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We derive the necessary and sufficient conditions of and the expressions for the orthogonal
solutions, the symmetric orthogonal solutions, and the skew-symmetric orthogonal solutions of
the system of matrix equations AX = B and XC = D, respectively. When the matrix equations
are not consistent, the least squares symmetric orthogonal solutions and the least squares skew-
symmetric orthogonal solutions are respectively given. As an auxiliary, an algorithm is provided
to compute the least squares symmetric orthogonal solutions, and meanwhile an example is
presented to show that it is reasonable.

1. Introduction

Throughout this paper, the following notations will be used. Rm×n,OR
n×n, SR

n×n, andASR
n×n

denote the set of all m × n real matrices, the set of all n × n orthogonal matrices, the set of all
n × n symmetric matrices, and the set of all n × n skew-symmetric matrices, respectively. In is
the identity matrix of order n. (·)T and tr(·) represent the transpose and the trace of the real
matrix, respectively. ‖ · ‖ stands for the Frobenius norm induced by the inner product. The
following two definitions will also be used.

Definition 1.1 (see [1]). A real matrix X ∈ R
n×n is said to be a symmetric orthogonal matrix if

XT = X and XTX = In.

Definition 1.2 (see [2]). A real matrix X ∈ R
2m×2m is called a skew-symmetric orthogonal

matrix if XT = −X and XTX = In.

The set of all n × n symmetric orthogonal matrices and the set of all 2m × 2m skew-
symmetric orthogonal matrices are, respectively, denoted by SOR

n×n and SSOR
2m×2m. Since
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the linear matrix equation(s) and its optimal approximation problem have great applications
in structural design, biology, control theory, and linear optimal control, and so forth, see,
for example, [3–5], there has been much attention paid to the linear matrix equation(s). The
well-known system of matrix equations

AX = B, XC = D, (1.1)

as one kind of linear matrix equations, has been investigated by many authors, and a series
of important and useful results have been obtained. For instance, the system (1.1) with
unknown matrix X being bisymmetric, centrosymmetric, bisymmetric nonnegative definite,
Hermitian and nonnegative definite, and (P,Q)-(skew) symmetric has been, respectively,
investigated by Wang et al. [6, 7], Khatri and Mitra [8], and Zhang and Wang [9]. Of course,
if the solvability conditions of system (1.1) are not satisfied, we may consider its least squares
solution. For example, Li et al. [10] presented the least squares mirrorsymmetric solution.
Yuan [11] got the least-squares solution. Some results concerning the system (1.1) can also be
found in [12–18].

Symmetric orthogonal matrices and skew-symmetric orthogonal matrices play impor-
tant roles in numerical analysis and numerical solutions of partial differential equations.
Papers [1, 2], respectively, derived the symmetric orthogonal solution X of the matrix
equation XC = D and the skew-symmetric orthogonal solution X of the matrix equation
AX = B. Motivated by the work mentioned above, we in this paper will, respectively, study
the orthogonal solutions, symmetric orthogonal solutions, and skew-symmetric orthogonal
solutions of the system (1.1). Furthermore, if the solvability conditions are not satisfied,
the least squares skew-symmetric orthogonal solutions and the least squares symmetric
orthogonal solutions of the system (1.1) will be also given.

The remainder of this paper is arranged as follows. In Section 2, some lemmas are
provided to give the main results of this paper. In Sections 3, 4, and 5, the necessary and
sufficient conditions of and the expression for the orthogonal, the symmetric orthogonal,
and the skew-symmetric orthogonal solutions of the system (1.1) are, respectively, obtained.
In Section 6, the least squares skew-symmetric orthogonal solutions and the least squares
symmetric orthogonal solutions of the system (1.1) are presented, respectively. In addition,
an algorithm is provided to compute the least squares symmetric orthogonal solutions, and
meanwhile an example is presented to show that it is reasonable. Finally, in Section 7, some
concluding remarks are given.

2. Preliminaries

In this section, we will recall some lemmas and the special C-S decomposition which will be
used to get the main results of this paper.

Lemma 2.1 (see [1, Lemmas 1 and 2]). Given C ∈ R
2m×n, D ∈ R

2m×n. The matrix equation YC =
D has a solution Y ∈ OR

2m×2m if and only if DTD = CTC. Let the singular value decompositions of
C and D be, respectively,

C = U

(
Π 0
0 0

)
V T , D = W

(
Π 0
0 0

)
V T , (2.1)
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where

Π = diag(σ1, . . . , σk) > 0, k = rank(C) = rank(D),

U =
(
U1 U2

) ∈ OR
2m×2m, U1 ∈ R

2m×k,

W =
(
W1 W2

) ∈ OR
2m×2m, W1 ∈ R

2m×k, V =
(
V1 V2

) ∈ OR
n×n, V1 ∈ R

n×k.

(2.2)

Then the orthogonal solutions of YC = D can be described as

Y = W

(
Ik 0
0 P

)
UT, (2.3)

where P ∈ OR
(2m−k)×(2m−k) is arbitrary.

Lemma 2.2 (see [2, Lemmas 1 and 2]). GivenA ∈ R
n×m, B ∈ R

n×m. The matrix equationAX = B
has a solution X ∈ OR

m×m if and only if AAT = BBT . Let the singular value decompositions of A
and B be, respectively,

A = U

(
Σ 0
0 0

)
V T , B = U

(
Σ 0
0 0

)
QT, (2.4)

where

Σ = diag(δ1, . . . , δl) > 0, l = rank(A) = rank(B), U =
(
U1 U2

) ∈ OR
n×n, U1 ∈ R

n×l,

V =
(
V1 V2

) ∈ OR
m×m, V1 ∈ R

m×l, Q =
(
Q1 Q2

) ∈ OR
m×m, Q1 ∈ R

m×l.
(2.5)

Then the orthogonal solutions of AX = B can be described as

X = V

(
Il 0
0 W

)
QT, (2.6)

whereW ∈ OR
(m−l)×(m−l) is arbitrary.

Lemma 2.3 (see [2, Theorem 1]). If

X =
(
X11 X12

X21 X22

)
∈ OR

2m×2m, X11 ∈ ASR
k×k, (2.7)

then the C-S decomposition of X can be expressed as

(
D1 0
0 D2

)T(
X11 X12

X21 X22

)(
D1 0
0 R2

)
=
(
Σ11 Σ12

Σ21 Σ22

)
, (2.8)
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where D1 ∈ OR
k×k, D2, R2 ∈ OR

(2m−k)×(2m−k),

Σ11 =

⎛
⎜⎝

Ĩ 0 0
0 C̃ 0
0 0 0

⎞
⎟⎠, Σ12 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠,

Σ21 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠, Σ22 =

⎛
⎜⎝

I 0 0
0 −C̃T 0
0 0 0

⎞
⎟⎠,

Ĩ = diag
(
Ĩ1, . . . , Ĩr1

)
, Ĩ1 = · · · = Ĩr1 =

(
0 1
−1 0

)
, C̃ = diag(C1, . . . , Cl1),

Ci =
(

0 ci
−ci 0

)
, i = 1, . . . , l1; S = diag(S1, . . . , Sl1),

Si =
(
si 0
0 si

)
, ST

i Si + CT
i Ci = I2, i = 1, . . . , l1;

2r1 + 2l1 = rank(X11), Σ21 = ΣT
12, k − 2r1 = rank(X21).

(2.9)

Lemma 2.4 (see [1, Theorem 1]). If

K =
(
K11 K12

K21 K22

)
∈ OR

m×m, K11 ∈ SR
l×l, (2.10)

then the C-S decomposition of K can be described as

(
D1 0
0 D2

)T(
K11 K12

K21 K22

)(
D1 0
0 R2

)
=
(
Π11 Π12

Π21 Π22

)
, (2.11)

where D1 ∈ OR
l×l, D2, R2 ∈ OR

(m−l)×(m−l),

Π11 =

⎛
⎜⎝

Ĩ 0 0
0 C̃ 0
0 0 0

⎞
⎟⎠, Π12 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠,

Π21 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠, Π22 =

⎛
⎜⎝

I 0 0
0 −C̃ 0
0 0 0

⎞
⎟⎠,

Ĩ = diag(i1, . . . , ir), ij = ±1, j = 1, . . . , r;

S = diag(s1′ , . . . , sl′), C̃ = diag(c1′ , . . . , cl′),

s2i′ =
√
1 − c2i′ , i = 1′, . . . , l′; r + l′ = rank(K11), Π21 = ΠT

12.

(2.12)
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Remarks 2.5. In order to know the C-S decomposition of an orthogonal matrix with a
k × k leading (skew-) symmetric submatrix for details, one can deeply study the proof of
Theorem 1 in [1] and [2].

Lemma 2.6. Given A ∈ R
n×m, B ∈ R

n×m. Then the matrix equation AX = B has a solution X ∈
SOR

m×m if and only ifAAT = BBT andABT = BAT . When these conditions are satisfied, the general
symmetric orthogonal solutions can be expressed as

X = Ṽ

(
I2l−r 0
0 G

)
Q̃T , (2.13)

where

Q̃ = JQdiag(I,D2) ∈ OR
m×m, Ṽ = JV diag(I, R2) ∈ OR

m×m,

J =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠,

(2.14)

and G ∈ SOR
(m−2l+r)×(m−2l+r) is arbitrary.

Proof. The Necessity. Assume X ∈ SOR
m×m is a solution of the matrix equation AX = B, then

we have

BBT = AXXTAT = AAT,

BAT = AXAT = AXTAT = ABT.
(2.15)

The Sufficiency. Since the equality AAT = BBT holds, then by Lemma 2.2, the singular
value decompositions of A and B can be, respectively, expressed as (2.4). Moreover, the
condition ABT = BAT means

U

(
Σ 0
0 0

)
V TQ

(
Σ 0
0 0

)
UT = U

(
Σ 0
0 0

)
QTV

(
Σ 0
0 0

)
UT, (2.16)

which can be written as

V T
1 Q1 = QT

1V1. (2.17)

From Lemma 2.2, the orthogonal solutions of the matrix equation AX = B can be described
as (2.6). Now we aim to find that X in (2.6) is also symmetric. Suppose that X is symmetric,
then we have

(
Il 0
0 WT

)
V TQ = QTV

(
Il 0
0 W

)
, (2.18)
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together with the partitions of the matrices Q and V in Lemma 2.2, we get

V T
1 Q1 = QT

1V1, (2.19)

QT
1V2W = V T

1 Q2, (2.20)

QT
2V2W = WTV T

2 Q2. (2.21)

By (2.17), we can get (2.19). Now we aim to find the orthogonal solutions of the system
of matrix equations (2.20) and (2.21). Firstly, we obtain from (2.20) that QT

1V2(QT
1V2)

T =
V T
1 Q2(V T

1 Q2)
T , then by Lemma 2.2, (2.20) has an orthogonal solution W . By (2.17), the l × l

leading principal submatrix of the orthogonal matrix V TQ is symmetric. Then we have, from
Lemma 2.4,

V T
1 Q2 = D1Π12R

T
2 , (2.22)

QT
1V2 = D1Π12D

T
2 , (2.23)

V T
2 Q2 = D2Π22R

T
2 . (2.24)

From (2.20), (2.22), and (2.23), the orthogonal solution W of (2.20) is

W = D2

⎛
⎝G 0 0

0 I 0
0 0 I

⎞
⎠RT

2 , (2.25)

where G ∈ OR
(m−2l+r)×(m−2l+r) is arbitrary. Combining (2.21), (2.24), and (2.25) yields GT =

G, that is, G is a symmetric orthogonal matrix. Denote

V̂ = V diag(I,D2), Q̂ = Qdiag(I, R2), (2.26)

then the symmetric orthogonal solutions of the matrix equation AX = B can be expressed as

X = V̂

⎛
⎝I 0 0

0 G 0
0 0 I

⎞
⎠Q̂T . (2.27)

Let the partition matrix J be

J =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠, (2.28)
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compatible with the block matrix

⎛
⎝I 0 0

0 G 0
0 0 I

⎞
⎠. (2.29)

Put

Ṽ = JV̂ , Q̃ = JQ̂, (2.30)

then the symmetric orthogonal solutions of the matrix equation AX = B can be described as
(2.13).

Setting A = CT , B = DT , and X = YT in [2, Theorem 2], and then by Lemmas 2.1 and
2.3, we can have the following result.

Lemma 2.7. Given C ∈ R
2m×n, D ∈ R

2m×n. Then the equation has a solution Y ∈ SSOR
2m×2m if

and only ifDTD = CTC andDTC = −CTD. When these conditions are satisfied, the skew-symmetric
orthogonal solutions of the matrix equation YC = D can be described as

Y = W̃

(
I 0
0 H

)
ŨT , (2.31)

where

W̃ = J ′W diag(I,−D2) ∈ OR
2m×2m, Ũ = J ′Udiag(I, R2) ∈ OR

2m×2m,

J ′ =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠,

(2.32)

and H ∈ SSOR
2r×2r is arbitrary.

3. The Orthogonal Solutions of the System (1.1)

The following theorems give the orthogonal solutions of the system (1.1).

Theorem 3.1. Given A, B ∈ R
n×m and C, D ∈ R

m×n, suppose the singular value decompositions of
A and B are, respectively, as (2.4). Denote

QTC =
(
C1

C2

)
, V TD =

(
D1

D2

)
, (3.1)
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where C1, D1 ∈ R
l×n, and C2, D2 ∈ R

(m−l)×n. Let the singular value decompositions of C2 and D2 be,
respectively,

C2 = Ũ

(
Π 0
0 0

)
Ṽ T , D2 = W̃

(
Π 0
0 0

)
Ṽ T , (3.2)

where Ũ, W̃ ∈ OR
(m−l)×(m−l), Ṽ ∈ OR

n×n, Π ∈ R
k×k is diagonal, whose diagonal elements are

nonzero singular values of C2 or D2. Then the system (1.1) has orthogonal solutions if and only if

AAT = BBT , C1 = D1, DT
2D2 = CT

2C2. (3.3)

In which case, the orthogonal solutions can be expressed as

X = V̂

(
Ik+l 0
0 G′

)
Q̂T , (3.4)

where

V̂ = V

(
Il 0
0 W̃

)
∈ OR

m×m, Q̂ = Q

(
Il 0
0 Ũ

)
∈ OR

m×m, (3.5)

and G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary.

Proof. Let the singular value decompositions of A and B be, respectively, as (2.4). Since the
matrix equation AX = B has orthogonal solutions if and only if

AAT = BBT , (3.6)

then by Lemma 2.2, its orthogonal solutions can be expressed as (2.6). Substituting (2.6) and
(3.1) into the matrix equation XC = D, we have C1 = D1 and WC2 = D2. By Lemma 2.1, the
matrix equation WC2 = D2 has orthogonal solution W if and only if

DT
2D2 = CT

2C2. (3.7)

Let the singular value decompositions of C2 and D2 be, respectively,

C2 = Ũ

(
Π 0
0 0

)
Ṽ T , D2 = W̃

(
Π 0
0 0

)
Ṽ T , (3.8)

where Ũ, W̃ ∈ OR
(m−l)×(m−l), Ṽ ∈ OR

n×n, Π ∈ R
k×k is diagonal, whose diagonal elements are

nonzero singular values of C2 or D2. Then the orthogonal solutions can be described as

W = W̃

(
Ik 0
0 G′

)
ŨT , (3.9)
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where G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary. Therefore, the common orthogonal solutions of the

system (1.1) can be expressed as

X = V

(
Il 0
0 W

)
QT = V

(
Il 0
0 W̃

)⎛
⎝Il 0 0

0 Ik 0
0 0 G′

⎞
⎠
(
Il 0
0 ŨT

)
QT = V̂

(
Ik+l 0
0 G′

)
Q̂T , (3.10)

where

V̂ = V

(
Il 0
0 W̃

)
∈ OR

m×m, Q̂ = Q

(
Il 0
0 Ũ

)
∈ OR

m×m, (3.11)

and G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary.

The following theorem can be shown similarly.

Theorem 3.2. GivenA, B ∈ R
n×m and C, D ∈ R

m×n, let the singular value decompositions of C and
D be, respectively, as (2.1). Partition

AW =
(
A1 A2

)
, BU =

(
B1 B2

)
, (3.12)

where A1, B1 ∈ R
n×k, A2, B2 ∈ R

n×(m−k). Assume the singular value decompositions of A2 and B2

are, respectively,

A2 = Ũ

(
Σ 0
0 0

)
Ṽ T , B2 = Ũ

(
Σ 0
0 0

)
Q̃T , (3.13)

where Ṽ , Q̃ ∈ OR
(m−k)×(m−k), Ũ ∈ OR

n×n, Σ ∈ R
l′×l′ is diagonal, whose diagonal elements are

nonzero singular values of A2 or B2. Then the system (1.1) has orthogonal solutions if and only
if

DTD = CTC, A1 = B1, A2A
T
2 = B2B

T
2 . (3.14)

In which case, the orthogonal solutions can be expressed as

X = Ŵ

(
Ik+l′ 0
0 H ′

)
ÛT , (3.15)

where

Ŵ = W

(
Ik 0
0 W̃

)
∈ OR

m×m, Û = U

(
Ik 0
0 Ũ

)
∈ OR

m×m, (3.16)

and H ′ ∈ OR
(m−k−l′)×(m−k−l′) is arbitrary.
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4. The Symmetric Orthogonal Solutions of the System (1.1)

We now present the symmetric orthogonal solutions of the system (1.1).

Theorem 4.1. Given A,B ∈ R
n×m, C,D ∈ R

m×n. Let the symmetric orthogonal solutions of the
matrix equation AX = B be described as in Lemma 2.6. Partition

Q̃TC =
(
C′

1
C′

2

)
, Ṽ TD =

(
D′

1
D′

2

)
, (4.1)

where C′
1, D

′
1 ∈ R

(2l−r)×n, C′
2, D

′
2 ∈ R

(m−2l+r)×n. Then the system (1.1) has symmetric orthogonal
solutions if and only if

AAT = BBT , ABT = BAT , C′
1 = D′

1, D′T
2 D

′
2 = C′T

2 C
′
2, D′T

2 C
′
2 = C′T

2 D
′
2. (4.2)

In which case, the solutions can be expressed as

X = V̂

(
I 0
0 G′′

)
Q̂T , (4.3)

where

V̂ = V

(
I2l−r 0
0 W̃

)
∈ OR

m×m, Q̂ = Q

(
I2l−r 0
0 Ũ

)
∈ OR

m×m, (4.4)

and G′′ ∈ SOR
(m−2l+r−2l′+r ′)×(m−2l+r−2l′+r ′) is arbitrary.

Proof. From Lemma 2.6, we obtain that the matrix equation AX = B has symmetric
orthogonal solutions if and only if AAT = BBT and ABT = BAT . When these conditions
are satisfied, the general symmetric orthogonal solutions can be expressed as

X = Ṽ

(
I2l−r 0
0 G

)
Q̃T , (4.5)

where G ∈ SOR
(m−2l+r)×(m−2l+r) is arbitrary, Q̃ ∈ OR

m×m, Ṽ ∈ OR
m×m. Inserting (4.1) and (4.5)

into the matrix equation XC = D, we get C′
1 = D′

1 and GC′
2 = D′

2. By [1, Theorem 2], the
matrix equation GC′

2 = D′
2 has a symmetric orthogonal solution if and only if

D′T
2 D

′
2 = C′T

2 C
′
2, D′T

2 C
′
2 = C′T

2 D
′
2. (4.6)

In which case, the solutions can be described as

G = W̃

(
I2l′−r ′ 0
0 G′′

)
ŨT , (4.7)
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where G′′ ∈ SOR
(m−2l+r−2l′+r ′)×(m−2l+r−2l′+r ′) is arbitrary, W̃ ∈ OR

(m−2l+r)×(m−2l+r), and Ũ ∈
OR

(m−2l+r)×(m−2l+r). Hence the system (1.1) has symmetric orthogonal solutions if and only
if all equalities in (4.2) hold. In which case, the solutions can be expressed as

X = Ṽ

(
I2l−r 0
0 G

)
Q̃T = Ṽ

(
I2l−r 0
0 W̃

)⎛
⎝I2l−r 0

0
(
I 0
0 G′′

)
⎞
⎠
(
I2l−r 0
0 ŨT

)
Q̃T , (4.8)

that is, the expression in (4.3).

The following theorem can also be obtained by the method used in the proof of
Theorem 4.1.

Theorem 4.2. Given A,B ∈ R
n×m, C,D ∈ R

m×n. Let the symmetric orthogonal solutions of the
matrix equation XC = D be described as

X = M̃

(
I2k−r 0
0 G

)
ÑT , (4.9)

where M̃, Ñ ∈ OR
m×m, G ∈ SOR

(m−2k+r)×(m−2k+r). Partition

AM̃ =
(
M1 M2

)
, BÑ =

(
N1 N2

)
, M1,N1 ∈ R

n×(2k−r), M2,N2 ∈ R
n×(m−2k+r). (4.10)

Then the system (1.1) has symmetric orthogonal solutions if and only if

DTD = CTC, DTC = CTD, M1 = N1, M2M
T
2 = N2N

T
2 , M2N

T
2 = N2M

T
2 .

(4.11)

In which case, the solutions can be expressed as

X = M̂

(
I 0
0 H ′′

)
N̂T , (4.12)

where

M̂ = M̃

(
I2k−r 0
0 W̃1

)
∈ OR

m×m, N̂ = Ñ

(
I2k−r 0
0 Ũ1

)
∈ OR

m×m, (4.13)

and H ′′ ∈ SOR
(m−2k+r−2k′+r ′)×(m−2k+r−2k′+r ′) is arbitrary.
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5. The Skew-Symmetric Orthogonal Solutions of the System (1.1)

In this section, we show the skew-symmetric orthogonal solutions of the system (1.1).

Theorem 5.1. Given A,B ∈ R
n×2m, C,D ∈ R

2m×n. Suppose the matrix equation AX = B has skew-
symmetric orthogonal solutions with the form

X = Ṽ1

(
I 0
0 H

)
Q̃T

1 , (5.1)

whereH ∈ SSOR
2r×2r is arbitrary, Ṽ1, Q̃1 ∈ OR

2m×2m. Partition

Q̃T
1C =

(
Q1

Q2

)
, Ṽ T

1 D =
(
V1

V2

)
, (5.2)

where Q1, V1 ∈ R
(2m−2r)×n, Q2, V2 ∈ R

2r×n. Then the system (1.1) has skew-symmetric orthogonal
solutions if and only if

AAT = BBT , ABT = −BAT, Q1 = V1, QT
2Q2 = V T

2 V2, QT
2V2 = −V T

2 Q2. (5.3)

In which case, the solutions can be expressed as

X = V̂1

(
I 0
0 J ′

)
Q̂T

1 , (5.4)

where

V̂ = Ṽ1

(
I2m−2r 0

0 W̃

)
∈ OR

2m×2m, Q̂ = Q̃1

(
I2m−2r 0

0 Ũ

)
∈ OR

2m×2m, (5.5)

and J ′ ∈ SSOR
2k′×2k′

is arbitrary.

Proof. By [2, Theorem 2], the matrix equation AX = B has the skew-symmetric orthogonal
solutions if and only if AAT = BBT and ABT = −BAT . When these conditions are satisfied,
the general skew-symmetric orthogonal solutions can be expressed as (5.1). Substituting (5.1)
and (5.2) into the matrix equation XC = D, we get Q1 = V1 and HQ2 = V2. From Lemma 2.7,
equation HQ2 = V2 has a skew-symmetric orthogonal solution H if and only if

QT
2Q2 = V T

2 V2, QT
2V2 = −V T

2 Q2. (5.6)

When these conditions are satisfied, the solution can be described as

H = W̃

(
I 0
0 J ′

)
ŨT , (5.7)
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where J ′ ∈ SSOR
2k′×2k′

is arbitrary, W̃ , Ũ ∈ OR
2r×2r . Inserting (5.7) into (5.1) yields that the

system (1.1) has skew-symmetric orthogonal solutions if and only if all equalities in (5.3)
hold. In which case, the solutions can be expressed as (5.4).

Similarly, the following theorem holds.

Theorem 5.2. Given A,B ∈ R
n×2m, C,D ∈ R

2m×n. Suppose the matrix equation XC = D has
skew-symmetric orthogonal solutions with the form

X = W̃

(
I 0
0 K

)
ŨT , (5.8)

where K ∈ SSOR
2p×2p is arbitrary, W̃ , Ũ ∈ OR

2m×2m. Partition

AW̃ =
(
W1 W2

)
, BŨ =

(
U1 U2

)
, (5.9)

where W1, U1 ∈ R
n×(2m−2p), W2, U2 ∈ R

n×2p. Then the system (1.1) has skew-symmetric orthogonal
solutions if and only if

DTD = CTC, DTC = −CTD, W1 = U1, W2W
T
2 = U2U

T
2 , U2W

T
2 = −W2U

T
2 .

(5.10)

In which case, the solutions can be expressed as

X = Ŵ1

(
I 0
0 J ′′

)
ÛT

1 , (5.11)

where

Ŵ1 = W̃

(
I2m−2p 0

0 W̃1

)
∈ OR

2m×2m, Û1 =

(
I2m−2p 0

0 ŨT
1

)
Ũ ∈ OR

2m×2m, (5.12)

and J ′′ ∈ SSOR
2q×2q is arbitrary.

6. The Least Squares (Skew-) Symmetric Orthogonal Solutions of
the System (1.1)

If the solvability conditions of a system of matrix equations are not satisfied, it is natural to
consider its least squares solution. In this section, we get the least squares (skew-) symmetric
orthogonal solutions of the system (1.1), that is, seek X ∈ SSOR

2m×2m(SOR
n×n) such that

min
X∈SSOR2m×2m(SORn×n)

‖AX − B‖2 + ‖XC −D‖2. (6.1)
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With the help of the definition of the Frobenius norm and the properties of the skew-
symmetric orthogonal matrix, we get that

‖AX − B‖2 + ‖XC −D‖2 = ‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 − 2 tr
(
XT
(
ATB +DCT

))
. (6.2)

Let

ATB +DCT = K,

KT −K

2
= T.

(6.3)

Then, it follows from the skew-symmetric matrix X that

tr
(
XT
(
ATB +DCT

))
= tr
(
XTK

)
= tr(−XK) = tr

(
X

(
KT −K

2

))
= tr(XT). (6.4)

Therefore, (6.1) holds if and only if (6.4) reaches its maximum. Now, we pay our attention to
find the maximum value of (6.4). Assume the eigenvalue decomposition of T is

T = E

(
Λ 0
0 0

)
ET (6.5)

with

Λ = diag(Λ1, . . . ,Λl), Λi =
(

0 αi

−αi 0

)
, αi > 0, i = 1, . . . , l; 2l = rank(T). (6.6)

Denote

ETXE =
(
X11 X12

X21 X22

)
, (6.7)

partitioned according to

(
Λ 0
0 0

)
, (6.8)

then (6.4) has the following form:

tr(XT) = tr
(
ETXE

(
Λ 0
0 0

))
= tr(X11Λ). (6.9)



Journal of Applied Mathematics 15

Thus, by

X11 = Ĩ = diag
(
Ĩ1, . . . , Ĩl

)
, (6.10)

where

Ĩi =
(
0 −1
1 0

)
, i = 1, . . . , l. (6.11)

Equation (6.9) gets its maximum. Since ETXE is skew-symmetric, it follows from

X = E

(
Ĩ 0
0 G

)
ET , (6.12)

where G ∈ SSOR
(2m−2l)×(2m−2l) is arbitrary, that (6.1) obtains its minimum. Hence we have the

following theorem.

Theorem 6.1. Given A,B ∈ R
n×2m and C,D ∈ R

2m×n, denote

ATB +DCT = K,
KT −K

2
= T, (6.13)

and let the spectral decomposition of T be (6.5). Then the least squares skew-symmetric orthogonal
solutions of the system (1.1) can be expressed as (6.12).

If X in (6.1) is a symmetric orthogonal matrix, then by the definition of the Frobenius
norm and the properties of the symmetric orthogonal matrix, (6.2) holds. Let

ATB +DCT = H,
HT +H

2
= N. (6.14)

Then we get that

min
X∈SORn×n

‖AX − B‖2 + ‖XC −D‖2 = min
X∈SORn×n

[
‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 − 2 tr(XN)

]
. (6.15)

Thus (6.15) reaches its minimum if and only if tr(XN) obtains its maximum. Now, we focus
on finding the maximum value of tr(XN). Let the spectral decomposition of the symmetric
matrix N be

N = M

(
Σ 0
0 0

)
MT, (6.16)
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where

Σ =
(
Σ+ 0
0 Σ−

)
, Σ+ = diag(λ1, . . . , λs),

λ1 ≥ λ2 ≥ · · · ≥ λs > 0, Σ− = diag(λs+1, . . . , λt),

λt ≤ λt−1 ≤ · · · ≤ λs+1 < 0, t = rank(N).

(6.17)

Denote

MTXM =

(
X11 X12

X21 X22

)
(6.18)

being compatible with

(
Σ 0
0 0

)
. (6.19)

Then

tr(XN) = tr
(
MTXM

(
Σ 0
0 0

))
= tr

((
X11 X12

X21 X22

)(
Σ 0
0 0

))
= tr
(
X11Σ

)
. (6.20)

Therefore, it follows from

X11 = Î =
(
Is 0
0 −It−s

)
(6.21)

that (6.20) reaches its maximum. SinceMTXM is a symmetric orthogonal matrix, then when
X has the form

X = M

(
Î 0
0 L

)
MT, (6.22)

where L ∈ SOR
(n−t)×(n−t) is arbitrary, (6.15) gets its minimum. Thus we obtain the following

theorem.

Theorem 6.2. Given A,B ∈ R
n×m, C,D ∈ R

m×n, denote

ATB +DCT = H,
HT +H

2
= N, (6.23)

and let the eigenvalue decomposition of N be (6.16). Then the least squares symmetric orthogonal
solutions of the system (1.1) can be described as (6.22).
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Algorithm 6.3. Consider the following.

Step 1. Input A,B ∈ R
n×m and C,D ∈ R

m×n.

Step 2. Compute

ATB +DCT = H,

N =
HT +H

2
.

(6.24)

Step 3. Compute the spectral decomposition ofN with the form (6.16).

Step 4. Compute the least squares symmetric orthogonal solutions of (1.1) according to
(6.22).

Example 6.4. Assume

A =

⎛
⎜⎜⎜⎜⎜⎝

12.2 8.4 −5.6 6.3 9.4 10.7
11.8 2.9 8.5 6.9 9.6 −7.8
10.6 2.3 11.5 7.8 6.7 8.9
3.6 7.8 4.9 11.9 9.4 5.9
4.5 6.7 7.8 3.1 5.6 11.6

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

8.5 9.4 3.6 7.8 6.3 4.7
2.7 3.6 7.9 9.4 5.6 7.8
3.7 6.7 8.6 9.8 3.4 2.9
−4.3 6.2 5.7 7.4 5.4 9.5
2.9 3.9 −5.2 6.3 7.8 4.6

⎞
⎟⎟⎟⎟⎟⎠

,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5.4 6.4 3.7 5.6 9.7
3.6 4.2 7.8 −6.3 7.8
6.7 3.5 −4.6 2.9 2.8
−2.7 7.2 10.8 3.7 3.8
1.9 3.9 8.2 5.6 11.2
8.9 7.8 9.4 7.9 5.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7.9 9.5 5.4 2.8 8.6
8.7 2.6 6.7 8.4 8.1
5.7 3.9 −2.9 5.2 1.9
4.8 5.8 1.8 −7.2 5.8
2.8 7.9 4.5 6.7 9.6
9.5 4.1 3.4 9.8 3.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.25)

It can be verified that the given matrices A,B,C, and D do not satisfy the solvability
conditions in Theorem 4.1 or Theorem 4.2. So we intend to derive the least squares symmetric
orthogonal solutions of the system (1.1). By Algorithm 6.3, we have the following results:

(1) the least squares symmetric orthogonal solution

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.01200 0.06621 −0.24978 0.27047 0.91302 −0.16218
0.06621 0.65601 0.22702 −0.55769 0.24587 0.37715
−0.24978 0.22702 0.80661 0.40254 0.04066 −0.26784
0.27047 −0.55769 0.40254 0.06853 0.23799 0.62645
0.91302 0.24587 0.04066 0.23799 −0.12142 −0.18135
−0.16218 0.37715 −0.26784 0.62645 −0.181354 0.57825

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6.26)

(2)

min
X∈SORm×m

‖AX − B‖2 + ‖XC −D‖2 = 1.98366,

∥∥∥XTX − I6
∥∥∥ = 2.84882 × 10−15,

∥∥∥XT −X
∥∥∥ = 0.00000.

(6.27)
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Remark 6.5. (1) There exists a unique symmetric orthogonal solution such that (6.1) holds if
and only if the matrix

N =
HT +H

2
, (6.28)

where

H = ATB +DCT, (6.29)

is invertible. Example 6.4 just illustrates it.
(2) The algorithm about computing the least squares skew-symmetric orthogonal

solutions of the system (1.1) can be shown similarly; we omit it here.

7. Conclusions

This paper is devoted to giving the solvability conditions of and the expressions of
the orthogonal solutions, the symmetric orthogonal solutions, and the skew-symmetric
orthogonal solutions to the system (1.1), respectively, and meanwhile obtaining the least
squares symmetric orthogonal and skew-symmetric orthogonal solutions of the system (1.1).
In addition, an algorithm and an example have been provided to compute its least squares
symmetric orthogonal solutions.
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