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We consider the existence of the global attractor A1 for the 3D weakly damped wave equation.
We prove that A1 is compact in (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω) and attracts all bounded subsets of

(H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) with respect to the norm of (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω). Furthermore,
this attractor coincides with the global attractor in the weak energy space H1

0 (Ω) × L2(Ω).

1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We consider the following
weakly damped wave equation:

utt + αut −Δu + ϕ(u) = f in Ω × R+ (1.1)

with the boundary condition

u|∂Ω = 0, (1.2)

and initial conditions:

u(·, 0) = u0, ut(·, 0) = u1, in Ω, (1.3)

where α > 0, ϕ is the nonlinear term, and f is a given external forcing term.
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Nonlinear wave equation of the type (1.1) arises as an evolutionary mathematical
model in many branched of physics, for example, (i) modeling a continuous Josephson
junction with ϕ(u) = β sinu; (ii) modeling a relativistic quantum mechanics with ϕ(u) =
|u|γu. A relevant problem is to investigate the asymptotic dynamical behavior of these
mathematical models. The understanding of the asymptotic behavior of dynamical systems
is one of the most important problems of modern mathematical physics. One way to treat this
problem is to analyse the existence of its global attractor.

The existence of global attractors for the classical wave equations inH1
0(Ω)×L2(Ω) and

the regularities of the global attractors has been studied extensively inmanymonographs and
lectures, for example, see [1–7] and references therein.

However, to our knowledge, the research about the stronger attraction of global
attractors for the damped wave equations with respect to the norm of (H2(Ω) ∩ H1

0(Ω)) ×
H1

0(Ω) is fewer, only has been found in [8–10]. In the above three papers, the global attractors
in strong topological space (H2(Ω) ∩ H1

0(Ω)) × H1
0(Ω) were established, the attraction with

respect to the norm of (H2(Ω)∩H1
0(Ω))×H1

0(Ω)was proved by the asymptotic compactness
of the operator semigroup.

Recently, we consider (1.1) in n dimensional space where the nonlinear term ϕwithout
polynomial growth is in [11].

In this paper, our aim is to prove the existence of a global attractor for (1.1) in
strong topological space (H2(Ω) ∩ H1

0(Ω)) × H1
0(Ω) where the nonlinear term ϕ with some

polynomial growth. For simplicity, we consider the space dimension is 3, as we know,
when the space dimension is lagerer than 3, the case is similar as in 3D, when the space
dimension is 1 or 2, the case is more easier. The attraction with respect to the norm of
(H2(Ω) ∩ H1

0(Ω)) × H1
0(Ω) will be proved by a method different from [8–10]. Furthermore,

this attractor coincides with the global attractor in the weak energy space H1
0(Ω) × L2(Ω).

The basic assumptions about the external forcing term f and the nonlinear term ϕ are
as follows. Let f ∈ L2(Ω) be independent of time, and let the nonlinear term ϕ ∈ C1(R,R)
satisfy the following assumptions:

lim inf
|s|→∞

Φ(s)
s2

≥ 0, here Φ(s) =
∫s

0
ϕ(τ)dτ ; (1.4)

lim sup
|s|→∞

∣∣ϕ′(s)
∣∣

s2
= 0; (1.5)

moreover, there exists a constant C0 > 0 such that

lim inf
|s|→∞

sϕ(s) − C0Φ(s)
s2

≥ 0. (1.6)

Throughout this paper, we use the following notations. Let Ω be a bounded subset of
Rn with sufficiently smooth boundary,A = −Δ. V = H1

0(Ω),H = L2(Ω), andD(A) = H2(Ω)∩
H1

0(Ω) with the corresponding norms ‖u‖ = (
∫
Ω |∇u(x)|2dx)1/2, |u| = (

∫
Ω |u(x)|2dx)1/2 and
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|Δu| = (
∫
Ω |Δu(x)|2dx)1/2, respectively. The norms in Lp(Ω), 1 ≤ p < ∞ are denoted by |u|p =

(
∫
Ω |u|pdx)1/p, the scalar products of V,H are denoted by

((u, v)) =
∫
Ω
∇u(x)∇v(x)dx, (u, v) =

∫
Ω
u(x)v(x)dx, (1.7)

respectively. We have D(A) ⊂ V ⊂ H = H∗ ⊂ V ∗,H∗ and V ∗ are the dual spaces of H and V ,
respectively, and each space is dense in the following one and the injections are continuous.
Then, we introduce the product Hilbert spacesH0 = V ×H = H1

0(Ω)×L2(Ω),H1 = D(A)×V =
(H2(Ω) ∩H1

0(Ω)) ×H1
0(Ω), endowed with the standard product norms:

‖{u1, u2}‖2H0
= ‖u1‖2V + ‖u2‖2H, ‖{u1, u2}‖2H1

= ‖u1‖2D(A) + ‖u2‖2V . (1.8)

Denote by C any positive constant which may be different from line to line and even in
the same line, we also denote the different positive constants by Ci, i ∈ N, for special
differentiation.

The rest of the paper is organized as follows. In the next section, for the convenience
of the reader, we recall some basic concepts about the global attractors and recapitulate some
abstract results. In Section 3, we present our main results.

2. Preliminaries

In this section, we first recall some basic concepts and theorems, which are important for
getting our main results. We refer to [2, 5, 6, 12, 13] and the references therein for more details.
Then, we outline some known results about (1.1)–(1.3).

Definition 2.1. The mappings S(t), where S : X × [0,+∞) → X, is said to be a C0 semigroup
on X, if {S(t)}t≥0 satisfies

(1) S(0)u = u for all u ∈ X;

(2) S(t1)(S(t2)u) = S(t1 + S2)(u) for all u ∈ X and t1, t2 ∈ R+;

(3) the mapping S : X × (0,∞) → X is continuous.

Definition 2.2. Let {S(t)}t≥0 be a semigroup on a metric space (E, d). A subsetA of E is called
a global attractor for the semigroup, ifA is compact and enjoys the following properties:

(1) A is invariant, that is, S(t)A = A, for all t ≥ 0;

(2) A attracts all bounded sets of E. That is, for any bounded subset B of E,

d(S(t)B,A) −→ 0, as t −→ 0, (2.1)

where d(B,A) is the semidistance of two sets B and A:

d(B,A) = sup
x∈B

inf
y∈A

d
(
x, y

)
. (2.2)
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Definition 2.3. A C0 semigroup {S(t)}t≥0 in a Banach space X is said to satisfy the condition
(C) if for any ε > 0 and for any bounded set B of X, there exist t(B) > 0 and a finite
dimensional subspace X1 of X such that {‖PS(t)x‖X, x ∈ B, t ≥ t(B)} is bounded and

‖(I − P)S(t)x‖X < ε, t ≥ t(B), x ∈ B, (2.3)

where P : X → X1 is a bounded projector.

Definition 2.4. Let {S(t)}t≥0 be a semigroup on a metric space (E, d). A set B0 ⊂ E is called an
absorbing set for the semigroup {S(t)}t≥0, if and only if for every bounded set B ⊂ E, there
exists a T0 = T0(B) > 0 such that S(t)B ⊂ B0 for all t ≥ T0.

Theorem 2.5. Let X be a Banach space and let {S(t)}t≥0 be a C0 semigroup in X. Then, there is a
global attractor for {S(t)}t≥0 in X if the following conditions hold true:

(1) {S(t)}t≥0 satisfies the condition (C), and

(2) there is a bounded absorbing set B ⊂ X.

In [12], the authors have discussed the relations between Condition (C) and ω-limit
compact and proved that, in uniformly convex Banach space, Condition (C) is equivalent to
ω-limit compact, if the semigroup has a bounded absorbing set.

Next, we recall the result about the global attractor in H0 whose proofs are omitted
here, the reader is referred to [6] and the reference therein.

Theorem 2.6. Under the conditions (1.4), (1.5), (1.6), the solution semigroup {S(t)}t≥0 of the
problem (1.1)–(1.3) has a global attractorA0 inH0. A0 is included and bounded inH1.

3. Main Results

According to the standard Fatou-Galerkin method, it is easy to obtain the existence and
uniqueness of solutions and the continuous dependence to the initial value of (1.1)–(1.3). We
address the reader to [6] and the reference therein. Here, we only state the result as follows.

Lemma 3.1. Let conditions (1.4), (1.5), (1.6) hold, then for any T > 0 and (u0, u1) ∈ H0, there
exists a unique solution of (1.1)–(1.3) such that

{u, ut} ∈ C([0, T];H0). (3.1)

If, furthermore,

(u0, u1) ∈ H1, (3.2)

then u satisfies

{u, ut} ∈ C([0, T];H1). (3.3)
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We define the mappings:

S(t) : {u0, u1} −→ {u(t), ut(t)} ∀t ∈ R. (3.4)

By Lemma 3.1, it is easy to see that {S(t)}t≥0 is C0 semigroup in the energy phase spaces H0

and H1.
In order to verify the existence of the bounded absorbing set inH1, we need the result

about the existence of the bounded absorbing set in H0. First, we establish the bounded
absorbing set in H0. Its proof is essentially established in [6] and the reference therein, and
we only need to make a fewminor changes for our problem. Here, we only give the following
lemma.

Lemma 3.2. Under the conditions (1.4), (1.5), (1.6), {S(t)}t≥0 has a bounded absorbing set B0 �
BH0(0, ρ0) inH0, that is, for any ε > 0 and any bounded subset B0 ⊂ H0, there is a positive constant
t0 = t(B0, ρ0) such that

S(t)B ⊂ B0 for any t ≥ t0, u0, u1 ∈ B0. (3.5)

Next, let us establish the existence of the bounded absorbing set in H1.

Lemma 3.3. Under the conditions (1.4), (1.5), (1.6), {S(t)}t≥0 has a bounded absorbing set B �
BH1(0, ρ1) in H1, that is, for any ε > 0 and any bounded subset B ⊂ H1, there is a positive constant
T = T(B, ρ1) such that

S(t)B ⊂ B for any t ≥ T, u0, u1 ∈ B. (3.6)

Proof. Take the scalar product inH of (1.1) with Av = Aut + σAu, we have

1
2
d

dt

(
|Au|2 + ‖v‖2

)
+ σ|Au|2 + (α − σ)‖v‖2 − σ(α − σ)(Au, v) +

(
ϕ(u), Av

)
=
(
f,Av

)
. (3.7)

For 0 < σ ≤ σ0, σ0 = {α/4, λ1/2α}, by Hölder inequality, Poincaré inequality, and Cauchy
inequality we have

σ|Au|2 + (α − σ)‖v‖2 − σ(α − σ)(Au, v)

≥ σ|Au|2 + (α − σ)‖v‖2 − σ(α − σ)√
λ1

|Au|‖v‖

≥ σ|Au|2 + 3
4
α‖v‖2 − σα√

λ1
|Au|‖v‖

≥ σ|Au|2 + 3
4
α‖v‖2 −

(
σ

2
|Au|2 + σα2

2λ1
‖v‖2

)

≥ σ

2
|Au|2 + α

2
‖v‖2.

(3.8)
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It follows from (1.5) that, for any ε > 0, there exists a constant C1 > 0, such that

∣∣ϕ′(s)
∣∣ ≤ ε|s|2 + C1, ∀s ∈ R. (3.9)

Hence,

∣∣((ϕ(u), v))∣∣
=
∣∣∣∣
∫
Ω
ϕ′(u) · ∇u · ∇v

∣∣∣∣dx
≤
∫
Ω

∣∣ϕ′(u)
∣∣ · |∇u| · |∇v|dx

≤ ε

∫
Ω
|u|2 · |∇u| · |∇v|dx + C1

∫
Ω
|∇u| · |∇v|dx

≤ ε

(∫
Ω
|u|4 · |∇u|2dx

)1/2

· ‖v‖ + C1‖u‖ · ‖v‖

≤ ε

(∫
Ω
|u|6dx

)1/3

·
(∫

Ω
|∇u|6dx

)1/6

· ‖v‖ + C1‖u‖ · ‖v‖

≤ ε‖u‖2 · C2
2 · |Au| · ‖v‖ + α

16
‖v‖2 + 4C2

1

α
‖u‖2,

(3.10)

where C2 is the positive constant satisfying

C2‖u‖2 ≥
(∫

Ω
|u|6dx

)1/3

,

C2|Au| ≥
(∫

Ω
|∇u|6dx

)1/6

,

(3.11)

(
f,Av

)
=

d

dt

(
f,Au

)
+ σ

(
f,Au

) ≤ d

dt

(
f,Au

)
+
σ

8
|Au|2 + 2σ

∣∣f∣∣2. (3.12)

If (u0, v0) belongs to a bounded set B of H1, then B is also bounded in H0, and for t ≥ t0, by
Lemma 3.2, we have

‖u‖2 + |ut|2 ≤ ρ20; (3.13)

t0, ρ0 are given in Lemma 3.2 Choose

0 < ε2 ≤ ασ

16ρ40C
4
2

, (3.14)
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it follows from (3.10) that

∣∣((ϕ(u), v))∣∣ ≤ α

8
‖v‖2 + 4ε2

α
‖u‖4C4

2|Au|2 + 4C2
1

α

≤ α

8
‖v‖2 + σ

4
|Au|2 + 4C2

1

α
ρ20, t ≥ t0.

(3.15)

Combining with (3.8), (3.12), and (3.15), by the Hölder inequality and the Young inequality,
we deduce from that (3.7):

d

dt

(
|Au|2 + ‖v‖2 − 2

(
f,Au

))
+
σ

4
|Au|2 + α

4
|v|2 ≤ 4σ

∣∣f∣∣2 + 8C2
1

α
ρ20. (3.16)

Let y = |Au − f |2 + ‖v‖2, from the above inequality, we can obtain

dy

dt
+
σ

8
y ≤ dy

dt
+
σ

8

(
|Au|2 + ‖v‖2 + ∣∣f∣∣2) +

σ

4
|Au|∣∣f∣∣

=
dy

dt
+
σ

4

(
|Au|2 + ‖v‖2

)
− σ

8

(
|Au|2 + ‖v‖2

)
+
σ

4
|Au|∣∣f∣∣ + σ

8
∣∣f∣∣2

≤ 4σ
∣∣f∣∣2 + 8C2

1

α
ρ20 −

σ

8

(
|Au|2 + ‖v‖2

)
+
σ

8

(
|Au|2 + ∣∣f∣∣2) +

σ

8
∣∣f∣∣2

≤ 4σ
∣∣f∣∣2 + 8C2

1

α
ρ20 +

σ

4
∣∣f∣∣2 − σ

8
‖v‖2

≤ σ

4
∣∣f∣∣2 + 4σ

∣∣f∣∣2 + 8C2
1

α
ρ20

≤ 9
2
σ
∣∣f∣∣2 + 8C2

1

α
ρ20.

(3.17)

Let C3 = (9/2)σ|f |2 + (8C2
1/α)ρ

2
0. By the Gronwall lemma, we have

y(t) ≤ y(t0) exp
(
−σ
8
(t − t0)

)
+
8C3

σ
. (3.18)

Defining ρ′1 by

ρ
′2
1 =

8C3

σ
, (3.19)

we see that

lim sup
t→∞

y(t) ≤ ρ
′2
1 , (3.20)

and we conclude that
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The ball ofH1, B � BH1(0, ρ1), centered at (A−1f, 0) of radius ρ1 > ρ′1 + ρ0, is absorbing
in H1 for the semigroup S(t), t ≥ 0.

We now give the property of compactness about the nonlinear operator ϕ which will
be needed in the proof of the condition (C).

Lemma 3.4. Assume that ϕ ∈ C1(R,R) and ϕ : D(A) → V are defined by

((
ϕ(u), v

))
=
∫
Ω
ϕ′(u)∇u∇vdx, (3.21)

for all u ∈ D(A), v ∈ H1
0(Ω). Then, ϕ is continuous compact.

Proof. Let {um} be a bounded sequence in D(A). Without loss of generality, we assume that
{um} weakly converges to u0 in D(A), since D(A) is reflexive. By the Sobolev embedding
theorem, we know that H2(Ω) ↪→ L∞ ⋂

H1(Ω) and the embedding H2(Ω) ↪→ H1(Ω) is
compact in R3. Hence, we have that

um −→ u0 in H1. (3.22)

Furthermore, there exists a constant C such that

‖u0‖L∞
⋂

H1(Ω)
≤ C, ‖um‖L∞

⋂
H1(Ω)

≤ C. (3.23)

It is sufficient to prove that {ϕ(um)} converges to {ϕ(u0)} in V :

∥∥ϕ(um)−ϕ(u0)
∥∥=

(∫
Ω

∣∣ϕ′(um)∇(um)−ϕ′(u0)∇u0
∣∣2dx

)1/2

≤
(∫

Ω

∣∣ϕ′(um)
∣∣2|∇(um)−∇u0|2dx

)1/2

+
(∫

Ω
|∇u0|2

∣∣ϕ′(um)−ϕ′(u0)
∣∣2dx

)1/2

.

(3.24)

On the one hand, for the first term in (3.24), combining with (3.23) and the continuity of ϕ′(·),
we have

∫
Ω

∣∣ϕ′(um)
∣∣2|∇(um) − ∇u0|2dx ≤ C‖um‖L∞(Ω)

‖∇(um) − ∇u0‖2. (3.25)

On the other hand, for the second term in (3.24), using the continuity of ϕ′(·),
∫
Ω
|∇u0|2

∣∣ϕ′(um) − ϕ′(u0)
∣∣2dx −→ 0, as m −→ 0, (3.26)

follows immediately by dominated convergence theorem.
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Also, considering (3.22), passing to the limit in (3.24), we can obtain

lim
m→∞

∥∥ϕ(um) − ϕ(u0)
∥∥ = 0. (3.27)

This completes the proof.

Lemma 3.5. Suppose the conditions (1.4), (1.5), (1.6) hold, the solution semigroup {S(t)}t≥0 of the
problem (1.1)–(1.3) satisfies the condition (C) inH1.

Proof. Let {ωi} be an orthonormal basis of L2(Ω) which consists of eigenvalues of A. The
corresponding eigenvalues are denoted by {λj}∞j=1:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · , λj −→ ∞ (3.28)

with

Aωi = λiωi, ∀i ∈ N. (3.29)

Let Vm = span{ω1, . . . , ωm} in V and let Pm : V → Vm be an orthogonal projector. We write

u = Pmu + (I − Pm)u � u1 + u2. (3.30)

Taking the scalar product of (1.1) inH with Av2 = Au2t + σAu2, we find

1
2
d

dt

(
|Au2|2 + ‖v2‖2

)
+ σ|Au2|2 + (α − σ)‖v2‖2 − σ(α − σ)(Au2, v2) +

(
ϕ(u), Av2

)
=
(
f,Av2

)
.

(3.31)

Choose 0 < σ ≤ σ0, similar to (3.8), we have

σ|Au2|2 + (α − σ)‖v2‖2 − σ(α − σ)(Au2, v2) ≥ σ

2
|Au2|2 + α

2
‖v2‖2. (3.32)

Since f ∈ L2(Ω), ϕ : D(A) → V is compact by Lemma 3.4, for any ε > 0, there exists some m
such that

∣∣(I − Pm)f
∣∣
H ≤ ε, (3.33)

∥∥(I − Pm)ϕ(u)
∥∥
V ≤ ε, ∀u ∈ B1

(
0, ρ1

)
, (3.34)

where ρ1 is given by Lemma 3.2.
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By exploiting the Hölder inequality and Cauchy inequality, we have

(
ϕ(u), Av2

) ≤ ∥∥(I − Pm)ϕ
∥∥‖v2‖ ≤ ε‖v2‖ ≤ α

4
‖v2‖2 + ε2

α
, (3.35)

(
f,Av

)
=

d

dt

(
f,Au

)
+ σ

(
f,Au

)

≤ d

dt

(
f,Au

)
+
σ

4
|Au|2 + σ

∣∣f∣∣2.
(3.36)

By (3.33) and (3.36), we have

(
f,Av2

)
=

d

dt

(
f2, Au2

)
+ σ

(
f,Au2

)

≤ d

dt

(
f2, Au2

)
+
σ

4
|Au2|2 + σ

∣∣f2∣∣2

≤ d

dt

(
f2, Au2

)
+
σ

4
|Au2|2 + σε2,

(3.37)

where f2 � (I − Pm)f .
Hence, combining with (3.32), (3.35), and (3.37), we obtain from (3.31) that

d

dt

(
|Au2|2 + ‖v2‖2 − 2

(
f2, Au2

))
+
σ

2

(
|Au2|2 + ‖v2‖2

)
≤
(
2σ +

2
α

)
ε2. (3.38)

Let y = |Au2 − f2|2 + ‖v2‖2, from the above inequality, similar to (3.17), we can obtain

dy

dt
+
σ

4
y ≤ dy

dt
+
σ

4

(
|Au2|2 + ‖v2‖2 +

∣∣f2∣∣2
)
+
σ

2
|Au2|

∣∣f2∣∣
≤
(
5σ
2

+
2
α

)
ε2.

(3.39)

Let C4 = 5σ/2 + 2/α. By the Gronwall lemma, we have

y(t) ≤ y(t1) exp
(
−σ
4
(t − t1)

)
+
4C4ε

2

σ
. (3.40)

Choosing t2 = t1 + (4/σ) ln(ρ21/ε
2), it follows that

y(t) ≤
(
1 +

4C4

σ

)
ε2, t ≥ t2. (3.41)
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That is,

∣∣Au2 − f2
∣∣2 + ‖v2‖2 ≤ C̃ε2, (3.42)

for all t ≥ t2, where C̃ = (1 + 4C4/σ).
Thus we complete the proof.

We are now in a position to state our main results as follows.

Theorem 3.6. Under the conditions (1.4), (1.5), (1.6), problem (1.1)–(1.3) has a global attractorA1

inH1; it attracts all bounded subsets ofH1 with respect to the norm ofH1.

Proof. By Lemmas 3.1, 3.3, and 3.5, the conditions of Theorem 2.5 are satisfied. The proof is
complete.

Corollary 3.7. The global attractorA0 inH0 is coincides withA1 inH1, that is, A0 = A1.

Proof. By Theorem 2.6,A0 is a bounded set ofH1, combining with Theorem 3.6, we can easily
get A0 = A1.
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