × C24
(d) C32w

L : ET
32(1 : 2 ◦ P11w

L : ET
10(1 : 2

U : ET
32(2 : 2) U : ET

10(2 : 2)

(e) O6 : P10w[E : OT
9 ]

⊗
P10w[U : OT

9 ]|i + j ≤ 10 (f) O6 : P10w
E : OT

9 ⊗
P10w

L : OT
9 |i + j ≤ 10

D : OT
9 (5, 8) D : OT

9 (5, 8)

(e) O6 : P10w[E : OT
9 ]

⊗
P10w[U : OT

9 ]|i + j ≤ 10 (h) O6 : P16w
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15

⊗
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|i + j ≤ 16D : OT
16(5 : 2 : 4) D : OT

16(5 : 2 : 4)

(i) P32w[D : OT
32(1 : 2)] × P12w[L : ET

11(1 : 2)]
(j) O6 : P10w[E : OT

9 ]
⊗

P10w[U : OT
9 ]|i + j ≤ 10

Figure 15: Different configurations in generalized graph products.
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Table 2: Compact algebraic representation of graph products presented in Figure 14.

(a) O2 : P6w
[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | i + j ≤ 6
(b) O3 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | i + j ≤ 6
(c) O4 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | i + j ≤ 6
(d) O5 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | i + j ≤ 6
(e) O3 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

]

(f) O7 : P6w
[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | i + j ≤ 6
(g) O7 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | 3 < i + j < 6
(h) O4 : P6w

[
L : ET

5

] ⊗ P6w
[
U : ET

5

] | 3 < i + j < 6

Figure 14 are obtained similarly bymultiplication of each pair of adjacent axes. The properties
of the axes are provided in Table 2.

The mathematical formulations of the configurations in Figure 14 are provided in
Table 2. In these relationships the type of the coordinate system, the generators, the type of
the products, and the imposed conditions are provided.

7. Examples

In this section, the generalized weighted graph products examples of different configurations
are formulated. First the configuration is formed and then appropriate geometric transforma-
tions are imposed to generate the final configuration of the models.

Examples of Cartesian, strong Cartesian, and direct products are illustrated in
Figure 15. For each case, the compact formulation is provided underneath the corresponding
figure.

8. Conclusions

In this paper the graph products and their applications in configuration processing are
extended. Topology of a structure is viewed as the product of two weighted subgraphs like
paths and/or cycles as its generators. The paths and cycles are formulated in a mathematical
form, and the configuration of a space structure is expressed as different products of
these weighted subgraphs as one expression. In the presented method the topological
information of space structures can be stored as simple algebraic relationships. More complex
configurations can be formulated using different graph theory operators and new conditions
can be added to the domains of the products. The application of the introduced products of
weighted graphs can also be extended to the mesh generation of finite element models.
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