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We introduce an iterative scheme for finding a common element of the set of solutions of genera-
lizedmixed equilibrium problems and the set of fixed points for countable families of total quasi-φ-
asymptotically nonexpansive mappings in Banach spaces. We prove a strong convergence theorem
of the iterative sequence generated by the proposed iterative algorithm in an uniformly smooth
and strictly convex Banach space which also enjoys the Kadec-Klee property. The results presented
in this paper improve and extend some recent corresponding results.

1. Introduction

Let E be a real Banach space with the dual E∗ and let C be a nonempty closed convex subset
of E. We denote by R+ and R the set of all nonnegative real numbers and the set of all real
numbers, respectively. Also, we denote by J the normalized duality mapping from E to 2E

∗

defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. Recall that if E is smooth then J is single-
valued and norm-to-weak∗ continuous, and that if E is uniformly smooth then J is uniformly
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norm-to-norm continuous on bounded subsets of E. We will denote by J the single-value
duality mapping.

A Banach space E is said to be strictly convex if ‖x+y‖/2 ≤ 1 for all x, y ∈ U = {z ∈ E :
‖z‖ = 1} with x /=y. E is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0
such that ‖x + y‖/2 ≤ 1 − δ for all x, y ∈ U with ‖x − y‖ ≥ ε. E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.2)

exists for all x, y ∈ U. E is said to be uniformly smooth if the above limit exists uniformly in
x, y ∈ U.

Remark 1.1. The following basic properties of Banach space E can be founded in [1].

(i) If E is an uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J−1 is norm-weak∗-con-
tinuous.

(iii) If E is a smooth, reflexive and strictly convex Banach space, then the normalized
duality mapping J : E → 2E

∗
is single-valued, one-to-one, and surjective.

(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x. (See [1, 2]) for
more details.

Next, we assume that E is a smooth, reflexive, and strictly convex Banach space. Con-
sider the functional defined as in [3, 4] by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2

, ∀x, y ∈ E. (1.3)

It is clear that in a Hilbert space H, (1.3) reduces to φ(x, y) = ‖x − y‖2, for all x, y ∈ H.
It is obvious from the definition of φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ
(
x, y

) ≤ (‖x‖ + ∥∥y∥∥)2, ∀x, y ∈ E, (1.4)

and

φ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λφ
(
x, y

)
+ (1 − λ)φ(x, z), ∀x, y ∈ E. (1.5)

Following Alber [3], the generalized projection ΠC : E → C is defined by

ΠC(x) = arginfy∈Cφ
(
y, x

)
, ∀x ∈ E. (1.6)

That is, ΠCx = x, where x is the unique solution to the minimization problem φ(x, x) =
infy∈Cφ(y, x).
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The existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J (see, e.g., [1–5]). In Hilbert space
H, ΠC = PC.

Let C be a nonempty closed convex subset of E, let T be a mapping from C into itself,
and let F(T) be the set of fixed points of T . A point p ∈ C is called an asymptotically fixed
point of T [6] if there exists a sequence {xn} ⊂ C such that xn ⇀ p and ‖xn − Txn‖ → 0. The
set of asymptotical fixed points of T will be denoted by F̂(T). A point p ∈ C is said to be a
strong asymptotic fixed point of T , if there exists a sequence {xn} ⊂ C such that xn → p and
‖xn − Txn‖ → 0. The set of strong asymptotical fixed points of T will be denoted by F̃(T).

A mapping T : C → C is said to be relatively nonexpansive [7–9], if F(T)/= ∅, F(T) =
F̂(T) and φ(p, Tx) ≤ φ(p, x), for all x ∈ C, p ∈ F(T).

A mapping T : C → C is said to be quasi-φ-nonexpansive, if F(T)/= ∅ and φ(p, Tx) ≤
φ(p, x), for all x ∈ C, p ∈ F(T).

A mapping T : C → C is said to be quasi-φ-asymptotically nonexpansive, if F(T)/= ∅
and there exists a real sequence {kn} ⊂ [1,∞) with kn → 1 such that

φ
(
p, Tnx

) ≤ knφ
(
p, x

)
, ∀n ≥ 1, x ∈ C, p ∈ F(T). (1.7)

A mapping T : C → C is said to be total quasi-φ-asymptotically nonexpansive, if
F(T)/= ∅ and there exists nonnegative real sequences {νn}, {μn} with νn → 0, μn → 0
(as n → ∞) and a strictly increasing continuous function ξ : R+ → R+ with ξ(0) = 0 such
that

φ
(
p, Tnx

) ≤ φ
(
p, x

)
+ νnξ

(
φ
(
p, x

))
+ μn, ∀n ≥ 1, x ∈ C, p ∈ F(T). (1.8)

A countable family of mappings {Tn} : C → C is said to be uniformly total quasi-φ-
asymptotically nonexpansive, if

⋂∞
i=1 F(Ti)/= ∅, and there exists nonnegative real sequences

{νn}, {μn} with νn → 0, μn → 0 (as n → ∞) and a strictly increasing continuous function
ξ : R+ → R+ with ξ(0) = 0 such that for each i ≥ 1 and each x ∈ C, p ∈ ⋂∞

i=1 F(Ti)

φ
(
p, Tn

i x
) ≤ φ

(
p, x

)
+ νnξ

(
φ
(
p, x

))
+ μn, ∀n ≥ 1. (1.9)

Remark 1.2. From the definition, it is easy to know that:

(i) each relatively nonexpansive mapping is closed;

(ii) taking ξ(t) = t, t ≥ 0, νn = (kn − 1) and μn = 0 then νn → 0 (as n → ∞) and (1.7)
can be rewritten as

φ
(
p, Tnx

) ≤ φ
(
p, x

)
+ νnξ

(
φ
(
p, x

))
+ μn, ∀n ≥ 1, x ∈ C, p ∈ F(T), (1.10)

this implies that each quasi-φ-asymptotically nonexpansive mapping must be a
total quasi-φ-asymptotically nonexpansive mapping, but the converse is not true;

(iii) the class of quasi-φ-asymptotically nonexpansive mappings contains properly the
class of quasi-φ-nonexpansive mappings as a subclass, but the converse is not true;
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(iv) the class of quasi-φ-nonexpansive mappings contains properly the class of relati-
vely nonexpansive mappings as a subclass, but the converse may be not true. (See
more details [10–14]).

Let f : C ×C → R be a bifunction, where R is the set of real numbers. The equilibrium
problem (For short, EP) is to find x∗ ∈ C such that

f
(
x∗, y

) ≥ 0, ∀y ∈ C. (1.11)

The set of solutions of EP (1.11) is denoted by EP(f).
Let B : C → H be a nonlinear mapping. The generalized equilibrium problem (for

short, GEP) is to find x∗ ∈ C such that

f
(
x∗, y

)
+
〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.12)

The set of solutions of GEP (1.12) is denoted by GEP(f, B), that is,

GEP
(
f, B

)
=
{
x∗ ∈ C : f

(
x∗, y

)
+
〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C

}
. (1.13)

Let ϕ : C → R∪ {+∞} be a function. The mixed equilibrium problem (for short, MEP)
is to find x∗ ∈ C such that

f
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) ≥ 0, ∀y ∈ C. (1.14)

The set of solutions of MEP (1.14) is denoted by MEP(f).
The concept generalized mixed equilibrium problem (for short, GMEP) was intro-

duced by Peng and Yao [15] in 2008. GMEP is to find x∗ ∈ C such that

f
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) +

〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.15)

The set of solutions of GMEP (1.15) is denoted by GMEP(f, B, ϕ), that is,

GMEP
(
f, B, ϕ

)
=
{
x∗ ∈ C : f

(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) +

〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C

}
. (1.16)

The equilibrium problem is an unifying model for several problems arising in physics,
engineering, science optimization, economics, transportation, network and structural analy-
sis, Nash equilibrium problems in noncooperative games, and others. It has been shown that
variational inequalities and mathematical programming problems can be viewed as a special
realization of the abstract equilibrium problems (e. g., [16, 17]). Many authors have proposed
some useful methods to solve the EP, GEP, MEP, GMEP; see, for instance, [15–23] and the
references therein.
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In 2005, Matsushita and Takahashi [13] proposed the following hybrid iteration meth-
od (it is also called the CQ method) with generalized projection for relatively nonexpansive
mapping T in a Banach space E:

x0 ∈ C chosen arbitrary,

yn = J−1(αnJxn + (1 − αn)Jxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0, n ≥ 0.

(1.17)

They prove that {xn} converges strongly toΠF(T)x0, whereΠF(T) is the generalized projection
from C onto F(T).

Recently, Qin et al. [24] proposed a shrinking projection method to find a common
element of the set of solutions of an equilibrium problem and the set of common fixed points
of a finite family of quasi-φ-nonexpansive mappings in the framework of Banach spaces:

x0 = x chosen arbitrary,

C1 = C,

x1 = ΠC1x0,

yn = J−1
(
αn,0Jxn +

N∑
i=1

αn,iJTixn

)
,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(1.18)

whereΠCn+1 is the generalized projection from E ontoCn+1. They prove that the sequence {xn}
converges strongly to Π∩N

i=1F(Ti)∩EP(f)x0.
In [25], Saewan and Kumam introduced a modified new hybrid projection method to

find a common element of the set of solutions of the generalized mixed equilibrium problems
and the set of common fixed points of an infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings in an uniformly smooth and strictly convex Banach
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spaces E with Kadec-Klee property:

x0 ∈ C chosen arbitrary,

x1 = ΠC1x0,

C1 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

)
,

un ∈ C such that un = Krnyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(1.19)

where ξn = supp∈F(kn − 1)φ(p, xn), ΠCn+1 is the generalized projection of E onto Cn+1. They
prove that the sequence {xn} converges strongly to Π∩∞

i=1F(Ti)∩GMEP(f)x0.
Very recently, Chang et al. [26] proposed the following iterative algorithm for solving

fixed point problems for total quasi-φ-asymptotically nonexpansive mappings:

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

)
,

Cn+1 =
{
z ∈ Cn : φ

(
ν, yn

) ≤ φ(ν, xn) + ξn
}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(1.20)

where ξn = νnsupp∈Fξ(φ(p, xn)) + μn, ΠCn+1 is the generalized projection of E onto Cn+1. They
prove that the sequence {xn} converges strongly to Π∩∞

i=1F(Ti)x0.
Inspired and motivated by the recent work of Matsushita and Takahashi [13], Qin

et al. [24], Saewan and Kumam [25], Chang et al. [26], and so forth, we introduce an itera-
tive scheme for finding a common element of the set of solutions of generalized mixed
equilibrium problems and the set of fixed points of a countable families of total quasi-φ-asym-
ptotically nonexpansive mappings in Banach spaces. We prove a strong convergence theo-
rem of the iterative sequence generated by the proposed iterative algorithm in an uniformly
smooth and strictly convex Banach space which also enjoys the Kadec-Klee property. The
results presented in this paper improve and extend some recent corresponding results in
[13, 24–29].
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2. Preliminaries

Throughout this paper, let E be a real Banach space with the dual E∗ and let C be a non-
empty closed convex subset of E. We denote the strong convergence, weak convergence of a
sequence {xn} to a point x ∈ E by xn → x, xn ⇀ x, respectively, and F(T) is the fixed point
set of a mapping T .

In this paper, for solving generalized mixed equilibrium problems, we assume that
bifunction f : C × C → R satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C;

(A2) f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(A3) for all x, y, z ∈ C, limt↓0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, the function y �−→ f(x, y) is convex and lower semicontinuous.

Lemma 2.1 (see [16]). Let C be a nonempty closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0
and x ∈ E, then there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.1)

Lemma 2.2 (see [30]). Let C be a nonempty closed convex subset of a smooth, strictly convex, and
reflexive Banach space E. Let B : C → E∗ be a continuous and monotone mapping, let ϕ : C → R be
convex and lower semicontinuous and let f be a bifunction from C×C to R satisfying (A1)–(A4). For
r > 0 and x ∈ E, then there exists u ∈ C such that

f
(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

〈
Bu, y − u

〉
+
1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C. (2.2)

Define a mapping Kr : C → C as follows:

Kr(x) =
{
u ∈ C : f

(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

〈
Bu, y − u

〉
+
1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}

(2.3)

for all x ∈ C. Then, the following hold:

(1) Kr is single-valued;

(2) Kr is firmly nonexpansive, that is, for all x, y ∈ E,

〈
Krx −Kry, JKrx − JKry

〉 ≤ 〈
Krx −Kry, Jx − Jy

〉
; (2.4)

(3) F(Kr) = GMEP(f, B, ϕ);

(4) GMEP(f, B, ϕ) is closed and convex;

(5) φ(p,Krz) + φ(Krz, z) ≤ φ(p, z), for all p ∈ F(Kr) and z ∈ E.
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Lemma 2.3 (see [28]). Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property and let C be a nonempty closed convex subset of E. Let {xn} and {yn} be two
sequences in C such that xn → p and φ(xn, yn) → 0, where φ is the function defined by (1.3), then
yn → p.

Lemma 2.4 (see [3]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty closed convex subset of E. Then, the following conclusions hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), for all x ∈ C, y ∈ E;

(b) if x ∈ E and z ∈ C, then z = ΠCx if and only if 〈z − y, Jx − Jz〉 ≥ 0, for all y ∈ C;

(c) for x, y ∈ E, φ(x, y) = 0 if and only if x = y.

Lemma 2.5 (see [28]). Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property and letC be a nonempty closed convex subset of E. Let T : C → C be a closed and
total quasi-φ-asymptotically nonexpansive mapping with nonnegative real sequences {νn}, {μn}, and
a strictly increasing continuous functions ξ : R+ → R+ such that νn → 0, μn → 0 (as n → ∞) and
ξ(0) = 0. If μ1 = 0, then the fixed point set F(T) of T is a closed and convex subset of C.

Lemma 2.6 (see [31]). Let E be an uniformly convex Banach space, let r be a positive number, and
let Br(0) be a closed ball of E. Then, for any sequence {xi}∞i=1 ⊂ Br(0) and for any sequence {λi}∞i=1 of
positive numbers with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing, and convex function

g : [0, 2r] → [0,∞), g(0) = 0 such that, for any positive integer i /= 1, the following holds:

∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn‖xn‖2 − λ1λig(‖x1 − xi‖). (2.5)

3. Main Results

Theorem 3.1. Let C be a nonempty, closed, and convex subset of an uniformly smooth and strictly
convex Banach Banach space E with Kadec-Klee property. Let B : C → E∗ be a continuous and
monotone mapping and let ϕ : C → R be a lower semicontinuous and convex function. Let f be a
bifunction from C ×C to R satisfying (A1)–(A4). Let {Ti}∞i=1 : C → C be a countable family of closed
and uniformly total quasi-φ-asymptotically nonexpansive mappings with nonnegative real sequences
{νn}, {μn} and a strictly increasing continuous function ζ : R+ → R+ such that μ1 = 0, νn → 0,
μn → 0 (as n → ∞), and ζ(0) = 0, and for each i ≥ 1, Ti is uniformly Li-Lipschitz continuous. {xn}
is defined by

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

)
,
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un ∈ C such that un = Krnyn,

Cn+1 =
{
ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.1)

where ξn = νnsupq∈Θζ(φ(q, xn)) + μn, ΠCn+1 is the generalized projection of E onto Cn+1, {rn} ⊂
[a,∞) for some a > 0, {βn,0, βn,i} and {αn} are sequences in [0, 1] satisfying the following
conditions:

(1) for each n ≥ 0, βn,0 +
∑∞

i=1 βn,i = 1;

(2) lim infn→∞βn,0βn,i > 0 for any i ≥ 1;

(3) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

If Θ :=
⋂∞

i=1 F(Ti) ∩ GMEP(f, B, ϕ) is a nonempty and bounded subset in C, then the sequence
{xn} converges strongly to p ∈ F, where p = ΠΘx0.

Proof. We will divide the proof into seven steps.

Step 1. We first show that Θ and Cn are closed and convex for each n ≥ 0.
It follows from Lemma 2.5 that F(Ti) is closed and convex subset of C for each i ≥ 1.

Therefore, Θ is closed and convex in C.
Again by the assumption, C0 = C is closed and convex. Suppose that Cn is closed and

convex for some n ≥ 1. Since for any z ∈ Cn, we know that

φ(z, un) ≤ φ(z, xn) + ξn ⇐⇒ 2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ξn. (3.2)

Hence, the set Cn+1 = {z ∈ Cn : 2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + ξn} is closed and convex.
Therefore, ΠCnx0 and ΠΘx0 are well defined.

Step 2. We show that Θ ⊂ Cn for all n ≥ 0.
It is obvious thatΘ ⊂ C0 = C. Suppose thatΘ ⊂ Cn for some n ≥ 1. Since E is uniformly

smooth, E∗ is uniformly convex. By the convexity of ‖ · ‖2, property of φ, for any given q ∈
Θ ⊂ Cn, we observe that

φ
(
q, un

)
= φ

(
q,Krnyn

)

≤ φ
(
q, yn

)

= φ
(
q, J−1(αnJxn + (1 − αn)Jzn)

)
.

=
∥∥q∥∥2 − 2

〈
q, αnJxn + (1 − αn)Jzn

〉
+ ‖αnJxn + (1 − αn)Jzn‖2

≤ ∥∥q∥∥2 − 2αn

〈
q, Jxn

〉 − 2(1 − αn)
〈
q, Jzn

〉
+ αn‖xn‖2 + (1 − αn)‖zn‖2

= αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, zn

)
.

(3.3)
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Furthermore, it follows from Lemma 2.6 that, for any positive integers l > 1 and for any q ∈ Θ,
we have

φ
(
q, zn

)
= φ

(
q, J−1

(
βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

))

=
∥∥q∥∥2 − 2

〈
q, βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

〉
+

∥∥∥∥∥βn,0Jxn +
∞∑
i=1

βn,iJT
n
i xn

∥∥∥∥∥
2

≤ ∥∥q∥∥2 − 2βn,0
〈
q, Jxn

〉 − 2
∞∑
i=1

βn,i
〈
q, JTn

i xn

〉
+ βn,0‖xn‖2

+
∞∑
i=1

βn,i
∥∥Tn

i xn

∥∥2 − βn,0βn,lg
(∥∥Jxn − JTn

l xn

∥∥)

= βn,0φ
(
q, xn

)
+

∞∑
i=1

βn,iφ
(
q, Tn

i xn

) − βn,0βn,lg
(∥∥Jxn − JTn

l xn

∥∥)

≤ βn,0φ
(
q, xn

)
+

∞∑
i=1

βn,i
{
φ
(
q, xn

)
+ νnζ

(
φ
(
q, xn

))
+ μn

}

− βn,0βn,lg
(∥∥Jxn − JTn

l xn

∥∥)

≤ φ
(
q, xn

)
+ νnsup

p∈Θ
φ
(
p, xn

)
+ μn − βn,0βn,lg

(∥∥Jxn − JTn
l xn

∥∥)

= φ
(
q, xn

)
+ ξn − βn,0βn,lg

(∥∥Jxn − JTn
l xn

∥∥).
(3.4)

Substituting (3.4) into (3.3), we get

φ
(
q, un

) ≤ αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, zn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)

[
φ
(
q, xn

)
+ ξn − βn,0βn,lg

(∥∥Jxn − JTn
l xn

∥∥)]

≤ φ
(
q, xn

)
+ (1 − αn)ξn.

(3.5)

This shows that q ∈ Cn+1. Further, this implies that Θ ⊂ Cn+1 and hence Θ ⊂ Cn for all n ≥ 0.
Since Θ is nonempty, Cn is a nonempty closed convex subset of E, and hence ΠCn exists for
all n ≥ 0. This implies that the sequence {xn} is well defined.

Moreover, by the assumption of {νn}, {μn}, and Θ, from (1.4), we have

ξn = νnsup
p∈Θ

ζ
(
φ
(
p, xn

))
+ μn −→ 0, n −→ ∞. (3.6)
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Step 3. {xn} is bounded and {φ(xn, x0)} is a convergent sequence.
It follows from (3.1) and Lemma 2.4 that

φ(xn, x0) = φ(ΠCnx0, x0)

≤ φ
(
p, x0

) − φ
(
p, xn

)

≤ φ
(
p, x0

)
, ∀p ∈ Cn+1, ∀n ≥ 0.

(3.7)

From definition of Cn+1 that xn = ΠCnx0 and xn+1 = ΠCn+1x0, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.8)

Therefore, {φ(xn, x0)} is nondecreasing and bounded. So, {φ(xn, x0)} is a convergent sequ-
ence, without loss of generality, we can assume that limn→∞φ(xn, x0) = d ≥ 0. In particular,
by (1.4), the sequence {(‖xn‖ − ‖x0‖)2} is bounded. This implies {xn} is also bounded.

Step 4. We prove that {xn} converges strongly to some point p ∈ C.
Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} ⊂ {xn} such

that xni ⇀ p (some point in C). Since Cn is closed and convex and Cn+1 ⊂ Cn, this implies that
Cn is weakly closed and p ∈ Cn for each n ≥ 0. From xni = ΠCni

x0, we have

φ(xni , x0) ≤ φ
(
p, x0

)
, ∀ni ≥ 0. (3.9)

Since the norm ‖ · ‖ is weakly lower semicontinuous, we have

lim inf
ni →∞

φ(xni , x0) = lim inf
ni →∞

{
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

}

≥ ∥∥p∥∥2 − 2
〈
p, Jx0

〉
+ ‖x0‖2

= φ
(
p, x0

)
,

(3.10)

and so

φ
(
p, x0

) ≤ lim inf
ni →∞

φ(xni , x0) ≤ lim sup
ni →∞

φ(xni , x0) ≤ φ
(
p, x0

)
. (3.11)

This implies that limni →∞φ(xni , x0) → φ(p, x0), and so ‖xn‖ → ‖p‖. Since xni ⇀ p, by virtue
of the Kadec-Klee property of E, we obtain that

lim
ni →∞

xni = p. (3.12)
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Since {φ(xn, x0)} is convergent, this together with limni →∞φ(xni , x0) = φ(p, x0), we have
limn→∞φ(xn, x0) = φ(p, x0). If there exists some subsequence {xnj} ⊂ {xn} such that xnj → q,
then from Lemma 2.4, we have that

φ
(
p, q

)
= lim

ni,nj →∞
φ
(
xni , xnj

)

= lim
ni,nj →∞

φ
(
xni ,ΠCnj

x0

)

≤ lim
ni,nj →∞

(
φ(xni , x0) − φ

(
ΠCnj

x0, x0

))

= lim
ni,nj →∞

(
φ(xni , x0) − φ

(
xnj , x0

))

= φ
(
p, x0

) − φ
(
p, x0

)

= 0.

(3.13)

This implies that p = q and

lim
n→∞

xn = p. (3.14)

Step 5. We prove that limn→∞‖Jxn − Jun‖ = 0.
By definition of ΠCnx0, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

(3.15)

Since limn→∞φ(xn, x0) exists, we have

lim
n→∞

φ(xn+1, xn) = 0. (3.16)

Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we get

φ(xn+1, un) ≤ φ(xn+1, xn) + ξn. (3.17)

It follows from (3.6) and (3.16) that

lim
n→∞

φ(xn+1, un) = 0. (3.18)

From (1.4), we have

lim
n→∞

‖un‖ = p. (3.19)
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So,

lim
n→∞

‖Jun‖= Jp. (3.20)

This implies that {Jun} is bounded in E∗. Note that E is reflexive and E∗ is also reflexive, we
can assume that Jun ⇀ x∗ ∈ E∗. In view of the reflexive of E, we know that J(E) = E∗. Hence,
there exist x ∈ C such that Jx = x∗. It follows that

φ(xn+1, un) = ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖un‖2

= ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖Jun‖2.
(3.21)

Taking lim infn→∞ on the both sides of equality above and by the weak lower semicontinuity
of norm ‖ · ‖, we have

0 ≥ ∥∥p∥∥2 − 2
〈
p, x∗〉 + ‖x∗‖2

=
∥∥p∥∥2 − 2

〈
p, Jx

〉
+ ‖Jx‖2

=
∥∥p∥∥2 − 2

〈
p, Jx

〉
+ ‖x‖2

= φ
(
p, x

)
.

(3.22)

That is, p = x, which implies that x∗ = Jp. It follows that Jun ⇀ Jp ∈ E∗. From (1.4) and the
Kadec-Klee property of E, we have

lim
n→∞

un= p. (3.23)

Since ‖xn − un‖ ≤ ‖xn − p‖ + ‖p − un‖, so,

lim inf
n→∞

‖xn − un‖= 0. (3.24)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim inf
n→∞

‖Jxn − Jun‖ = 0, (3.25)

Step 6. We show that p ∈ Θ :=
⋂∞

i=1 F(Ti)
⋂
GMEP(f, B, ϕ).

First, we show that p ∈ ⋂∞
i=1 F(Ti).

Since xn+1 ∈ Cn+1, it follows from (3.1) and (3.14) that

φ(xn+1, un) ≤ φ(xn+1, xn) + ξn −→ 0 (as n −→ ∞). (3.26)

Since xn → p, by Lemma 2.3,

lim
n→∞

un= p. (3.27)
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By (3.3) and (3.4), for any q ∈ Θ, we have

φ
(
q, un

) ≤ φ
(
q, xn

)
+ ξn − (1 − αn)βn,0βn,lg

(∥∥Jxn − JTn
l xn

∥∥). (3.28)

So,

(1 − αn)βn,0βn,lg
∥∥Jxn − JTn

l xn

∥∥ ≤ φ
(
q, xn

)
+ ξn − φ

(
q, un

) −→ 0 (as n −→ ∞). (3.29)

Therefore,

lim
n→∞

(1 − αn)βn,0βn,lg
∥∥Jxn − JTn

l xn

∥∥ = 0. (3.30)

In view of the property of g, we have

∥∥Jxn − JTn
l xn

∥∥ −→ 0 (as n −→ ∞). (3.31)

Since Jxn → Jp, this implies that limn→∞JTn
l xn = Jp. From Remark 1.1(ii), it yields

Tn
l xn ⇀ p (as n −→ ∞). (3.32)

Again since

∥∥Tn
l xn

∥∥ − ∥∥p∥∥ =
∥∥J(Tn

l xn

)∥∥ − ∥∥Jp∥∥ ≤ ∥∥J(Tn
l xn

) − Jp
∥∥ −→ 0 (as n −→ ∞), (3.33)

this together with (3.32) and the Kadec-Klee-property of E shows that

lim
n→∞

Tn
l xn= p. (3.34)

By the assumption that Tl is uniformly Ll-Lipschitz continuous, we have

∥∥∥Tn+1
l xn − Tn

l xn

∥∥∥ ≤
∥∥∥Tn+1

l xn − Tn+1
l xn+1

∥∥∥ +
∥∥∥Tn+1

l xn+1 − xn+1

∥∥∥

+ ‖xn+1 − xn‖ +
∥∥xn − Tn

l xn

∥∥

≤ (Ll + 1)‖xn+1 − xn‖ +
∥∥∥Tn+1

l xn+1 − xn+1

∥∥∥ +
∥∥xn − Tn

l xn

∥∥.

(3.35)

This together with (3.34) and xn → p shows that limn→∞‖Tn+1
l xn−Tn

l xn‖ = 0 and limn→∞Tn+1
l

xn = p, that is, limn→∞TlTn
l xn = p. In view of the closeness of Tl, it follows that Tlp = p, that

is, p ∈ F(Tl). By the arbitrariness of l ≥ 1, we have p ∈ ∩∞
i=1F(Ti).
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Now, we show that p ∈ GMEP(f, B, ϕ).
It follows from (3.2), (3.3), (3.6), Lemma 2.4, and un = Krnyn that

φ
(
un, yn

)
= φ

(
Krnyn, yn

)

≤ φ
(
p, yn

) − φ
(
p,Krnyn

)

≤ φ
(
p, xn

) − φ
(
p,Krnyn

)
+ ξn

= φ
(
p, xn

) − φ
(
p, un

)
+ ξn −→ 0, (as n −→ ∞).

(3.36)

By (1.4), we have

‖un‖ −→ ∥∥yn

∥∥, (as n −→ ∞). (3.37)

Since un → p as n → ∞, so

∥∥yn

∥∥ −→ ∥∥p∥∥, (as n −→ ∞). (3.38)

Therefore,

‖Jun‖ −→ ∥∥Jp∥∥, (as n −→ ∞). (3.39)

Since E∗ is reflexive, we may assume that Jyn ⇀ z∗ ∈ E∗. In view of the reflexive of E, we
have J(E) = E∗. Hence, there exist z ∈ E such that Jz = z∗. It follows that

φ
(
un, yn

)
= ‖un‖2 − 2

〈
un, Jyn

〉
+
∥∥yn

∥∥2

= ‖un‖2 − 2
〈
un, Jyn

〉
+
∥∥Jyn

∥∥2
.

(3.40)

Taking lim infn→∞ on the both sides of equality above yields that

0 ≥ ∥∥p∥∥2 − 2
〈
p, z∗

〉
+ ‖z∗‖2

=
∥∥p∥∥2 − 2

〈
p, Jz

〉
+ ‖Jz‖2

=
∥∥p∥∥2 − 2

〈
p, Jz

〉
+ ‖z‖2

= φ
(
p, x

)
.

(3.41)

That is, p = z, which implies that z∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. Since J−1 is norm-
weak∗-continuous, it follows that yn ⇀ p. From (3.38) and E with the Kadec-Klee property,
we obtain

yn −→ p (as n −→ ∞). (3.42)
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It follows from (3.23) and (3.42) that

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.43)

Since J is uniformly norm-to-norm continuous, we have

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.44)

By Lemma 2.2, we have

f
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.45)

From (A2), we have

ϕ
(
y
) − ϕ(un) +

〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ −f(un, y
) ≥ f

(
y, un

)
, ∀y ∈ C.

(3.46)

Put zt = ty + (1− t)p for all t ∈ (0, 1] and y ∈ C. Consequently, we get zt ∈ C. It follows
from (3.46) that

〈Bzt, zt − un〉 ≥ 〈Bzt, zt − un〉 − ϕ(zt) + ϕ(un)

− 〈
Byn, zt − un

〉
+ f(zt, un)

−
〈
zt − un,

Jun − Jyn

rn

〉

= 〈Bzt − Bun, zt − un〉 − ϕ(zt) + ϕ(un)

+
〈
Bun − Byn, zt − un

〉
+ f(zt, un)

−
〈
zt − un,

Jun − Jyn

rn

〉
.

(3.47)

Since B is continuous, and from (3.43), and un → p, yn → p, as n → ∞, therefore ‖Bun −
Byn‖ → 0. Since B is monotone, we know that 〈Bzt−Bun, zt−un〉 ≥ 0. Further, limn→∞‖Jun−
Jyn‖/rn = 0. So, it follows from (A4), and the weak lower semicontinuity of ϕ and (3.43) that

f
(
zt, p

) − ϕ(zt) + ϕ
(
p
) ≤ lim

n→∞
〈Bzt, zt − un〉

=
〈
Bzt, zt − p

〉
.

(3.48)
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From (A1) and (3.48), we have

0 = f(zt, zt) − ϕ(zt) + ϕ(zt)

≤ tf
(
zt, y

)
+ (1 − t)f

(
zt, p

)
+ tϕ

(
y
)
+ (1 − t)ϕ

(
p
) − ϕ(zt)

= t
[
f
(
zt, y

)
+ ϕ

(
y
) − ϕ(zt)

]
+ (1 − t)

[
f
(
zt, p

)
+ ϕ

(
p
) − ϕ(zt)

]

≤ t
[
f
(
zt, y

)
+ ϕ

(
y
) − ϕ(zt)

]
+ (1 − t)

〈
Bzt, zt − p

〉

≤ t
[
f
(
zt, y

)
+ ϕ

(
y
) − ϕ(zt)

]
+ (1 − t)t

〈
Bzt, y − p

〉
,

(3.49)

and hence

f
(
zt, y

)
+ ϕ

(
y
) − ϕ(zt) + (1 − t)

〈
Bzt, y − p

〉 ≥ 0. (3.50)

Letting t → 0, we have

f
(
p, y

)
+ ϕ

(
y
) − ϕ

(
p
)
+
〈
Bp, y − p

〉 ≥ 0. (3.51)

This implies that p ∈ GMEP(f, B, ϕ). Hence, p ∈ ∩∞
i=1F(Ti) ∩GMEP(f, B, ϕ).

Step 7. We prove that xn → p = ΠΘx0.
Let q = ΠΘx0. From xn = ΠCnx0 and q ∈ Θ ⊂ Cn, we have

φ(xn, x0) ≤ φ
(
q, x0

)
, ∀n ≥ 0. (3.52)

This implies that

φ
(
p, x0

)
= lim

n→∞
φ(xn, x0) ≤ φ

(
q, x0

)
. (3.53)

By definition of p = ΠΘx0, we have p = q. Therefore, xn → p = ΠΘx0. This completes the
proof.

Taking ϕ = 0, Ti = T for each i ∈ N in Theorem 3.1, we have the following result.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of an uniformly smooth and strictly
convex Banach Banach space E with Kadec-Klee property. Let B : C → E∗ be a continuous and
monotone mapping. Let f be a bifunction from C × C to R satisfying (A1)–(A4). Let T : C → C be
a closed uniformly L-Lipschitz continuous and uniformly total quasi-φ-asymptotically nonexpansive
mappings with nonnegative real sequences {νn}, {μn} and a strictly increasing continuous function
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ζ : R+ → R+ such that μ1 = 0, νn → 0, μn → 0 (as n → ∞), and ζ(0) = 0. Let {xn} be the sequence
generated by

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

un ∈ C such that f
(
un, y

)
+
〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.54)

where ξn = νnsupq∈Θζ(φ(q, xn)) + μn, ΠCn+1 is the generalized projection of E onto Cn+1, {βn} and
{αn} are sequences in [0, 1], lim infn→∞βn(1 − βn) > 0, {rn} ⊂ [a,∞) for some a > 0. If Θ :=
∩∞
i=1F(Ti) ∩ GEP(f, B) is a nonempty and bounded subset in C, then the sequence {xn} converges

strongly to p ∈ Θ, where p = ΠΘx0.

In Theorem 3.1, as ϕ = 0, B = 0, Ti = T for each i ∈ N, we can obtain the following
corollary.

Corollary 3.3. Let C be a nonempty, closed and convex subset of an uniformly smooth and strictly
convex Banach Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R
satisfying (A1)–(A4), and T : C → C be a closed uniformly L-Lipschitz continuous and uniformly
total quasi-φ-asymptotically nonexpansive mappings with nonnegative real sequences {νn}, {μn} and
a strictly increasing continuous function ζ : R+ → R+ such that μ1 = 0, νn → 0, μn → 0 (as
n → ∞) and ζ(0) = 0. Let {xn} be the sequence generated by

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
ν ∈ Cn : φ(ν, un) ≤ φ(ν, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.55)

where ξn = νnsupq∈Θξ(φ(q, xn)) + μn, ΠCn+1 is the generalized projection of E onto Cn+1, {βn} and
{αn} are sequences in [0, 1], lim infn→∞βn(1 − βn) > 0, {rn} ⊂ [a,∞) for some a > 0. If Θ :=
∩∞
i=1F(Ti)∩EP(f) is a nonempty and bounded subset in C, then the sequence {xn} converges strongly

to p ∈ Θ, where p = ΠΘx0.
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Definition 3.4. A countable family of mapping {Tn} : C → C is said to be uniformly quasi-
φ-asymptotically nonexpansive, if ∩∞

i=1F(Ti)/= ∅ and there exist real sequences {kn} ⊂ [1,∞),
kn → 1 such that for each i ≥ 1,

φ
(
p, Tn

i x
) ≤ knφ

(
p, x

)
, ∀x ∈ C, p ∈

∞⋂
i=1

F(Ti). (3.56)

The following Corollary can be directly obtained from Theorem 3.1.

Corollary 3.5. Let C be a nonempty, closed and convex subset of an uniformly smooth and strictly
convex Banach Banach space E with Kadec-Klee property. Let B : C → E∗ be a continuous and
monotone mapping and let ϕ : C → R be a lower semicontinuous and convex function. Let f be a
bifunction from C × C to R satisfying (A1)–(A4). Let {Ti}∞i=1 : C → C be an infinite family of
closed and uniformly Li-Lipschitz continuous and uniformly quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such that Θ := ∩∞

i=1F(Ti) ∩ GMEP(f, B, ϕ) is a
nonempty and bounded subset in C. Let {xn} be the sequence generated by

x0 ∈ C chosen arbitrary, C0 = C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
βn,0Jxn +

∞∑
i=1

βn,iJT
n
i xn

)
,

un ∈ C such that un = Krnyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ξn

}
,

xn+1 = ΠCn+1x0, n ≥ 0,

(3.57)

where ξn = supp∈F(kn − 1)φ(p, xn),ΠCn+1 is the generalized projection of E onto Cn+1, {rn} ⊂ [a,∞)
for some a > 0, {βn,0, βn,i} and {αn} are sequences in [0, 1]. If

∑∞
i=1 βn,i = 1 for all n ≥ 0, and

lim infn→∞βn,0βn,i > 0 for all i ≥ 1, then the sequence {xn} converges strongly to p ∈ Θ, where
p = ΠΘx0.

Remark 3.6. Theorem 3.1 improves and extend the corresponding results in [13, 24–29] in the
following aspects:

(1) for the mappings, extend the mappings from relatively nonexpansive mappings,
quasi-φ-nonexpansive mappings, and quasi-φ-asymptotically nonexpansive mapp-
ings to a countable family of total quasi-φ-asymptotically nonexpansive mappings;

(2) for the framework of spaces, extend the space from an uniformly smooth and uni-
formly convex Banach space to an uniformly smooth and strictly convex Banach
space with the Kadec-Klee property.
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