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The object of this paper is to introduce some new sequence spaces related with the concept of
lacunary strong almost convergence for double sequences and also to characterize these spaces
through sublinear functionals that both dominate and generate Banach limits and to establish some
inclusion relations.

1. Introduction and Preliminaries

Let w2 be the set of all real or complex double sequences. We mean the convergence in the
Pringsheim sense, that is, a double sequence x = (xi,j)

∞
i,j=0 has a Pringsheim limit λ (denoted

by P − limx = λ) provided that given ε > 0 and there exists N ∈ N such that |xi,j − λ| < ε
whenever i, j ≥ N [1]. We denote by c2, the space of P -convergent sequences. A double
sequence x = (xi,j) is bounded if ‖x‖ = supi,j≥0|xi,j | < ∞. Let l∞2 and c∞2 be the set of all
real or complex bounded double sequences and the set of bounded and convergent double
sequences, respectively. Moricz and Rhoades [2] defined the almost convergence of double
sequences that x = (xi,j) is said to be almost convergent to a number λ if

lim
p,q→∞

sup
m,n≥0
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∣
∣
∣
∣
∣

1
(

p + 1
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q + 1
)

m+p
∑
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n+q
∑

j=n

xi,j − λ
∣
∣
∣
∣
∣
∣

= 0, (1.1)

that is, the average value of (xi,j) taken over any rectangle

D =
{(

i, j
)

: m ≤ i ≤ m + p, n ≤ j ≤ n + q
}

, (1.2)
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tends to λ as both p and q tend to ∞ and this convergence is uniform in m and n. We denote
the space of almost convergent double sequences by f2, as

f2 =
{

x =
(

xi,j
)

: lim
k,l→∞

∣
∣tklpq(x) − λ

∣
∣ = 0, uniformly in p, q

}

, (1.3)

where

tklpq(x) =
1

(k + 1)(l + 1)

p+k
∑

i=p

q+l
∑

j=q

xi,j . (1.4)

The notion of almost convergence for single sequences was introduced by Lorentz [3]
and for double sequences by Moricz and Rhoades [2] and some further studies are in [4–14].

A double sequence x is called strongly almost convergent to a number λ if

lim
k,l→∞

1
(k + 1)(l + 1)

p+k
∑

i=p

q+l
∑

j=q

∣
∣xi,j − λe

∣
∣ = 0, uniformly in p, q. (1.5)

By [f2], we denote the space of all strongly almost convergent double sequences. It
is easy to see that the inclusions c∞2 ⊂ [f2] ⊂ f2 ⊂ l∞2 strictly hold. As in the case of single
sequences, every almost convergent double sequence is bounded. But a convergent double
sequence need not be bounded. Thus, a convergent double sequence need not be almost
convergent. However every bounded convergent double sequence is almost convergent.

The notion of strong almost convergence for single sequences has been introduced by
Maddox [15, 16] and for double sequences by Başarir [17].

A linear functional L on l∞2 is said to be Banach limit if it has the following proper-
ties [7],

(1) L(x) ≥ 0 if x ≥ 0 (i.e., xi,j ≥ 0 for all i, j),

(2) L(e) = 1, where e = (ei,j)with ei,j = 1 for all i, j and

(3) L(x) = L(S10x) = L(S01x) = L(S11x) where the shift operators S10x, S01x, S11x are
defined by S10x = (xi+1,j), S01x = (xi,j+1), S11x = (xi+1,j+1).

Let B2 be the set of all Banach limits on l∞2 . A double sequence x = (xi,j) is said to be
almost convergent to a number λ if L(x) = λ for all L ∈ B2. If ϕ is any sublinear functional on
l∞2 , then we write {l∞2 , ϕ} to denote the set of all linear functionals F on l∞2 , such that F ≤ ϕ,
that is, F(x) ≤ ϕ(x), ∀x ∈ l∞2 . A sublinear functional ϕ is said to generate Banach limits if
F ∈ {l∞2 , ϕ} implies that F is a Banach limit; ϕ is said to dominate Banach limits if F is a
Banach limit implies that F ∈ {l∞2 , ϕ}. Then if ϕ both generates and dominates Banach limits,
then {l∞2 , ϕ} is the set of all Banach limits.

Using the notations for single sequences, we present the notations for double-lacunary
sequences that can be seen in [10]. The double sequence θr,s = {(kr, ls)} is called a double-
lacunary if there exist two increasing sequences of nonnegative integers such that k0 = 0, hr =
kr − kr−1 → ∞ as r → ∞ and l0 = 0, hs = ls − ls−1 → ∞ as s → ∞. Let kr,s = krls, hr,s =
hrhs, θr,s is determined by Ir,s = {(i, j) : kr−1 < i ≤ kr and ls−1 < j ≤ ls}. Also hr,s = krls −
kr−1ls−1 and θ = θr,s is determined by Ir,s = {(i, j) : kr−1 < i ≤ kr ∪ ls−1 < j ≤ ls}/(I1 ∪ I2), where
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I1 = {(i, j) : kr−1 < i ≤ kr and ls < j < ∞.} and I2 = {(i, j) : ls−1 < j ≤ ls and kr < i < ∞.} with
qr = kr/kr−1, qs = ls/ls−1 and qr,s = qrqs.

Das andMishra [18] introduced the space of lacunary almost convergent sequences by
combining the space of lacunary convergent sequences and the space of almost convergent
sequences. Savaş and Patterson [10] extended the notions of lacunary almost convergence
and lacunary strongly almost convergence to double-lacunary P -convergence and double-
lacunary strongly almost P -convergence. They also established multidimensional analogues
of Das and Patel’s results.

We will use the following definition which may be called convergence in Pringsheim’s
sense with a bound:

(

xi,j − L
)

= O(1),
(

i, j −→ ∞), (1.6)

and also we will use the following definition which may be called convergence in Pring-
sheim’s sense as follows:

(

xi,j − L
)

= o(1),
(

i, j −→ ∞). (1.7)

The following sequence spaces were introduced and examined by Başarir [19]:

wθ =

{

x : lim
r

sup
i

1
hr

∑

k∈Ir
tki(x − s) = 0, for some s

}

,

[w]θ =

{

x : lim
r

sup
i

1
hr

∑

k∈Ir
|tki(x − s)| = 0, for some s

}

,

[w1]θ =

{

x : lim
r

sup
i

1
hr

∑

k∈Ir
tki(|x − s|) = 0, for some s

}

,

(1.8)

with respect to sublinear functionals on l∞ (the set of all real or complex bounded single
sequences) by

φθ(x) = lim
r

sup
i

1
hr

∑

k∈Ir
tki(x),

ψθ(x) = lim
r

sup
i

1
hr

∑

k∈Ir
|tki(x)|,

ζθ(x) = lim
r

sup
i

1
hr

∑

k∈Ir
tki(|x|),

(1.9)

where tki(x) = (1/k)
∑i+k−1

j=i xj and |x| = (|xj |)∞j=1.
It can be easily seen that each of the above functionals are finite, well defined,

and sublinear on l∞. There is a very close connection among these sequence spaces
with the sublinear functionals which were given by Başarir [19]. Recently Mursaleen and
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Mohiuddine [7] generalized the sequence spaces which were studied by Das and Sahoo [20]
for single sequences, to the double sequences as follows:

w2 =

{

x =
(

xi,j
)

:
1

(m + 1)(n + 1)

m∑

k=0

n∑

l=0

tklpq(x − λe) −→ 0,

as m,n −→ ∞, uniformly in p, q, for some

}

,

[w2] =

{

x =
(

xi,j
)

:
1

(m + 1)(n + 1)

m∑

k=0

n∑

l=0

∣
∣tklpq(x − λe)∣∣ −→ 0,

as m,n −→ ∞, uniformly in p, q, for some λ

}

,

[w]2 =

{

x =
(

xi,j
)

:
1

(m + 1)(n + 1)

m∑

k=0

n∑

l=0

tklpq(|x − λe|) −→ 0,

as m,n −→ ∞, uniformly in p, q, for some λ

}

(1.10)

by using (1.4).
The object of the present paper is to determine some new sublinear functionals

involving double-lacunary sequence that both dominates and generates Banach limits. We
also extend the sequence spaces which were introduced for single sequences by Başarir [19]
to the double sequences with respect to these sublinear functionals. Furthermore, we present
some inclusion relations with these new sequence spaces between the sequence spaces which
were introduced by Mursaleen and Mohiuddine [7], earlier.

2. Sublinear Functionals and Double-Lacunary Sequence Spaces

In this section, we introduce the following sequence spaces:

w2
θ =

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x − λe) = 0, for some λ

⎫

⎬

⎭
,

[

w2
θ

]

=

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣ = 0, for some λ

⎫

⎬

⎭
,

[w]2θ =

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(|x − λe|) = 0, for some λ

⎫

⎬

⎭
,

W(θ, 2) =

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

1

hr,s

∑

(k,l)∈Ir,s
tkl00(x − λe) = 0, for some λ

⎫

⎬

⎭
,
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[W(θ, 2)] =

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

sup
p,q

1
hr,s

∑

(k,l)∈Ir,s
|tkl00(x − λe)| = 0, for some λ

⎫

⎬

⎭
,

W[θ, 2] =

⎧

⎨

⎩
x =
(

xi,j
)

: P − lim
r,s→∞

1
hr,s

∑

(k,l)∈Ir,s
tkl00(|x − λe|) = 0, for some λ

⎫

⎬

⎭
.

(2.1)

It may be noted that almost convergent double sequences are necessarily bounded but
the sequence spaces w2

θ and [w2
θ] may contain unbounded sequences. Now we define the

following functionals on l∞2 for a double-lacunary sequence θ = (θr,s) by,

φ2
θ(x) = lim

r,s→∞
sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x),

ψ2
θ(x) = lim

r,s→∞
sup
p,q

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x)

∣
∣,

ϕ2
θ(x) = lim

r,s→∞
sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(|x|),

ζ2(x) = lim
k,l→∞

sup
p,q

tklpq(x),

η2(x) = lim
k,l→∞

sup
p,q

tklpq(|x|).

(2.2)

It is easy to see that each of the above functionals are finite, well defined, and sublinear on l∞2 .
Throughout the paper wewill write limr,s for P−limr,s→∞ and by this notationwe shall

mean the convergence in the Pringsheim sense. In the following theorem, we demonstrate
that {l∞2 , φ2

θ} is the set of all Banach limits on l∞2 and characterize the space w2
θ ∩ l∞2 in terms

of the sublinear functional φ2
θ.

Theorem 2.1. One has the following.
(1) The sublinear functional φ2

θ both dominates and generates Banach limits, that is, φ2
θ(x) =

ζ2(x), for all x = (xi,j) ∈ l∞2 .
(2)

f2 =
{

x =
(

xi,j
) ∈ l∞2 : φ2

θ(x) = −φ2
θ(−x)

}

=

⎧

⎨

⎩
x =
(

xi,j
) ∈ l∞2 :

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x) −→ λ, as r, s −→ ∞, uniformly in p, q.

⎫

⎬

⎭

= w2
θ ∩ l∞2 .

(2.3)
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Proof. (1) From the definition of ζ2, for given ε > 0 there exist k0, l0 such that

tklpq(x) < ζ2(x) + ε, (2.4)

for k ≥ k0, l ≥ l0 and for all p, q. This implies that

φ2
θ(x) < ζ2(x) + ε, (2.5)

for all x = (xi,j) ∈ l∞2 . Since ε is arbitrary, so that φ2
θ
(x) ≤ ζ2(x), for all x = (xi,j) ∈ l∞2 and hence

{

l∞2 , φ
2
θ

}

⊂ {l∞2 , ζ2
}

= B2, (2.6)

that is, φ2
θ generates Banach limits.

Conversely, suppose that L ∈ B2. As L is the shift invariant, that is, L(S11x) = L(x) =
L(S10x) = L(S01x) and using the properties of L ∈ B2, we obtain

L(x) = L

⎛

⎝
1

(k + 1)(l + 1)

p+k
∑

i=p

q+l
∑

j=q

xi,j

⎞

⎠ = L
(

tklpq(x)
)

=
1

hr,s
L

⎛

⎝
∑

(k,l)∈Ir,s
tklpq(x)

⎞

⎠ ≤ sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x).

(2.7)

It follows from the definition of φ2
θ
, that for given ε > 0 there exist r0, s0 such that

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x) < φ2

θ(x) + ε, (2.8)

for r ≥ r0, s ≥ s0 and for all p, q. Hence by (2.8) and properties (1) and (2) of Banach limits,
we have

L

⎛

⎝
1

hr,s

∑

(k,l)∈Ir,s
tklpq(x)

⎞

⎠ < L
((

φ2
θ(x) + ε

)

e
)

= φ2
θ(x) + ε, (2.9)

for r ≥ r0, s ≥ s0 and for all p, q; where e = (ei,j) with ei,j = 1 for all i, j. Since ε is arbitrary, it
follows from (2.7) and (2.9) that

L(x) ≤ φ2
θ(x), ∀x =

(

xi,j
) ∈ l∞2 . (2.10)

Hence

B2 ⊂
{

l∞2 , φ
2
θ

}

. (2.11)
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That is, φ2
θ dominates Banach limits. Combining (2.6) and (2.11), we get

{

l∞2 , ζ2
}

=
{

l∞2 , φ
2
θ

}

, (2.12)

this implies that φ2
θ dominates and generates Banach limits and φ2

θ(x) = ζ2(x) for all x ∈ l∞2 .
(2) As a consequence of Hahn-Banach theorem, {l∞2 , φ2

θ
} is non empty and a linear

functional F ∈ {l∞2 , φ2
θ
} is not necessarily uniquely defined at any particular value of x.

This is evident in the manner the linear functionals are constructed. But in order that all
the functionals {l∞2 , φ2

θ
} coincide at x = (xi,j), it is necessary and sufficient that

φ2
θ(x) = −φ2

θ(−x), (2.13)

we have

lim sup
r,s

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x) = lim inf

r,s
inf
p,q

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x). (2.14)

But (2.14) holds if and only if

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x) −→ λ, as r, s −→ ∞, uniformly in p, q. (2.15)

Hence, x = (xi,j) ∈ w2
θ
∩ l∞2 . But (2.13) is equivalent to ζ2(x) = −ζ2(−x), this holds if and only

if x = (xi,j) ∈ f2. This completes the proof of the theorem.

If F(x − λe) = 0 for all F ∈ {l∞2 , ψ2
θ
}, then we say that x = (xi,j) is ψ2

θ
-convergent to λ.

Similarly we define the ϕ2
θ-convergent sequences. In the following theorem we characterize

the spaces [w2
θ
] ∩ l∞2 and [w]2θ ∩ l∞2 in terms of the sublinear functionals.

Theorem 2.2. One has the following:

(1) [w2
θ] ∩ l∞2 = {x = (xi,j) : ψ2

θ(x − λe) = 0, for some λ} = {x = (xi,j) : F(x − λe) =
0, for all F ∈ {l∞2 , ψ2

θ}, for some λ}
(2) [w]2θ ∩ l∞2 = {x = (xi,j) : ϕ2

θ(x − λe) = 0, for some λ} = {x = (xi,j) : F(x − λe) =
0, for all F ∈ {l∞2 , ϕ2

θ
}, for some λ}.

Proof. (1) It can be easily verified that x = (xi,j) ∈ [w2
θ] ∩ l∞2 if and only if

ψ2
θ(x − λe) = −ψ2

θ(λe − x). (2.16)

Since ψ2
θ
(x) = −ψ2

θ
(−x) then (2.16) reduces to

ψ2
θ(x − λe) = 0. (2.17)
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Now if F ∈ {l∞2 , ψ2
θ} then from (2.17) and linearity of F, we have

F(x − λe) = 0. (2.18)

Conversely, suppose that F(x − λe) = 0 for all F ∈ {l∞2 , ψ2
θ
} and hence by Hahn-Banach

theorem, there exists F0 ∈ {l∞2 , ψ2
θ
} such that F0(x) = ψ2

θ
(x). Hence

0 = F0(x − λe) = ψ2
θ(x − λe). (2.19)

(2) The proof is similar to the proof of (1), above.

3. Inclusion Relations

We establish here some inclusion relations between the sequence spaces defined in Section 2.

Theorem 3.1. We have the following proper inclusions and the limit is preserved in each case.

(1) [f2] ⊂ [w]2θ ⊂ [w2
θ] ⊂ w2

θ ⊂W(θ, 2).

(2) [w]2θ ⊂ [w2
θ
] ⊂ [W(θ, 2)] ⊂W(θ, 2).

(3) [w]2θ ⊂W[θ, 2] ⊂ [W(θ, 2)] ⊂W(θ, 2).

Proof. (1) Let x ∈ [f2]with [f2] − limx = λ. Then

tklpq(|x − λe|) −→ 0, as k, l −→ ∞, uniformly in p, q. (3.1)

This implies that

1

hr,s

∑

(k,l)∈Ir,s
tklpq(|x − λe|) −→ 0, as k, l −→ ∞, uniformly in p, q. (3.2)

This proves that x ∈ [w]2θ and [f2] − limx = [w]2θ − limx = λ. Since

1

hr,s

∣
∣
∣
∣
∣
∣

∑

(k,l)∈Ir,s
tklpq(x − λe)

∣
∣
∣
∣
∣
∣

≤ 1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣

≤ 1

hr,s

∑

(k,l)∈Ir,s
tklpq(|x − λe|),

(3.3)

this implies that [w]2θ ⊂ [w2
θ] ⊂ w2

θ and [w]2θ − limx = [w2
θ] − limx = w2

θ − limx = λ. Since

1

hr,s

∑

(k,l)∈Ir,s
tklpq(x − λe) (3.4)
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converges uniformly in p, q as r, s → ∞, implies the convergence for p = 0 = q. It follows that
w2
θ
⊂W(θ, 2) and w2

θ
− limx =W(θ, 2) − limx = λ. This completes the proof of (1).

It is easy to see the proof of (2) and (3). So we omit them.

Theorem 3.2. One has the following proper inclusions;

[

f2
] ⊂
(

[w]2θ ∩ l∞2
)

⊂
([

w2
θ

]

∩ l∞2
)

⊂ f2. (3.5)

Proof. The proof of the theorem is similar as in [7, Theorem 4.2]. So we omit it.

Prior to giving Lemmas 3.3 and 3.5, we need the following notations used in [10]:

I1C =
{(

i, j
)

: q ≤ j ≤ q + n, p +m < i <∞}, I2C =
{(

i, j
)

: q + n < j <∞, p ≤ i ≤ p +m},

Cm,n
p,q =

{(

i, j
)

:p ≤ i ≤ p +m or
q ≤ j ≤ q + n

}

\
(

I1C ∪ I2C
)

,

I1D =
{(

i, j
)

: q +
(

y + 1
)

hs − 1 < j <∞, p + xhr ≤ i ≤ p + (x + 1)hr − 1
}

,

I2D =
{(

i, j
)

: q + yhs ≤ j ≤ q +
(

y + 1
)

hs − 1, p + (x + 1)hr − 1 < i <∞},

D
x,y
p,q =

{(

i, j
)

:p + xhr ≤ i ≤ p + (x + 1)hr − 1 or
q + yhs ≤ j ≤ q +

(

y + 1
)

hs − 1

}

\
(

I1D ∪ I2D
)

.

(3.6)

Lemma 3.3. Suppose ε > 0 there existm0, n0, p0, and q0 such that

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠ < ε, (3.7)

form ≥ m0, n ≥ n0 and p ≥ p0, q ≥ q0. Then x ∈ [w]2.

Proof. Let ε > 0 be given. Choosem1
0, n

1
0, p0 and q0 such that

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠ <

ε

6
(3.8)

for m ≥ m1
0, n ≥ n10, p ≥ p0, q ≥ q0. We need only to show that given ε > 0 there exist m2

0 and
n20 such that

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠ < ε, (3.9)
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for m ≥ m2
0, n ≥ n20 and 0 ≤ p ≤ p0, 0 ≤ q ≤ q0. If we take m0 = max{m1

0, m
2
0} and n0 =

max{n10, n20}, then (3.9) holds for m ≥ m0, n ≥ n0 and for all p and q, which gives the result.
Once p0 and q0 have been chosen, they are fixed, so

∑

(k,l)∈Cp0 ,q0
0,0

⎛

⎝
1

∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp0 ,q0
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎠ =M, (3.10)

is finite. Now taking 0 ≤ p ≤ p0, 0 ≤ q ≤ q0 andm ≥ p0, n ≥ q0 we have from (3.8) and (3.10)

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠

=
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

⎛

⎝
1

∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp0 ,q0
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎠

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p0+1,q0+1

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
p0+1,q0+1

⎛

⎝
1

∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp0 ,q0
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎠

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(i,j)∈Cm,n
p0+1,q0+1

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p0+1,q0+1

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠

≤ M
∣
∣
∣C

m,n
0,0

∣
∣
∣

+ 3 · ε
6
=

M
∣
∣
∣C

m,n
0,0

∣
∣
∣

+
ε

2
.

(3.11)

Therefore taking m and n sufficiently large, we can make M/|Cm,n
0,0 | + ε/2 < ε which gives

(3.9) and hence the result.

Theorem 3.4. We have [w]2θ = [w]2 for every θr,s.

Proof. Let x ∈ [w]2θ; then given ε > 0 there exist r0, s0 and λ such that

1

hr,s

∑

(k,l)∈Chr−1,hs−1
0,0

tklpq(|x − λe|) < ε, (3.12)
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for r ≥ r0, s ≥ s0, p = kr−1 + 1 + α and q = ls−1 + 1 + β where α, β ≥ 0. Let m ≥ hr such that
m = δ1hr + θ1 − 1 where δ1 is an integer. Also let n ≥ hs such that n = δ2hs + θ2 − 1 where δ2 is
an integer and 1 ≤ θ1 ≤ hr , 1 ≤ θ2 ≤ hs. Sincem ≥ hr for δ1 ≥ 1 and n ≥ hs for δ2 ≥ 1 we have,

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

tklpq(|x − λe|)

≤ 1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈C(δ1+1)hr−1,(δ2+1)hs−1
0,0

tklpq(|x − λe|)

=
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

δ1,δ2∑

x,y=0,0

∑

(k,l)∈Dx,y

0,0

tklpq(|x − λe|)

≤ 1
∣
∣
∣C

m,n
0,0

∣
∣
∣

δ1,δ2∑

x,y=0,0

(

hr,s · ε
)

≤ (δ1 + 1)(δ2 + 1)
∣
∣
∣C

m,n
0,0

∣
∣
∣

(

hr,s · ε
)

= o(1),

(3.13)

which gives the result. Therefore by Lemma 3.3, [w]2θ ⊂ [w]2. It is clear that [w]2 ⊂ [w]2θ for
every θr,s. This completes the proof.

Lemma 3.5. Suppose, for a given ε > 0, there existm0, n0, p0, and q0 such that

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

< ε, (3.14)

for allm ≥ m0, n ≥ n0 and p ≥ p0, q ≥ q0. Then x ∈ [w2].

Proof. Let ε > 0 be given and choosem0, n0, p0 and q0 such that

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

<
ε

4
(3.15)

for all m ≥ m0, n ≥ n0, p ≥ p0, and q ≥ q0. As in Lemma 3.3, it is enough to show that there
existm1

0 and n
1
0 such that form ≥ m1

0, n ≥ n10 implies

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

< ε, (3.16)
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for all p and q with 0 ≤ p ≤ p0 and 0 ≤ q ≤ q0. Since p0 and q0 are fixed,

∑

(k,l)∈Cp0 ,q0
0,0

⎛

⎝
1

∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp0 ,q0
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎠ =M. (3.17)

Now, let 0 ≤ p ≤ p0, 0 ≤ q ≤ q0, andm ≥ p0, n ≥ q0 and consider the following;

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

≤ 1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

⎛

⎝
1

∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp0 ,q0
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎠

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p0+1,q0+1

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
p0+1,q0+1

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

≤ M
∣
∣
∣C

m,n
0,0

∣
∣
∣

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p0+1,q0+1

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
p0+1,q0+1

∣
∣tklpq(x − λe)∣∣.

(3.18)

Let k −p0 ≥ m1
0, then k +p−p0 ≥ m1

0 for 0 ≤ p ≤ p0. Also if we let l− q0 ≥ n10, then l+ q− q0 ≥ n10
for 0 ≤ q ≤ q0. Therefore from (3.15)

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p0+1,q0+1

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

<
1

∣
∣
∣C

p0,q0
0,0

∣
∣
∣

∑

(k,l)∈Cp0 ,q0
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p0+(p+k−p0),q0+(q+l−q0)
p0+1,q0+1

∣
∣
∣

∑

(i,j)∈Cp0+(p+k−p0),q0+(q+l−q0)
p0+1,q0+1

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

<
ε

4
.

(3.19)
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From (3.18) and (3.19)

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

≤ M
∣
∣
∣C

m,n
0,0

∣
∣
∣

+ 2
ε

4
< ε, (3.20)

for sufficiently large values ofm and n. Hence the result.

Theorem 3.6. For every θr,s, One has [w2
θ
] ∩ l∞2 = [w2] ∩ l∞2 .

Proof. Let x ∈ [w2
θ] ∩ l∞2 . For ε > 0, there exist r0, s0, p0 and q0 such that

1

hr,s

∑

(k,l)∈Chr−1,hs−1
0,0

∣
∣tklpq(x − λe)∣∣ < ε

2 (3.21)

for r ≥ r0, s ≥ s0, p ≥ p0 and q ≥ q0 with p = kr−1 + 1+ αwhere α ≥ 0, q = ls−1 + 1+ β and β ≥ 0.
Letm ≥ hr and n ≥ hs wherem ≥ 1 and n ≥ 1. Then

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

=
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cδ1hr−1,δ2hs−1
0,0

∣
∣tklpq(x − λe)∣∣ + 1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
δ1hr ,δ2hs

∣
∣tklpq(x − λe)∣∣

≤ 1
∣
∣
∣C

m,n
0,0

∣
∣
∣

δ1−1,δ2−1∑

x, y=0, 0

∑

(k,l)∈Dx,y

0,0

∣
∣tklpq(x − λe)∣∣

+
1

∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
δ1hr ,δ2hs

⎛

⎜
⎝

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

∣
∣xi,j − λe

∣
∣

⎞

⎟
⎠.

(3.22)

Since (xi,j) ∈ l∞2 for all i and j, there existsM such that |xi,j − λe| ≤M. From (3.21) and (3.22),
we have the following:

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

≤ δ1δ2
∣
∣
∣C

m,n
0,0

∣
∣
∣

(

hr,s
ε

2

)

+
Mhr,s
∣
∣
∣C

m,n
0,0

∣
∣
∣

. (3.23)

Thus form and n sufficiently large, we have the following:

1
∣
∣
∣C

m,n
0,0

∣
∣
∣

∑

(k,l)∈Cm,n
0,0

∣
∣
∣
∣
∣
∣
∣

1
∣
∣
∣C

p+k,q+l
p,q

∣
∣
∣

∑

(i,j)∈Cp+k,q+l
p,q

(

xi,j − λe
)

∣
∣
∣
∣
∣
∣
∣

< ε, (3.24)
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for r ≥ r0, s ≥ s0 and p ≥ p0, q ≥ q0. Thus by Lemma 3.5, we have [w2
θ] ∩ l∞2 ⊂ [w2] ∩ l∞2 . It is

clear that [w2] ∩ l∞2 ⊂ [w2
θ
] ∩ l∞2 . This completes the proof of the theorem.

Corollary 3.7. [f2] ⊂ [w]2θ ⊂ ([w2
θ
] ∩ l∞2 ) ⊂ (w2

θ
∩ l∞2 ) = f2.

Proof. It is easy to see by combining Theorem 3.4, Theorem 3.6 with [7, Theorems 4.1 and
3.1(ii)]. So we omit it.

A paranormed space (X, g) is a topological linear space with the topology given by the
paranorm g. It may be recalled that a paranorm g is a real subadditive function on X such
that g(θ) = 0, g(x) = g(−x) and scalar multiplication is continuous, that is, μn → μ, xn → x
imply that (μnxn) → (μx)where μn, μ are scalars and xn, x ∈ X.

Let u = (uk,l) be a bounded double sequence of positive real numbers, that is, uk,l > 0
for all k, l with supk,luk,l = H <∞. Let

[

w2
θ(u)
]

=

⎧

⎨

⎩
x =
(

xi,j
)

: lim
r,s

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣uk,l = 0 for some λ

⎫

⎬

⎭
. (3.25)

If u = (uk,l) is constant we write [w2
θ
]u in place of [w2

θ
(u)]. If we take u = (uk,l) with uk,l = 1

for all k and l, then [w2
θ
(u)] is reduced to [w2

θ
] which is defined in Section 2.

Theorem 3.8. Let u = (uk,l) be a bounded sequence of positive real numbers with supk,luk,l = H <

∞. Then [w2
θ
(u)] is a complete linear topological space paranormed by

g(x) = sup
r,s,p,q

⎛

⎝
1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x)

∣
∣
uk,l

⎞

⎠

1/M

, (3.26)

whereM = max(1,H). In the case u is constant, [w2
θ
]
u
is a Banach space if u ≥ 1 and is a p-normed

space if 0 < u < 1.

Proof. It is easy to see that [w2
θ
(u)] is a linear space with coordinatewise addition and scalar

multiplication. Clearly g(θ) = 0, g(x) = g(−x) and g is subadditive. To prove the continuity
of multiplication, assume that x ∈ [w2

θ(u)]. Since u = (uk,l) is bounded and positive there
exists a constant δ > 0 such that uk,l ≥ δ for all k, l. Now for |μ| ≤ 1, |μ|uk,l ≤ |μ|δ and hence
g(μx) ≤ |μ|δ/Mg(x). This proves the fact that g is a paranorm on [w2

θ
(u)].

To prove that [w2
θ
(u)] is complete, assume that (xm) is a Cauchy sequence in [w2

θ
(u)],

that is, g(xm − xn) → 0 asm,n → ∞. Since

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(xm − xn)∣∣uk,l ≤ [g(xm − xn)]M, (3.27)

it follows that |tklpq(xm − xn)|uk,l = 0(1) asm,n → ∞ for each k, l, p, and q. In particular

t00pq(xm − xn) =
∣
∣
∣xmp,q − xnp,q

∣
∣
∣ −→ 0 as m,n −→ ∞, for each fixed p and q. (3.28)
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Hence, (xm) is a Cauchy sequence inR (or C). Since R (or C) is complete, there exists x ∈ R (or
C) such that xm → x coordinate wise asm → ∞. It follows from (3.27) that given ε > 0, there
existsm0 ∈ N such that

⎛

⎝
1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(xm − xn)∣∣uk,l

⎞

⎠

1/M

< ε, (3.29)

for m, n > m0. Now making n → ∞ and then taking supremum with respect to p and q in
(3.29) we obtain g(xm − x) ≤ ε form > m0. This proves that xm → x and x ∈ [w2

θ
(u)]. Hence

[w2
θ
(u)] is complete. When u is constant, it is easy to derive the rest of the theorem.

Theorem 3.9. Let 0 < ρk,l ≤ σk,l <∞ for each k and l. Then [w2
θ(ρ)] ⊂ [w2

θ(σ)].

Proof. Let x ∈ [w2
θ
(ρ)]. By the definition of [w2

θ
(ρ)], that for given ε > 0 there exist r0, s0 such

that

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣ρk,l < ε, (3.30)

for r > r0, s > s0 and for all p, q. Since 1/hr,s → 0 as r, s → ∞, then

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣ρk,l <∞, (3.31)

for r > r0, s > s0 and for all p, q. This implies that

∣
∣tklpq(x − λe)∣∣ < 1, (3.32)

for sufficiently large values of k, l and for all p, q. Then we get,

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣σk,l ≤ 1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣ρk,l = o(1), (3.33)

as r, s → ∞ and for all p, q. Hence,

lim
r,s

sup
p,q

1

hr,s

∑

(k,l)∈Ir,s

∣
∣tklpq(x − λe)∣∣ρk,l = 0, (3.34)

is obtained and consequently we have x ∈ [w2
θ
(ρ)]. This completes the proof.
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Theorem 3.10. One has the following.

(1) Let 0 < infk,luk,l ≤ uk,l ≤ 1 for each k and l. Then [w2
θ
(u)] ⊂ [w2

θ
].

(2) Let 1 ≤ uk,l ≤ supk,luk,l <∞ for each k and l. Then [w2
θ
] ⊂ [w2

θ
(u)].

Proof. (1) It is clear from the above theorem. If we take ρk,l = uk,l and σk,l = 1 for each k and l,
then we have [w2

θ(u)] ⊂ [w2
θ].

(2) From the above theorem, if we take ρk,l = 1 and σk,l = uk,l for each k and l, then we
have [w2

θ
] ⊂ [w2

θ
(u)].

This completes the proof.
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