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Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces are studied.
Consider a nonexpansive self-mapping T of a closed convex subsetC of a CAT(0) spaceX. Suppose
that the set Fix(T) of fixed points of T is nonempty. For a contraction f on C and t ∈ (0, 1), let
xt ∈ C be the unique fixed point of the contraction x �→ tf(x) ⊕ (1 − t)Tx. We will show that if
X is a CAT(0) space satisfying some property, then {xt} converge strongly to a fixed point of T
which solves some variational inequality. Consider also the iteration process {xn}, where x0 ∈ C is
arbitrary and xn+1 = αnf(xn) ⊕ (1 − αn)Txn for n ≥ 1, where {αn} ⊂ (0, 1). It is shown that under
certain appropriate conditions on αn, {xn} converge strongly to a fixed point of T which solves
some variational inequality.

1. CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as thin as its comparison triangle in the Euclidean plane. The precise
definition is given below. It is well known that any complete, simply connected Riemannian
manifold having nonpositive sectional curvature is a CAT(0) space. Other examples include
pre-Hilbert spaces [1], R-trees [2], Euclidean buildings [3], the complex Hilbert ball with a
hyperbolic metric [4], and many others. For a thorough discussion of these spaces and of the
fundamental role they play in geometry, we refer the reader to Bridson and Haefliger [1].

Fixed-point theory in CAT(0) spaces was first studied by Kirk (see [5, 6]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then, the fixed-point theory
for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed,
and many papers have appeared [2, 7–17].



2 Journal of Applied Mathematics

The purpose of this paper is to study the iterative scheme defined as follows. Consider
a nonexpansive self-mapping T of a closed convex subset C of a CAT(0) space X. Suppose
that the set Fix(T) of fixed points of T is nonempty. For a contraction f on C and t ∈ (0, 1),
let xt ∈ C be the unique fixed point of the contraction x �→ tf(x) ⊕ (1 − t)Tx. Consider the
iteration process {xn}, where x0 ∈ C is arbitrary and

xn+1 = αnf(xn) ⊕ (1 − αn)Txn, (1.1)

for n ≥ 1, where {αn} ⊂ (0, 1). We show that {xn} converge strongly to a fixed point of T
under certain appropriate conditions on αn, and the fixed point of T solves some variational
inequality.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R toX such that c(0) = x, c(l) =
y, and d(c(t), c(t′)) = |t − t′| for all t, t ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangle 
(x1, x2, x3) in a geodesicmetric space (X, d) consists of three points
x1, x2, and x3 in X (the vertices of 
) and a geodesic segment between each pair of vertices
(the edges of 
). A comparison triangle for the geodesic triangle 
(x1, x2, x3) in (X, d) is a
triangle 
(x1, x2, x3) := 
(x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj)
for i, j ∈ 1, 2, 3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): let 
 be a geodesic triangle in X, and let 
 be a comparison triangle for 
.
Then, 
 is said to satisfy the CAT(0) inequality if for all x, y ∈ 
 and all comparison points
x, y ∈ 
,

d
(
x, y

) ≤ dE2
(
x, y

)
. (1.2)

Let x, y ∈ X, and by Lemma 2.1 (iv) of [18] for each t ∈ [0, 1], there exists a unique
point z ∈ [x, y] such that

d(x, z) = td
(
x, y

)
, d

(
y, z

)
= (1 − t)d

(
x, y

)
. (1.3)

From now on, we will use the notation (1− t)x⊕ ty for the unique point z satisfying the above
equation.

We now collect some elementary facts about CAT(0) spaces which will be used in the
proofs of our main results.

Lemma 1.1. Let X be a CAT(0) space. Then,

(i) (see [18, Lemma 2.4]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z

)
, (1.4)
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(ii) (see [7]) for each x, y, z ∈ X and t, s ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, (1 − s)x ⊕ sy

) ≤ |t − s|d(x, y), (1.5)

(iii) (see [6, Lemma 3]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)z ⊕ tx, (1 − t)z ⊕ ty

) ≤ td
(
x, y

)
, (1.6)

(iv) (see [18, Lemma 2.5]) for each x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

)2 ≤ (1 − t)d(x, z)2 + td
(
y, z

)2 − t(1 − t)d
(
x, y

)2
. (1.7)

Let X be a complete CAT(0) space, let {xn} be a bounded sequence in a complete X,
and for x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn). (1.8)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}, (1.9)

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. (1.10)

It is known (see, e.g., [11, Proposition 7]) that in a CAT(0) space, A({xn}) consists of exactly
one point.

A sequence {xn} inX is said to
-converge to x ∈ X if x is the unique asymptotic center
of {un} for every subsequence {un} of {xn}. In this case, we write 
-limnxn = x and call x the

-limit of {xn}.

Lemma 1.2. Assume that X is a CAT(0) space. Then,

(i) (see [14]) every bounded sequence in X has a 
-convergent subsequence,

(ii) (see [14, Proposition 3.7]) if K is a closed convex subset of X, and f : K → X is a
nonexpansive mapping, then the conditions {xn}
-converge to x and d(xn, f(xn)) → 0
and imply x ∈ K and f(x) = x.
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Lemma 1.3 (see [19, Proposition 3.5]). Assume that X is a CAT(0) space, C is a closed convex
subset of X. Then the metric (nearest point) projection PC : X → C, PC(x) := inf{d(x, y);y ∈ C} is
a nonexpansive mapping. one calls a CAT(0) space X satisfying property P if for x, u, y1, y2 ∈ X,

d
(
x, P[x,y1](u)

)
d
(
x, y1

) ≤ d
(
x, P[x,y2](u)

)
d
(
x, y2

)
+ d(x, u)d

(
y1, y2

)
. (1.11)

Remark 1.4. The property P in Hilbert space corresponds to the inequality

∣
∣〈u − x, y1 − x

〉∣∣ ≤ ∣
∣〈u − x, y2 − x

〉∣∣ + ‖u − x‖ · ∥∥y1 − y2
∥
∥. (1.12)

Recall that a continuous linear functional μ on l∞, the Banach space of bounded real
sequences, is called a Banach limit if ‖μ‖ = μ(1, 1, . . .) = 1 and μn(an) = μn(an+1) for all
{an} ∈ l∞.

Lemma 1.5 (see [20, Proposition 2]). Let (a1, a2, . . .) ∈ l∞ be such that μn(an) ≤ 0 for all Banach
limits μ and lim supn(an+1 − an) ≤ 0. Then lim supnan ≤ 0.

Lemma 1.6 (see [21, Lemma 2.3]). Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {un} a sequence of nonnegative real numbers

with
∑∞

n=1 un < ∞, and {tn} a sequence of real numbers with lim supntn ≤ 0. Suppose that

sn+1 = (1 − αn)sn + αntn + un, ∀n ∈ N. (1.13)

Then limn→∞sn = 0.

2. Viscosity Iteration for a Single Mapping

In this section, we prove the main results of this paper.

Lemma 2.1. Let C be a closed convex subset of a complete CAT(0) space X, and let T : C → C be
a nonexpansive mapping. Let f be a contraction on C with coefficient α < 1. For each t ∈ [0, 1], the
mapping St : C → C defined by

Stx = tf(x) ⊕ (1 − t)Tx, for x ∈ C (2.1)

has a unique fixed point xt ∈ C, that is,

xt = tf(xt) ⊕ (1 − t)Txt. (2.2)
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Proof. For x, y ∈ C, according to Lemma 1.1, we have the following:

d
(
St(x), St

(
y
))

= d
(
tf(x) ⊕ (1 − t)Tx, tf

(
y
) ⊕ (1 − t)Ty

)

≤ d
(
tf(x) ⊕ (1 − t)Tx, tf(x) ⊕ (1 − t)Ty

)

+ d
(
tf
(
y
) ⊕ (1 − t)Tx, tf

(
y
) ⊕ (1 − t)Ty

)

≤ td
(
f(x), f

(
y
))

+ (1 − t)d
(
Tx, Ty

)

≤ (1 − t(1 − α))d
(
x, y

)
.

(2.3)

This implies that St is a contraction mapping, and hence, the conclusion follows.

The following result is to prove that the net {xt} converge strongly to a fixed point
of T .

Theorem 2.2. Let C be a closed convex subset of a complete CAT(0) space X satisfying the property
P, and let T : C → C be a nonexpansive mapping. Let f be a contraction on C with coefficient α < 1.
For each t ∈ [0, 1], let {xt} be given by

xt = tf(xt) ⊕ (1 − t)Txt. (2.4)

Then one has limt→ 0xt =: x̃ and x̃ = PFix(T)f(x̃).

Proof. We first show that {xt} is bounded. Indeed choose a p ∈ Fix(T), and using Lemma 1.1
and the nonexpansive of T , we derive that

d
(
xt, p

)
= d

(
tf(xt) ⊕ (1 − t)Txt, p

)

≤ td
(
f(xt), p

)
+ (1 − t)d

(
Txt, p

)

≤ td
(
f(xt), p

)
+ (1 − t)d

(
xt, p

)
.

(2.5)

It follows that

d
(
xt, p

) ≤ d
(
f(xt), p

) ≤ d
(
f(xt), f

(
p
))

+ d
(
f
(
p
)
, p
)

≤ αd
(
xt, p

)
+ d

(
f
(
p
)
, p
)
.

(2.6)

Hence,

d
(
xt, p

) ≤ 1
1 − α

d
(
f
(
p
)
, p
)
, (2.7)

and {xt} is bounded, so are {Txt} and {f(xt)}. As a result, we can get that

lim
t→ 0

d(xt, Txt) = lim
t→ 0

d
(
tf(xt) ⊕ (1 − t)Txt, Txt

)

= lim
t→ 0

td
(
f(xt), Txt

)
= 0.

(2.8)



6 Journal of Applied Mathematics

Assume that {tn} ⊆ (0, 1) is such that tn → 0 as n → ∞. Put xn := xtn . We will show
that {xn} contains a subsequence converging strongly to x̃, where x̃ ∈ Fix(T).

Since {xn} is bounded, by Lemma 1.2(i),(ii), we may assume that {xn}
-converges to
a point x̃, and x̃ ∈ Fix(T).

Next we will prove that {xn} converge strongly to x̃.
Indeed, according to Lemma 1.1 and the property of T and f , we can get that

d2(xn, x̃) = d2(tnf(xn) ⊕ (1 − tn)Txn, x̃
)

≤ tnd
2(f(xn), x̃

)
+ (1 − tn)d2(Txn, x̃) − tn(1 − tn)d2(f(xn), Txn

)

≤ tnd
2(f(xn), x̃

)
+ (1 − tn)d2(xn, x̃) − tn(1 − tn)d2(f(xn), Txn

)
.

(2.9)

It follows that

d2(xn, x̃) ≤ d2(f(xn), x̃
) − (1 − tn)d2(f(xn), Txn

)

= d2(f(xn), x̃
) − d2(f(xn), Txn

)
+ tnd

2(f(xn), Txn

)
.

(2.10)

Since limt→ 0d(xt, Txt) = 0, we can get that

limsup
n→∞

d2(xn, x̃) ≤ limsup
n→∞

d2(f(xn), x̃
) − d2(f(xn), xn

)
. (2.11)

Let Δ(x̃, xn, f(xn)) be a comparison triangle for 
(x̃, xn, f(xn)) in E
2. Then,

d2(f(xn), x̃
) − d2(f(xn), xn

)
= d2

(
f(xn), x̃

)
− d2

(
f(xn), xn

)

=
〈
f(xn) − x̃, f(xn) − x̃

〉
−
〈
f(xn) − x̃n, f(xn) − x̃n

〉

= 2
〈
f(xn) − x̃, xn − x̃

〉
−
〈
xn − x̃, xn − x̃

〉

= 2
〈
f(xn) − x̃, xn − x̃

〉
− d2

(
xn, x̃

)

= 2
〈
f(xn) − x̃, xn − x̃

〉
− d2(xn, x̃).

(2.12)

Hence,

lim sup
n→∞

d2(xn, x̃) ≤ lim sup
n→∞

〈
f(xn) − x̃, xn − x̃

〉
.

(2.13)

Let 
(x̃, xn, f(x̃)) be a comparison triangle for 
(x̃, xn, f(x̃)) in E
2. For each n, let un

be the point of the segment [x̃, f(x̃)] which is nearest to xn, and let un be the point of the
segment [x̃, f(x̃)] for which d(un, x̃) = d(un, x̃).

By passing to subsequences again, we may suppose that {un} converges to u ∈
[x̃, f(x̃)], {un} converges to u ∈ [x̃, f(x̃)].
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Since {xn}
-converges to a point x̃, we have

r({xn}) = lim
n

supd(x, xn)

= lim
n

supd(x, xn)

≥ lim
n

supd(un, xn)

= lim
n

supd(u, xn)

≥ lim
n

supd(u, xn).

(2.14)

Thus, r(u, {xn}) ≤ r({xn}). This implies that u = x by uniqueness of the asymptotic center.
Hence, u = x. That is to say, {un} converges to x̃, and {un} converges to x̃.

Moreover, since X satisfies the property P, we can get that

∣∣∣
〈
f(xn) − x̃, xn − x̃

〉∣∣∣ = d
(
x̃, P[x̃,f(xn)]

(xn)
)
· d

(
x̃, f(xn)

)

= d
(
x̃, P[x̃,f(xn)](xn)

) · d(x̃, f(xn)
)

≤ d
(
x̃, P[x̃,f(x̃)](xn)

) · d(x̃, f(x̃))

+ d(x̃, xn) · d
(
f(xn), f(x̃)

)

= d
(
x̃, P[x̃,f(x̃)](xn)

)
· d

(
x̃, f(x̃)

)

+ d(x̃, xn) · d
(
f(xn), f(x̃)

)

≤ d
(
un, x̃

)
d
(
x̃, f(x̃)

)
+ αd2(xn, x̃).

(2.15)

It follows that

limsup
n→∞

d2(xn, x̃) ≤ 1
1 − α

limsup
n→∞

d
(
un, x̃

)
d
(
f(x̃), x̃

)
. (2.16)

Since {un} converges to x̃, we obtain that limsupn→∞d
2(xn, x̃) = 0, that is, {xn} converge

strongly to x̃. Since {tn} ⊆ (0, 1) is such that tn → 0 as n → ∞ is arbitrarily selected, we can
get that limt→ 0xt = x̃.

Finally, we will prove that x̃ satisfy the equation x̃ = PFix(T)f(x̃).
Indeed, for any y ∈ Fix(T),

d
(
xt, y

)
= d

(
tf(xt) ⊕ (1 − t)Txt, y

)

= td
(
f(xt), y

)
+ (1 − t)d

(
Txt, y

)

≤ td
(
f(xt), y

)
+ (1 − t)d

(
xt, y

)
.

(2.17)

It follows that

d
(
xt, y

) ≤ d
(
f(xt), y

)
. (2.18)
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Since limt→ 0xt = x̃, we can get that

d
(
x̃, y

) ≤ d
(
f(x̃), y

)
. (2.19)

Hence,

d
(
f(x̃), y

) ≥ ∣
∣d
(
x̃, y

) − d
(
x̃, f(x̃)

)∣∣,

d
(
x̃, f(x̃)

) ≥ d
(
f(x̃), y

)
.

(2.20)

That is to say, x̃ = PFix(T)f(x̃).

Consider now the iteration process

x0 ∈ C,

xn+1 = αnf(xn) ⊕ (1 − αn)Txn, n ≥ 0,
(2.21)

where {αn} ⊆ (0, 1) satisfies

(H1) αn → 0,

(H2)
∑∞

n=0 αn = ∞,

(H3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn+1/αn) = 1.

Theorem 2.3. Let X be a CAT(0) space satisfying the property P, C a closed convex subset of X,
T : C → C a nonexpansive mapping with Fix(T)/= ∅, and f : C → C a contraction with coefficient
α < 1. Let x0 ∈ C, {xn} be generated by xn+1 = αnf(xn) ⊕ (1 − αn)Txn, n ≥ 0. Then under the
hypotheses (H1 )–(H3 ), xn → x̃, where x̃ = PFix(T)f(x̃).

Proof. We first show that the sequence {xn} is bounded. Let p ∈ Fix(T). Then,

d
(
xn+1, p

)
= d

(
αnf(xn) ⊕ (1 − αn)Txn, p

)

≤ αnd
(
f(xn), p

)
+ (1 − αn)d

(
Txn, p

)

≤ αn

[
d
(
f(xn), f

(
p
))

+ d
(
f
(
p
)
, p
)]

+ (1 − αn)d
(
xn, p

)

≤ max
{
d
(
xn, p

)
,

1
1 − α

d
(
f
(
p
)
, p
)
}
.

(2.22)

By induction, we have

d
(
xn, p

) ≤ max
{
d
(
x0, p

)
,

1
1 − α

d
(
f
(
p
)
, p
)
}
, (2.23)

for all n ∈ N. This implies that {xn} is bounded and so is the sequence {Txn} and {f(xn)}.
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We claim that d(xn+1, xn) → 0. Indeed, we have

d(xn+1, xn) = d
(
αnf(xn) ⊕ (1 − αn)Txn, αn−1f(xn−1) ⊕ (1 − αn−1)Txn−1

)

≤ d
(
αnf(xn) ⊕ (1 − αn)Txn, αnf(xn) ⊕ (1 − αn)Txn−1

)

+ d
(
αnf(xn) ⊕ (1 − αn)Txn−1, αnf(xn−1) ⊕ (1 − αn)Txn−1

)

+ d
(
αnf(xn−1) ⊕ (1 − αn)Txn−1, αn−1f(xn−1) ⊕ (1 − αn−1)Txn−1

)

≤ (1 − αn)d(Txn, Txn−1) + αnd
(
f(xn), f(xn−1)

)
+ |αn − αn−1|d

(
f(xn−1), Txn−1

)

≤ (1 − αn)d(xn, xn−1) + αnαd(xn, xn−1) + |αn − αn−1|d
(
f(xn−1), Txn−1

)
.

(2.24)

By the conditions H2 and H3, we have

d(xn+1, xn) −→ 0. (2.25)

Consequently, by the condition H1,

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn)

= d(xn, xn+1) + d
(
αnf(xn) ⊕ (1 − αn)Txn, Txn

)

= d(xn, xn+1) + αnd
(
f(xn), Txn

) −→ 0.

(2.26)

Since {xn} is bounded, we may assume that {xn}
-converges to a point x̂. By
Lemma 1.2, we have x̂ ∈ Fix(T).

Next we will prove that {xn} converge strongly to x̂ and x̂ = x̃. Indeed, according to
Lemma 1.1 and the property of T and f , we can get that

d2(xn+1, x̂) = d2(tnf(xn) ⊕ (1 − tn)Txn, x̂
)

≤ αnd
2(f(xn), x̂

)
+ (1 − αn)d2(Txn, x̂) − αn(1 − αn)d2(f(xn), Txn

)

≤ (1 − αn)d2(xn, x̂) + αn

[
d2(f(xn), x̂

) − (1 − αn)d2(f(xn), Tn
)]
.

(2.27)

With a minor modification of the proof of the analogous statement in Theorem 2.2, we can
get that

d2(f(xn), x̂
) − d2(f(xn), xn

)
= 2

〈
f(xn) − x̂, xn − x̂

〉
− d2(xn, x̂)

≤ 2d
(
un, x̂

)
d
(
f(x̂), x̂

)
+ 2αd2(xn, x̂) − d2(xn, x̂),

(2.28)

and d(un, x̂) → 0.
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Thus,

d2(xn+1, x̂) ≤ (1 − αn)d2(xn, x̂) + αn

[
d2(f(xn), x̂

) − (1 − αn)d2(f(xn), xn

)

+(1 − αn)d2(f(xn), xn

) − (1 − αn)d2(Txn, xn)
]

≤ (1 − 2(1 − α)αn)d2(xn, x̂)

+ 2(1 − α)αn

[
1

(1 − α)
d
(
un, x̂

)
d
(
f(x̂), x̂

)
+

1
(1 − α)

βn

]
,

(2.29)

where βn = (1−αn)d2(f(xn), xn)−(1−αn)d2(Txn, xn)]. Since d(un, x̂) → 0 and d(xn, Txn) → 0,
we obtain that

lim
n

sup
1

(1 − α)
d
(
un, x̂

)
d
(
f(x̂), x̂

)
+

1
(1 − α)

βn ≤ 0. (2.30)

According to Lemma 1.6, we can get d2(xn, x̂) → 0.
Finally, we prove that x̂ = x̃.
Indeed, for any z ∈ Fix(T),

d2(xn+1, z) ≤ αnd
2(z, f(xn)

)
+ (1 − αn)d2(z, Txn) − αn(1 − αn)d2(f(xn), Txn

)

≤ αnd
2(z, f(xn)

)
+ (1 − αn)d2(z, xn) − αn(1 − αn)d2(f(xn), Txn

)
.

(2.31)

Let μ be a Banach limit. Then,

μnd
2(xn+1, z) ≤ μnd

2(z, f(xn)
) − μnd

2(f(xn), Txn

)
. (2.32)

Since xn → x̂, we obtain that

d2(x̂, z) ≤ d2(z, f(x̂)
) − d2(f(x̂), x̂

)
. (2.33)

It follows that

d2(f(x̂), x̂
) ≤ d2(z, f(x̂)

)
, (2.34)

that is to say, x̂ = PFix(T)f(x̂). Since PFix(T)f is a contraction and x̃ = PFix(T)f(x̃), we know that
x̂ = x̃.
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