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A class of BAM neural networks with variable coefficients and neutral delays are investigated. By
employing fixed-point theorem, the exponential dichotomy, and differential inequality techniques,
we obtain some sufficient conditions to insure the existence and globally exponential stability of
almost periodic solution. This is the first time to investigate the almost periodic solution of the
BAM neutral neural network and the results of this paper are new, and they extend previously
known results.

1. Introduction

Neural networks have been extensively investigated by experts of many areas such as pattern
recognition, associative memory, and combinatorial optimization, recently, see [1–10]. Up
to now, many results about stability of bidirectional associative memory (BAM) neural
networks have been derived. For these BAM systems, periodic oscillatory behavior, almost
periodic oscillatory properties, chaos, and bifurcation are their research contents; generally
speaking, almost periodic oscillatory property is a common phenomenon in the real world,
and in some aspects, it is more actual than other properties, see [11–21].

Time delays cannot be avoided in the hardware implementation of neural networks
because of the finite switching speed of amplifiers and the finite signal propagation time
in biological networks. The existence of time delay may lead to a system’s instability or
oscillation, so delay cannot be neglected in modeling. It is known to all that many practical
delay systems can be modelled as differential systems of neutral type, whose differential
expression concludes not only the derivative term of the current state, but also concludes
the derivative of the past state. It means that state’s changing at the past time may affect the
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current state. Practically, such phenomenon always appears in the study of automatic control,
population dynamics, and so forth, and it is natural and important that systems will contain
some information about the derivative of the past state to further describe and model the
dynamics for such complex neural reactions [22]. Authors in [18–29] added neutral delay
into the neural networks. In these papers, only [18–20] studied the almost periodic solution
of the neutral neural networks. For example, in [19] the following network was studied:

ẋi(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj

(
t − τij(t)

))
+

n∑

j=1

bij(t)gj
(
ẋj

(
t − σij(t)

))
+ Ii(t). (1.1)

Some sufficient conditions are obtained for the existence and globally exponential stability
of almost periodic solution by employing fixed-point theorem and differential inequality
techniques. References [21–26] studied the global asymptotic stability of equilibrium point,
where [22] investigated the equilibrium point of the following BAM neutral neural network
with constant coefficients:

u̇i(t) = −aiui(t) +
m∑

j=1

w1jigj
(
vj(t − d)

)
+

n∑

j=1

w2ij u̇j(t − h) + Ii,

v̇j(t) = −bjvj(t) +
n∑

i=1

r1ijgi(ui(t − h)) +
m∑

i=1

r2jiv̇i(t − d) + Ji.
(1.2)

By using the Lyapunov method and linear matrix inequality techniques, a new stability
criterion was derived. References [27–29] studied the exponential stability of equilibrium
point.

It is obviously that men always studied the stability of the equilibrium point of the
neutral neural networks, and there is little result for the almost periodic solution of neutral
neural networks, especially, for the BAM neutral type neural networks. Besides, in papers
[11, 23, 27, 28], time delay must be differentiable, and its derivative is bounded, which we
think is a strict condition.

Motivated by the above discussions, in this paper, we consider the almost periodic
solution of a class of BAM neural networks with variable coefficients and neutral delays.
By fixed-point theorem and differential inequality techniques, we obtain some sufficient
conditions to insure the existence and globally exponential stability of almost periodic
solution. To the best of the authors’ knowledge, this is the first time to investigate the almost
periodic solution of the BAM neutral neural network, and we can remove delay’s derivable
condition, so the results of this paper are new, and they extend previously known results.

2. Preliminaries

In this paper, we consider the following system:

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
yj

(
t − τij(t)

))
+

n∑

j=1

bji(t)f2j
(
ẋj

(
t − δji(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
xi
(
t − δji(t)

))
+

m∑

i=1

qij(t)g2i
(
ẏj

(
t − τij(t)

))
+ Jj(t),

(2.1)
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where i = 1, 2, . . . , n; j = 1, 2, . . . , m. xi(t), yj(t) are the states of the ith neuron of X layer and
the jth neuron of Y layer, respectively; aij(t), pji(t) and bji(t), qij(t) are the delayed strengths
of connectivity and the neutral delayed strengths of connectivity, respectively; f1j , f2j , g1i, g2i
are activation functions; Ii(t), Jj(t) stands for the external inputs; τij(t), τij(t), δji(t), and δji(t)
correspond to the delays, they are nonnegative; ci(t), dj(t) > 0 represent the rate with which
the ith neuron of X layer and the jth neuron of Y layer will reset its potential to the resting
state in isolation when disconnected from the networks.

Throughout this paper, we assume the following.

(H1) ci(t), dj(t), aij(t), pji(t), bji(t), qij(t), τij(t), τij(t), δji(t), δji(t), Ii(t), and Jj(t) are
continuous almost periodic functions. Moreover, we let

c+i = sup
t∈R

{ci(t)}, c−i = inf
t∈R

{ci(t)} > 0, d+
j = sup

t∈R

{
dj(t)

}
, d−

j = inf
t∈R

{
dj(t)

}
> 0,

aij = sup
t∈R

{∣∣aij(t)
∣∣} <∞, bji = sup

t∈R

{∣∣bji(t)
∣∣} <∞, pji = sup

t∈R

{∣∣pji(t)
∣∣} <∞,

qij = sup
t∈R

{∣∣qij(t)
∣∣} <∞, Ii = sup

t∈R
{|Ii(t)|} <∞, Jj = sup

t∈R

{∣∣Jj(t)
∣∣} <∞.

(2.2)

(H2) f1j , f2j , g1i, and g2i are Lipschitz continuous with the Lipschitz constants F1j , F2j ,
G1i, G2i, and f1j(0) = f2j(0) = g1i(0) = g2i(0) = 0.

(H3) Consider

α = max

⎧
⎨

⎩max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭ < 1.

(2.3)

The initial conditions of system (2.1) are of the following form:

xi(t) = ϕi(t), t ∈ [−δ, 0], δ = sup
t∈R

max
i,j

max
{
δji(t), δji(t)

}
,

yj(t) = φj(t), t ∈ [−τ, 0], τ = sup
t∈R

max
i,j

max
{
τij(t), τ ij(t)

}
,

(2.4)

where i = 1, 2, . . . , n; j = 1, 2, . . . , m; ϕi(t), φj(t) are continuous almost periodic functions.
Let X = {ψ|ψ = (ϕ1, ϕ2, . . . , ϕn, φ1, φ2, . . . , φm)

T , where ϕi, φj : R → R
are continuously differentiable almost periodic functions. For any ψ ∈ X, ψ(t) =
(ϕ1(t), ϕ2(t), . . . , ϕn(t), φ1(t), φ2(t), . . . , φm(t))

T . We define ‖ψ(t)‖1 = max{‖ψ(t)‖0, ‖ψ̇(t)‖0},
where ‖ψ(t)‖0 = max{max1≤i≤n{|ϕi(t)|},max1≤j≤m{|φi(t)|}}, and ψ̇(t) is the derivative of ψ at t.
Let ‖ψ‖ = supt∈R‖ψ(t)‖1, then X is a Banach space.

The following definitions and lemmas will be used in this paper.
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Definition 2.1 (see [11]). Let x(t) : R → Rn be continuous in t. x(t) is said to be almost
periodic on R, if for any ε > 0, the set T(x, ε) = {w|x(t + w) − x(t) < ε, for all t ∈ R} is
relatively dense, that is, for all ε > 0, it is possible to find a real number l = l(ε) > 0, for any
interval length l(ε), there exists a number τ = τ(ε) in this interval such that |x(t+τ)−x(t)| < ε,
for all t ∈ R.

Definition 2.2 (see [11]). Let x ∈ C(R,Rn) and Q(t) be n × n continuous matrix defined on R.
The following linear system:

ẋ(t) = Q(t)x(t) (2.5)

is said to admit an exponential dichotomy on R if there exist constantsK, α, projection P , and
the fundamental solution X(t) of (2.5) satisfying

∣∣∣X(t)PX−1(s)
∣∣∣ ≤ Ke−α(t−s), t ≥ s,

∣∣∣X(t)(I − P)X−1(s)
∣∣∣ ≤ Ke−α(s−t), t ≤ s.

(2.6)

Definition 2.3. Let z∗(t) = (x∗(t), y∗(t))T = (x∗
1(t), . . . , x

∗
n(t), y

∗
1(t), . . . , y

∗
m(t))

T be a continu-
ously differentiable almost periodic solution of (2.1) with initial value ψ∗ = (ϕ∗, φ∗)T =
(ϕ∗

1, . . . , ϕ
∗
n, φ

∗
1, . . . , φ

∗
m)

T . If there exist constants λ > 0,M > 1 such that for every solution z(t)
= (x(t), y(t))T = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))

T of (2.1)with any initial value ψ = (ϕ, φ)T =
(ϕ1, . . . , ϕn, φ1, . . . , φm)

T , if

‖z(t) − z∗(t)‖1 ≤Meλt
∥∥ψ − ψ∗∥∥, for t > 0, (2.7)

where ϕ∗
i (t), φ

∗
j (t), ϕi(t), and φj(t) are almost periodic functions. Then z∗(t) is said to be

globally exponentially stable.

Lemma 2.4 (see [11]). If the linear system (2.5) admits an exponential dichotomy, then the almost
periodic system

ẋ(t) = Q(t)x(t) + f(t) (2.8)

has a unique almost periodic solution

ψ(t) =
∫ t

−∞
X(t)PX−1(s)f(s)ds −

∫+∞

t

X(t)(I − P)X−1f(s)ds. (2.9)

Lemma 2.5 (see [11]). Let qi(t) be an almost periodic function on R and

M
[
qi
]
= lim

T→+∞
1
T

∫ t+T

t

qi(t)ds > 0, i = 1, 2, . . . , n, (2.10)

then the linear system ż(t) = diag{−q1(t), . . . ,−qn(t)}z(t) admits exponential dichotomy on R.
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3. Existence and Uniqueness of Almost Periodic Solutions

In this section, we consider the existence and uniqueness of almost periodic solutions by
fixed-point theorem.

Theorem 3.1. Under the assumptions (H1) − (H3), the system (2.1) has a unique almost periodic
solution in the region ‖ψ − ψ0‖ ≤ αβ/(1 − α).

(H4) If

M[ci] = lim
T→+∞

1
T

∫ t+T

t

ci(s)ds > 0, i = 1, 2, . . . , n,

M
[
dj

]
= lim

T→+∞
1
T

∫ t+T

t

dj(s)ds > 0, j = 1, 2, . . . , m

(3.1)

holds, where

β = max

{
max
1≤i≤n

max

{
Ii
c−i
, Ii +

Iic
+
i

c−i

}
,max
1≤j≤m

max

{
Jj

d−
j

, Jj +
Jjd

+
j

d−
j

}}
,

ψ0(t) =

(∫ t

−∞
e−

∫ t
s c1(u)duI1(s)ds, . . . ,

∫ t

−∞
e−

∫ t
s cn(u)duIn(s)ds,

∫ t

−∞
e−

∫ t
s d1(u)duJ1(s)ds, . . . ,

∫ t

−∞
e−

∫ t
s dm(u)duJm(s)ds

)T

.

(3.2)

Proof. For any (ϕ, φ)T = (ϕ1, . . . , ϕn, φ1, . . . , φm)
T ∈ X, we consider the the following system:

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
φj

(
t − τij(t)

))
+

n∑

j=1

bji(t)f2j
(
ϕ̇j

(
t − δji(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
ϕi

(
t − δji(t)

))
+

m∑

i=1

qij(t)g2i
(
φ̇i

(
t − τij(t)

))
+ Jj(t).

(3.3)

From (H4) and Lemma 2.5, we know the following linear system:

ẋi(t) = −ci(t)xi(t),
ẏj(t) = −dj(t)yj(t)

(3.4)
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admits an exponential dichotomy on R. By Lemma 2.4, System (3.3) has an almost periodic
solution z(ϕ,φ)T (t)which can be expressed as follows:

z(ϕ,φ)T (t) =

(∫ t

−∞
e−

∫ t
s c1(u)du(A1(s) + I1(s))ds, . . . ,

∫ t

−∞
e−

∫ t
s cn(u)du(An(s) + In(s))ds,

∫ t

−∞
e−

∫ t
s d1(u)du

(
A1(s) + J1(s)

)
ds, . . . ,

∫ t

−∞
e−

∫ t
s dm(u)du

(
Am(s) + Jm(s)

)
ds

)T

,

(3.5)

where

Ai(s) =
m∑

j=1

aij(s)f1j
(
φj

(
s − τij(s)

))
+

n∑

j=1

bji(s)f2j
(
ϕ̇j

(
s − δji(s)

))
, i = 1, 2, . . . , n,

Aj(s) =
n∑

i=1

pji(s)g1i
(
ϕi

(
s − δji(s)

))
+

m∑

i=1

qij(s)g2i
(
φ̇i

(
s − τij(s)

))
, j = 1, 2, . . . , m.

(3.6)

So, we can define a mapping T : X → X, by letting

T
(
ϕ, φ

)T (t) = z(ϕ,φ)T (t), ∀(ϕ, φ)T ∈ X. (3.7)

Set X0 = {ψ|ψ ∈ X, ‖ψ − ψ0‖ ≤ αβ/(1 − α)}; clearly, X0 is a closed convex subset of X, so we
have

∥∥ψ0
∥∥ = max

{
sup
t∈R

max
1≤i≤n

∣∣∣∣∣

∫ t

−∞
e−

∫ t
s ci(u)duIi(s)ds

∣∣∣∣∣, supt∈R
max
1≤i≤n

∣∣∣∣∣

(∫ t

−∞
e−

∫ t
s ci(u)duIi(s)ds

)′∣∣∣∣∣,

sup
t∈R

max
1≤j≤m

∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duJj(s)ds

∣∣∣∣∣, supt∈R
max
1≤j≤m

∣∣∣∣∣

(∫ t

−∞
e−

∫ t
s dj (u)duJj(s)ds

)′∣∣∣∣∣

}

≤ max

{
max
1≤i≤n

max

{
Ii
c−i
, Ii +

Iic
+
i

c−i

}
,max
1≤j≤m

max

{
Jj

d−
j

, Jj +
Jjd

+
j

d−
j

}}
= β.

(3.8)

Therefore,

∥∥ψ
∥∥ ≤ ∥∥ψ − ψ0

∥∥ +
∥∥ψ0

∥∥ ≤ αβ

1 − α + β =
β

1 − α, ∀ψ ∈ X0. (3.9)



Abstract and Applied Analysis 7

First, we prove that the mapping T is a self-mapping from X0 to X0. In fact, for any
ψ = (ϕ1, . . . , ϕn, φ1, . . . , φm)

T ∈ X0, let

Bi(s) =
m∑

j=1

aij(s)f1j
(
φj

(
s − τij(s)

))
+

n∑

j=1

bji(s)f2j
(
ϕ̇j

(
s − δji(s)

))
, i = 1, 2, . . . , n,

Bj(s) =
n∑

i=1

pji(s)g1i
(
ϕi

(
s − δji(s)

))
+

m∑

i=1

qij(s)g2i
(
φ̇i

(
s − τij(s)

))
, j = 1, 2, . . . , m.

(3.10)

From (H2) and (H3), we have

∥∥Tψ − ψ0
∥∥ = max

{
sup
t∈R

max
1≤i≤n

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s ci(u)duBi(s)ds

∣∣∣∣∣

}
,

sup
t∈R

max
1≤i≤n

{∣∣∣∣∣−ci(t)
∫ t

−∞
e−

∫ t
s ci(u)duBi(s)ds + Bi(t)

∣∣∣∣∣

}
,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duBj(s)ds

∣∣∣∣∣

}
,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣−dj(t)
∫ t

−∞
e−

∫ t
s dj (u)duBj(s)ds + Bj(t)

∣∣∣∣∣

}}

≤ max

{
sup
t∈R

max
1≤i≤n

{∫ t

−∞
ec

−
i (s−t)|Bi(s)|ds

}
,

sup
t∈R

max
1≤i≤n

{
c+i

∫ t

−∞
ec

−
i (s−t)|Bi(s)|ds + |Bi(t)|

}
,

sup
t∈R

max
1≤j≤m

{∫ t

−∞
ed

−
j (s−t)

∣∣∣Bj(s)
∣∣∣ds

}
,

sup
t∈R

max
1≤j≤m

{
d+
j

∫ t

−∞
ed

−
j (s−t)

∣∣∣Bj(s)
∣∣∣ds +

∣∣∣Bj(t)
∣∣∣
}}

≤ max

⎧
⎨

⎩max
1≤i≤n

⎧
⎨

⎩
1
c−i

⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠

⎫
⎬

⎭,

max
1≤i≤n

⎧
⎨

⎩

(
1 +

c+i
c−i

)⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠

⎫
⎬

⎭,

max
1≤j≤m

{
1
d−
j

(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)}
,

max
1≤j≤m

{(
1 +

d+
j

d−
j

)(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)}}
∥∥ψ

∥∥
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= max

⎧
⎨

⎩max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭
∥∥ψ

∥∥

= α
∥∥ψ

∥∥ ≤ αβ

1 − α.
(3.11)

This implies that T(ψ) ∈ X0, so T is a self-mapping from X0 to X0.
Finally, we prove that T is a contraction mapping. In fact, for any ψ1 =

(α1, . . . , αn, β1, . . . , βm)
T , ψ2 = (α1, . . . , αn, β1, . . . , βm)

T ∈ X0. Let

Hi(s) =
m∑

j=1

aij(s)
[
f1j

(
βj

(
s − τij(s)

)) − f1j
(
βj

(
s − τij(s)

))]

+
n∑

j=1

bji(s)
[
f2j

(
α̇j

(
s − δji(s)

))
− f2j

(
α̇j

(
s − δji(s)

))]
, i = 1, 2, . . . , n,

Hj(s) =
n∑

i=1

pji(s)
[
g1i

(
αi
(
s − δji(s)

)) − g1i
(
αi
(
s − δji(s)

))]

+
m∑

i=1

qij(s)
[
g2i

(
β̇i
(
s − τij(s)

)) − g2i
(
β̇i
(
s − τij(s)

))]
, j = 1, 2, . . . , m.

(3.12)

We have

∥∥Tψ1 − Tψ2
∥∥ = max

{
sup
t∈R

max
1≤i≤n

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s ci(u)duHi(s)ds

∣∣∣∣∣

}
,

sup
t∈R

max
1≤i≤n

{∣∣∣∣∣−ci(t)
∫ t

−∞
e−

∫ t
s ci(u)duHi(s)ds +Hi(t)

∣∣∣∣∣

}
,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duHj(s)ds

∣∣∣∣∣

}
,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣−dj(t)
∫ t

−∞
e−

∫ t
s dj (u)duHj(s)ds +Hj(t)

∣∣∣∣∣

}}

≤ max

⎧
⎨

⎩max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭
∥∥ψ1 − ψ2

∥∥

= α
∥∥ψ1 − ψ2

∥∥.
(3.13)
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Notice that α < 1, it means that the mapping T is a contraction mapping. By Banach fixed-
point theorem, there exists a unique fixed-point ψ∗ ∈ X0 such that Tψ∗ = ψ∗, which implies
system (2.1) has a unique almost periodic solution.

4. Global Exponential Stability of the Almost Periodic Solution

In this section, we consider the exponential stability of almost periodic solution, and we give
two corollaries.

Theorem 4.1. Under the assumptions (H1) − (H4), then system (2.1) has a unique almost periodic
solution which is global exponentially stable.

Proof. It follows from Theorem 3.1 that system (2.1) has a unique almost periodic solution
z∗(t) = (x∗(t), y∗(t))T = (x∗

1(t), . . . , x
∗
n(t), y

∗
1(t), . . . , y

∗
m(t))

T with the initial value ψ∗ = (ϕ∗, φ∗)T

= (ϕ∗
1, . . . , ϕ

∗
n, φ

∗
1, . . . , φ

∗
m)

T . Set z(t) = (x(t), y(t))T = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))
T is an

arbitrary solution of system (2.1) with initial value ψ = (ϕ, φ)T = (ϕ1, . . . , ϕn, φ1, . . . , φm)
T .

Let ui(t) = xi(t) − x∗
i (t), vj(t) = yj(t) − y∗

j (t), Ψi = ϕi − ϕ∗
i , Φj = φj − φ∗

j . Then z(t) − z∗(t)
= (u1(t), . . . , un(t), v1(t), . . . , vm(t))

T , where i = 1, 2, . . . , n; j = 1, 2, . . . , m. Then system (2.1) is
equivalent to the following system:

u̇i(s) + ci(s)ui(s) = Fi(s), s > 0,

v̇j(s) + dj(s)vj(s) = Fj(s), s > 0,
(4.1)

with the initial value

Ψi(s) = ϕi(s) − ϕ∗
i (s), s ∈ [−δ, 0],

Φj(s) = φj(s) − φ∗
j (s), s ∈ [−τ, 0],

(4.2)

where

Fi(s) =
m∑

j=1

aij(s)
[
f1j

(
y∗
j

(
s − τij(s)

)
+ vj

(
s − τij(s)

)) − f1j
(
y∗
j

(
s − τij(s)

))]

+
n∑

j=1

bji(s)
[
f2j

(
ẋ∗
j

(
s − δji(s)

)
+ u̇j

(
s − δji(s)

))
− f2j

(
ẋ∗
j

(
s − δji(s)

))]
,

Fj(s) =
n∑

i=1

pji(s)
[
g1i

(
x∗
i

(
s − δji(s)

)
+ ui

(
s − δji(s)

)) − g1i
(
x∗
i

(
s − δji(s)

))]

+
m∑

i=1

qij(s)
[
g2i

(
ẏ∗
i

(
s − τij(s)

)
+ v̇i

(
s − τij(s)

)) − g2i
(
ẏ∗
i

(
s − τij(s)

))]
.

(4.3)
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Let

Γi(ξi) = c−i − ξi −
m∑

j=1

aijF1je
τξi −

n∑

j=1

bjiF2je
δξi ,

Γi
(
ξi

)
= c−i − ξi −

(
c+i + c

−
i

)
⎛

⎝
m∑

j=1

aijF1je
τξi +

n∑

j=1

bjiF2je
δξi

⎞

⎠,

(4.4)

where ξi, ξi ≥ 0, i = 1, 2, . . . , n. From (H3), we know Γi(0) > 0, Γi(0) > 0. Since Γi(·) and Γi(·)
are continuous on [0,∞] and Γi(ξi), Γi(ξi) → −∞ as ξi, ξi → +∞, so there exist ξ∗i , ξ

∗
i > 0 such

that Γi(ξ∗i ) = Γi(ξ
∗
i ) = 0 and Γi(ξi) > 0 for ξi ∈ (0, ξ∗i ), Γi(ξi) > 0 for ξi ∈ (0, ξ

∗
i ). By choosing

ξ = min{ξ∗1, . . . , ξ∗n, ξ
∗
1, . . . , ξ

∗
n}, we obtain Γi(ξ), Γi(ξ) ≥ 0. So we can choose a positive constant

λ1, 0 < λ1 < min{ξ, c−i , . . . , c−n} such that Γi(λ1), Γi(λ1) > 0. For the same reason, we define

Gj

(
ηj

)
= d−

j − ηj −
n∑

i=1

pjiG1ie
δηj −

m∑

i=1

qijG2ie
τηj ,

Gj

(
ηj

)
= d−

j − ηj −
(
d−
j + d

+
j

)( n∑

i=1

pjiG1ie
δηj +

m∑

i=1

qijG2ie
τηj

)
.

(4.5)

There exists λ2, 0 < λ2 < d−
j , j = 1, 2, . . . , m, such that Gj(λ2), Gj(λ2) > 0. Taking λ =

min{λ1, λ2}, since Γi(·), Γi(·), Gj(·), and Gj(·) are strictly monotonous decrease functions,
therefore, Γi(λ), Γi(λ), Gj(λ), Gj(λ) > 0, which implies

ri :=
1

c−i − λ

⎛

⎝
m∑

j=1

aijF1je
τλ +

n∑

j=1

bjiF2je
δλ

⎞

⎠ < 1,

ri :=

(
1 +

c+i
c−i − λ

)⎛

⎝
m∑

j=1

aijF1je
τλ +

n∑

j=1

bjiF2je
δλ

⎞

⎠ < 1, i = 1, 2, . . . , n;

1
d−
j − λ

(
n∑

i=1

pjiG1ie
δλ +

m∑

i=1

qijG2ie
τλ

)
< 1,

(
1 +

d+
j

d−
j − λ

)(
n∑

i=1

pjiG1ie
δλ +

m∑

i=1

qijG2ie
τλ

)
< 1, j = 1, 2, . . . , m.

(4.6)
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Multiplying the two equations of system (4.1) by e
∫s
0 ci(u)du and e

∫s
0 dj (u)du, respectively, and

integrating on [0, t], we get

ui(t) = ui(0)e−
∫ t
0 ci(u)du +

∫ t

0
e−

∫ t
s ci(u)duFi(s)ds,

vj(t) = vj(0)e−
∫ t
0 dj (u)du +

∫ t

0
e−

∫ t
s dj (u)duFj(s)ds.

(4.7)

Taking

M = max

{
max
1≤i≤n

c−i∑m
j=1 aijF1j +

∑n
j=1 bjiF2j

,max
1≤j≤m

d−
j∑n

i=1 pjiG1i +
∑m

i=1 qijG2i

}
, (4.8)

thenM > 1, thus

‖z(t) − z∗(t)‖1 =
∥∥ψ(t) − ψ∗(t)

∥∥
1 ≤

∥∥ψ − ψ∗∥∥ ≤M∥∥ψ − ψ∗∥∥eλt, t ≤ 0, (4.9)

where λ > 0 as in (4.6). We claim that

‖z(t) − z∗(t)‖1 ≤M
∥∥ψ − ψ∗∥∥eλt, t > 0. (4.10)

To prove (4.10), we first show for any p > 1, the following inequality holds:

‖z(t) − z∗(t)‖1 < pM
∥∥ψ − ψ∗∥∥eλt, t > 0. (4.11)

If (4.11) is false, then there must be some t1 > 0 and some i, l ∈ {1, 2, . . . , n}, j, k ∈ {1, 2, . . . , m},
such that

‖z(t1) − z∗(t1)‖1 = max
{|ui(t1)|, |u̇l(t1)|,

∣∣vj(t1)
∣∣, |v̇k(t1)|

}

= pM
∥∥ψ − ψ∗∥∥eλt1 ,

(4.12)

‖z(t) − z∗(t)‖1 < pM
∥∥ψ − ψ∗∥∥eλt, 0 < t < t1. (4.13)
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By (4.3)–(4.8), (4.12), and (4.13), we have

|ui(t1)| =
∣∣∣∣∣ui(0)e

− ∫ t1
0 ci(u)du +

∫ t1

0
e−

∫ t1
s ci(u)duFi(s)ds

∣∣∣∣∣

≤ e−c−i t1∥∥ψ − ψ∗∥∥ +
∫ t1

0
e−c

−
i (t1−s)|Fi(s)|ds

≤ e−c−i t1∥∥ψ − ψ∗∥∥ +
∫ t1

0
e−c

−
i (t1−s)

⎛

⎝
m∑

j=1

aijF1jpM
∥∥ψ − ψ∗∥∥e−λ(s−τij(s))

+
n∑

j=1

bjiF2jpM
∥∥ψ − ψ∗∥∥e−λ(s−δji(s))

⎞

⎠ds

< pM
∥∥ψ − ψ∗∥∥e−λt1

⎡

⎣e
t1(λ−c−i )

M
+
1 − et1(λ−c−i )
c−i − λ

⎛

⎝
m∑

j=1

aijF1je
λτ +

n∑

j=1

bjiF2je
λδ

⎞

⎠

⎤

⎦

= pM
∥∥ψ − ψ∗∥∥e−λt1

[(
1
M

− ri
)
et1(λ−c

−
i ) + ri

]

< pM
∥∥ψ − ψ∗∥∥e−λt1 ;

|u̇l(t1)| =
∣∣∣∣∣−cl(t1)ul(0)e

− ∫ t1
0 cl(u)du − cl(t1)

∫ t1

0
e−

∫ t1
s cl(u)duFl(s)ds + Fl(t1)

∣∣∣∣∣

≤ c+l e−c
−
l
t1
∥∥ψ − ψ∗∥∥ + c+l

∫ t1

0
e−c

−
l
(t1−s)|Fl(s)|ds + |Fl(t1)|

≤ c+l e−c
−
l
t1
∥∥ψ − ψ∗∥∥ + c+l

∫ t1

0
e−c

−
l
(t1−s)

⎛

⎝
m∑

j=1

aljF1jpM
∥∥ψ − ψ∗∥∥e−λ(s−τlj (s))

+
n∑

j=1

bjlF2jpM
∥∥ψ − ψ∗∥∥e−λ(s−δjl(s))

⎞

⎠ds

+
m∑

j=1

aljF1jpM
∥∥ψ − ψ∗∥∥e−λ(t1−τlj (t1)) +

n∑

j=1

bjlF2jpM
∥∥ψ − ψ∗∥∥e−λ(t1−δjl(t1))

< pM
∥∥ψ − ψ∗∥∥e−λt1

[(
1
M

− rl
)
et1(λ−c

−
l
) + rl

]

< pM
∥∥ψ − ψ∗∥∥e−λt1 .

(4.14)

We also can get

∣∣vj(t1)
∣∣ < pM

∥∥ψ − ψ∗∥∥e−λt1 ,

|v̇k(t1)| < pM
∥∥ψ − ψ∗∥∥e−λt1 .

(4.15)
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From (4.14)–(4.15), we have

‖z(t1) − z∗(t1)‖1 = max
{|ui(t1)|, |u̇l(t1)|,

∣∣vj(t1)
∣∣, |v̇k(t1)|

}
< pM

∥∥ψ − ψ∗∥∥e−λt1 , (4.16)

which contradicts the equality (4.12), so (4.11) holds. Letting p → 1, then (4.10) holds. The
almost periodic solution of system (2.1) is globally exponentially stable.

Corollary 4.2. Let bji(t) = qij(t) = 0. Under assumptions (H1), (H2), and (H4), if, (H5)

α1 = max

⎧
⎨

⎩max
1≤i≤n

⎧
⎨

⎩
1
c−i

m∑

j=1

aijF1j

⎫
⎬

⎭,max
1≤j≤m

{
1
d−
j

n∑

i=1

pjiG1i

}⎫
⎬

⎭ < 1 (4.17)

holds, then system

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
yj

(
t − τij(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
xi
(
t − δji(t)

))
+ Jj(t)

(4.18)

has a unique almost periodic solution in the region ‖ψ − ψ0‖ ≤ α1β/(1 − α1), which is global
exponentially stable.

In fact, Zhang and Si [11, 16] and Chen et al. [17] studied system (4.18). This
Corollary 4.2 is the Theorem 3.1 in [11], Theorem 1.1 in [16], and Theorem 1 in [17].
Especially, in [17], authors let

(H′
5)

α1 = max
1≤i≤n

⎧
⎨

⎩
1
c−i

m∑

j=1

aijF1j

⎫
⎬

⎭ + max
1≤j≤m

{
1
d−
j

n∑

i=1

pjiG1i

}
< 1. (4.19)

Therefore, we extend and improve previously known results.

Remark 4.3. Let ci(t) = dj(t), aij(t) = pji(t), bji = qij(t), Ii(t) = Jj(t), τij(t) = δji(t), τij(t) = δji(t),
n = m. Then system (2.1) is reduced to be system (1.1), hence we have the following.
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Corollary 4.4. Under assumptions (H1), (H2), and (H4), if (H6)

α2 = max
1≤i≤n

max

{
1 +

c+i
c−i

}
m∑

j=1

(
aijF1j + bjiF2j

)
< 1, (4.20)

holds, then system (1.1) has a unique almost periodic solution in the region ‖ψ −ψ0‖ ≤ α2β/(1− α2),
which is global exponentially stable.

This Corollary 4.4 is the result of [19].

5. An Example

In this section, we give an example to illustrate the effectiveness of our results.
Let n = m = 2, f1(y1) = y1/10, f2(y2) = siny2/10, g1(x1) = x1/12, g2(x2) = |x2|/8,

τij(t) = τij(t) = cos2t, δji(t) = δji(t) = 0.5, I1(t) = 1 + sin2(t), I2(t) = 1 + cos2t, J1(t) = 1 + | sin t|,
and J2(t) = sin 2t + 0.5, then we consider the following almost periodic system:

ẋ1(t) = −c1(t)x1(t) +
2∑

j=1

a1j(t)fj
(
yj

(
t − cos2t

))
+

2∑

j=1

bj1(t)ẋj(t − 0.5) + I1(t),

ẋ2(t) = −c2(t)x2(t) +
2∑

j=1

a2j(t)fj
(
yj

(
t − cos2t

))
+

2∑

j=1

bj2(t)ẋj(t − 0.5) + I2(t),

ẏ1(t) = −d1(t)y1(t) +
2∑

i=1

p1i(t)gi(xi(t − 0.5)) +
2∑

i=1

qi1(t)ẏi
(
t − cos2t

)
+ J1(t),

ẏ2(t) = −d2(t)y2(t) +
2∑

i=1

p2i(t)gi(xi(t − 0.5)) +
2∑

i=1

qi2(t)ẏi
(
t − cos2t

)
+ J2(t),

(5.1)

where c1(t) = 1 + cos2t, c2(t) = 1 + sin2t, d1(t) = 1 + | cos t|, d2(t) = 1 + | sin t|, a11(t) = | sin t|/4,
a12(t) = cos2t/8, a21(t) = cos2t/6, a22(t) = | sin t|/4, b11(t) = cos 2t/8, b12(t) = 0, b21(t) = 0,
b22(t) = sin 2t/10, p11(t) = cos 2t/4, p12(t) = sin 2t/9, p21(t) = sin2t/8, p22(t) = | cos t|/6,
q11(t) = cos t/8, q12(t) = 0, q21(t) = 0, and q22(t) = cos2t/10. By simple calculation, we
obtain α = max{39/80, 51/120, 69/144, 63/160} < 1, hence this system has a unique almost
periodic solution, which is global exponentially stable by Theorem 4.1. Figure 1 depicts the
time responses of state variables of x1(t), x2(t), y1(t), and y2(t)with step h = 0.005 and initial
states [−0.2, 0.2,−0.3, 0.4]T for t ∈ [−1, 0], and Figures 2, 3, and 4 depict the phase orbits of
x1(t) and y1(t), x1(t), and x2(t), y1(t) and y2(t). It confirms that our results are effective for
(5.1).

6. Conclusions

In this paper, a class of BAM neural networks with variable coefficients and neutral time-
varying delays are investigated. By employing Banach fixed-point theorem, the exponential
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Figure 1: Transient response of state variable x1(t), x2(t), y1(t) and y2(t).
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Figure 2: Phase response of state variable x1(t) and x2(t).

dichotomy and differential inequality techniques, some sufficient conditions are obtained to
ensure the existence, uniqueness, and stability of the almost periodic solution. As is known
to all, neural networks with neutral delays are studied rarely, and most authors solve these
problems by linear matrix inequality techniques. In addition, BAMneural networks are much
more complicated than the one-layer neural network. In a word, this paper is original, and
novel. It also extends and improves other previously known results (see [11, 16, 17, 19]).
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