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We establish a result on existence and uniqueness on mean square almost periodic solutions for a
class of impulsive stochastic differential equations with delays, which extends some earlier works
reported in the literature.

1. Introduction

Impulsive effects widely exist in many evolution processes of real-life phenomena in which
states are changed abruptly at certain moments of time, involving such areas as population
dynamics and automatic control [1–3]. Because delay is ubiquitous in the dynamical system,
impulsive differential equations with delays have received much interesting in recent years,
intensively researched, some important results are obtained [4–9]. And almost periodic
solutions for abstract impulsive differential equations and for impulsive neural networks
with delay have been discussed by G. T. Stamov and I. M. Stamova [10], and Stamov and
Alzabut [11].

However, besides delay and impulsive effects, stochastic effects likewise exist in real
system. A lot of dynamic systems have variable structures subject to stochastic abrupt
changes, which may result from abrupt phenomena such as stochastic failures and repairs of
components, changes in the interconnections of subsystems, sudden environment changes,
and so on [12–14]. Moreover, differential descriptor systems also have abrupt changes
[15, 16]. Recently, a large number of stability criteria of stochastic system with delays have
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been reported [17–19]. Almost periodic solutions to some functional integro-differential
stochastic evolution equations and to some stochastic differential equations have been
studied by Bezandry and Diagana [20], and Bezandry [21]. Huang and Yang investigated
almost periodic solution for stochastic cellular neural networks with delays [22]. Because
it is not easy to deal with the case of coexistence of impulsive, delay and stochastic effects
in a dynamical system, there are few results about this problems [23–25]. To the best of our
knowledge, there exists no result on the existence and uniqueness of mean square almost
periodic solutions for impulsive stochastic differential equations with delays.

Motivated by the above discussions, the main aim of this paper is to study the mean
square almost periodic solutions for impulsive stochastic differential equations with delays.
By employing stochastic analysis, delay differential inequality technique and fixed points
theorem, we obtain some criteria to ensure the existence and uniqueness of mean square
almost periodic solutions.

The rest of this paper is organized as follows: in Section 2, we introduce a class of
impulsive stochastic differential equations with delays, and the relating notations, definitions
and lemmas which would be used later; in Section 3, a new sufficient condition is proposed
to ensure the existence and uniqueness of mean square almost periodic solutions; in Section
4, an example is constructed to show the effectiveness of our results. Finally, a conclusion is
given in Section 5.

2. Preliminaries

Let R = (−∞,+∞), N = {1, 2, 3, . . .}, and B = {{tk} : t0 = 0 < t1 < t2 < · · · < tk < tk+1 <
· · · , limk→+∞tk = +∞} be the set of all sequence unbounded and strictly increasing. For x ∈ R

n

andA ∈ R
n×n, let ‖x‖ be any vector norm, and denote the inducedmatrix norm and thematrix

measure, respectively, by

‖A‖ = sup
x /= 0

‖Ax‖
‖x‖ , μ(A) = lim

h→ 0+

‖I + hA‖ − 1
h

. (2.1)

The norm and measure of vector and matrix are ‖x‖ = maxi|xi|, ‖A‖ = maxi
∑n

j=1 |aij |, μ(A) =
maxi{aii +

∑n
j /= i |aij |}.

Consider the following a class of Itô impulsive stochastic differential equations with
delay

dx(t) =
[
Ax(t) + Bf(t, x(t)) + Cg(t, x(t − h)) + I(t)]dt + σ(t, x(t))dω(t), t ≥ 0, t /= tk,

Δx(t) = x(tk) − x
(
t−k
)
= Dkx

(
t−k
)
+ Vk

(
x
(
t−k
))

+ βk, t = tk, k ∈ N,

x(t) = φ(t), −h ≤ t ≤ 0,
(2.2)

where x(t) = (x1(t), . . . , xn(t))
T is the solution process, A,B,C,Dk ∈ R

n×n are constant matri-
ces, f(t, x) = (f1(t, x), . . . , fn(t, x))

T , g(t, x) = (g1(t, x), . . . , gn(t, x))
T , I(t) = (I1(t), . . . , In(t))

T ,
σ(t, x) = (σij(t, x))n×n is the diffusion coefficient matrix, Vk(x) = (V1k(x), . . . , Vnk(x))

T is
impulsive function, h > 0 is delay; tk ∈ B is impulsive time, βk = (β1k, . . . , βnk)

T is a constant
vector, ω(t) = (ω1(t), . . . , ωn(t))

T is an n-dimensional Brown motion defined on a complete
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probability space (Ω,F,P) with a natural filtration {Ft}t≥0 generated by ω(t), and denote
by F the associated σ-algebra generated by ω(t) with the probability measure P. Moreover,

the initial conditions φ(t) = (φ1(t), . . . , φn(t))
T ∈ PCBbF0

([−h, 0],Rn) Δ= PCBbF0
. Denote by

PCBbF0
the family of all bounded F0-measurable, PC([−h, 0],Rn)-valued random variable ζ,

satisfying E‖ζ‖2 = E(sup−h≤θ≤0‖ζ(θ)‖2) < +∞, where PC([−h, 0],Rn) = {ζ : [−h, 0] → R
n is

continuous}. E denotes the expectation of stochastic process.
Let (H, ‖ · ‖) be a Hilbert space and (Ω,F,P) be a complete probability space. Define

L2(P,H) to be the space of all H-value random variable Y such that

E‖Y‖2 =
∫

Ω
‖Y‖2dP <∞. (2.3)

It is then routine to check that L2(P,H) is a Hilbert space when it is equipped with its
natural norm ‖ · ‖2 defined by

‖Y‖2 =
(∫

Ω
‖Y‖2dP

)1/2

<∞, (2.4)

for each Y ∈ L2(P,H).

Definition 2.1 (see [25]). For any φ ∈ PCBbF0
, a function x(t) : [−h,+∞) → L2(P,H) is said

to be solution of system (2.2) on [−h,+∞) satisfying initial value condition, if the following
conditions hold:

(i) x(t) is absolutely continuous on each interval (tk, tk+1) ∈ [0,+∞), k ∈ N;

(ii) for any tk ∈ [0,+∞), k ∈ N, x(t+
k
) and x(t−

k
) exist and x(t+

k
) = x(tk);

(iii) x(t) satisfies (2.2) for almost everywhere in [−h,+∞) and at impulsive points t = tk
situated in [0,+∞), k ∈ N, may have discontinuity points of the first kind.

Obviously, the solution defined by definition 1 is piecewise continuous.

Definition 2.2 (see [26]). The set of sequences {tjk}, t
j

k = tk+j − tk, k ∈ N, j ∈ N, {tk} ∈ B is said
to be uniformly almost periodic if for any ε > 0, there exists relatively dense set of ε-almost
periods common for any sequences.

Definition 2.3. A piecewise continuous function x(t) : [−h,+∞) → L2(P,H) with discontinu-
ity points of first kind at t = tk is said to be mean square almost periodic, if

(i) the set of sequence {tjk} is uniformly almost periodic;

(ii) for any ε > 0, there exists δ > 0, such that if the points t′ and t′′ belong to one and
the same interval of continuity of x(t) and satisfy the inequality |t′ − t′′| < δ, then
E‖x(t′) − x(t′′)‖2 < ε;

(iii) for any ε > 0, there exists a relatively dense set T such that if τ ∈ T , then E‖x(t +
τ) − x(t)‖2 < ε for all t ∈ [−h,+∞) satisfying the condition |t − tk| > ε, k ∈ N.

The collection of all functions x(t) : [−h,+∞) → L2(P,H) with discontinuity
points of the first kind at t = tk which are mean square almost periodic is denoted by
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AP ([−h,+∞);L2(P,H)), one can check that AP([−h,+∞);L2(P,H)) is a Banach space when
it is equipped with the norm:

‖x‖∞ = sup
t∈R

(
E‖x(t)‖2

)1/2
. (2.5)

Let (B1, ‖ · ‖1) and (B2, ‖ · ‖2) be Banach space and L2(P, B1) and L2(P, B2) be their
corresponding L2-space, respectively.

Lemma 2.4 (see [20]). Let f : R × L2(P, B1) → L2(P, B2), (t, x) 	→ f(t, x) be mean square almost
periodic in t ∈ R uniformly in x ∈ K, where K ⊂ L2(P, B1) is compact. Suppose that there exists
Lf > 0 such that

E
∥
∥f(t, x) − f(t, y)∥∥22 ≤ LfE

∥
∥x − y∥∥21 (2.6)

for all x, y ∈ L2(P, B1) and for each t ∈ R. Then for any mean square almost periodic function
ψ(t) : R → L2(P, B1), f(t, ψ(t)) is mean square almost periodic.

In this paper, we always assume that:

(A1) det(I +Dk)/= 0 and the sequence {Dk}, k ∈ N, is almost periodic, where I ∈ Rn×n is
the identity matrix;

(A2) the set of {tj
k
} is uniformly almost periodic and θ = infk{t1k} > 0.

Recall [2], consider the following linear system of system(2.2)

ẋ(t) = Ax(t), t /= tk,

Δx(tk) = Dkx
(
t−k
)
, k ∈ N,

(2.7)

that ifUk(t, s) is the Cauchy matrix for the system

ẋ(t) = Ax(t), tk−1 ≤ t < tk, (2.8)

then the Cauchy matrix for the system (2.7) is in the form

W(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Uk(t, s), tk−1 ≤ s ≤ t < tk,
Uk+1(t, tk)(I +Dk)Uk(tk, s), tk−1 ≤ s < tk ≤ t < tk+1,

Uk+1(t, tk)
i+1∏

j=k

(I +Dk)Uj

(
tj , tj+1

)
(I +Di)Ui(ti, s), ti−1 ≤ s < ti < tk ≤ t < tk+1.

(2.9)

As the special case of Lemma 1 in [10], we have the following lemma.
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Lemma 2.5. Assume that (A1), (A2) and the following condition hold. For the Cauchy matrixW(t, s)
of system (2.7), there exist positive constantsM and λ such that

‖W(t, s)‖ ≤Me−λ(t−s), t ≥ s, t, s ∈ R. (2.10)

Then for any ε > 0, t ≥ s, t, s ∈ R, |t − tk| > ε, |s − tk| > ε, k ∈ N, there must be exist a relatively
dense set T of ε-almost periodic of the matrix A and a positive constant Γ such that for τ ∈ T , it
follows:

‖W(t + τ, s + τ) −W(t, s)‖ ≤ εΓe(−λ/2)(t−s). (2.11)

Lemma 2.6 (see [6]). LetW(t, s) be the Cauchy matrix of the linear system (2.7). Given a constant
η ≥ ‖I +Dk‖ for all k ∈ N, if η ≥ 1 and θ = infk{t1k} > 0, then

‖W(t, s)‖ ≤ ηe(μ(A)+(lnη/θ))(t−s), t ≥ s. (2.12)

Introduce the following conditions:

(A3) The functions f, g : R × L2(P,H) → L2(P,H) are mean square almost periodic in
t ∈ R uniformly in x ∈ Θ, where Θ ⊂ L2(P,H) is compact, and f(0, 0) = g(0, 0) = 0.
Moreover, there exist Lf , Lg > 0 such that

E
∥
∥f(t, x) − f(t, y)∥∥2 ≤ LfE

∥
∥x − y∥∥2,

E
∥
∥g(t, x) − g(t, y)∥∥2 ≤ LgE

∥
∥x − y∥∥2,

(2.13)

for all stochastic processes x, y ∈ L2(P,H) and t ∈ R.

(A4) The function σ : R × L2(P,H) → L2(P,H) is mean square almost periodic in t ∈ R

uniformly in x ∈ Θ′, where Θ′ ⊂ L2(P,H) is compact, and σ(0, 0) = 0. Moreover,
there exists Lσ > 0 such that

E
∥
∥σ(t, x) − σ(t, y)∥∥2 ≤ LσE

∥
∥x − y∥∥2, (2.14)

for all stochastic processes x, y ∈ L2(P,H) and t ∈ R.

(A5) The function Ii(t) : R → R is almost periodic in the sense of Bohr, {βk}k∈N
is almost

periodic sequence and there exists a constant γ0 > 0, such that

max
{

max
k

∣
∣βk
∣
∣, sup

t

‖I(t)‖
}

≤ γ0. (2.15)
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(A6) The sequence of functions Vk(x) : L2(P,H) → L2(P,H) is mean square almost
periodic uniformly with respect to x ∈ Θ′′, where Θ′′ ⊂ L2(P,H) is compact.
Moreover, there exists LV > 0 such that

E
∥
∥Vk(x) − Vk

(
y
)∥
∥2 ≤ LVE

∥
∥x − y∥∥2 (2.16)

for all stochastic processes x, y ∈ L2(P,H).

Lemma 2.7 (see [26]). If conditions (A1)–(A6) are satisfied, then for each ε > 0, there exists ε1, 0 <
ε1 < ε and relatively dense sets T of real numbers and Q of integral numbers, such that

(i) E‖f(t+τ, y)−f(t, y)‖2 < ε, E‖g(t+τ, y)−g(t, y)‖2 < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k ∈
N, y ∈ L2(P,H);

(ii) E‖σ(t + τ, y) − σ(t, y)‖2 < ε, t ∈ R, τ ∈ T, |t − tk| > ε, k ∈ N, y ∈ L2(P,H);

(iii) ‖I(t + τ) − I(t)‖2 < ε, t ∈ R, τ ∈ T, |t − tk| > ε;
(iv) E‖Vk+q(y) − Vk(y)‖2 < ε, q ∈ Q, k ∈ N;

(v) ‖βk+q − βk‖2 < ε, q ∈ Q, k ∈ N;

(vi) ‖tk+q − τ‖2 < ε1, q ∈ Q, τ ∈ T, k ∈ N.

Lemma 2.8 (see [26]). Let condition (A2) holds. Then for each p > 0, there exists a positive integer
N such that on each interval of length p, there are no more thanN elements of the sequence {tk}, that
is,

i(s, t) ≤N(t − s) +N, (2.17)

where i(s, t) is the number of points tk in the interval (s, t).

3. Main Results

Theorem 3.1. Assume that (A1)–(A6) hold, then there exists a unique mean square almost periodic
solution of system (2.2) if the following conditions are satisfied: There exists a constant η ≥ 1, such
that ‖I +Dk‖ ≤ η, k ∈ N and

μ(A) +
lnη
θ

Δ= −λ < 0. (3.1)

Furthermore,

ρ = 6η2
[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

< 1. (3.2)

Proof. Let D = {ϕ(t) ∈ L2(P,H) : ϕ(t) = (ϕ1(t), . . . , ϕn(t))
T} ⊂ AP([−h,+∞);L2(P,H)) satisfy-

ing the equality E‖ϕ‖2 < K, where K = 2η2γ20 ((1/λ) + (N/(1 − e−λ)))2 > 0.
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Set

x(t) =W(t, 0)φ0 +
∫ t

0
W(t, s)

[
Bf(s, x(s)) + Cg(s, x(s − h)) + I(s)]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(x(tk)) + βk

]
+
∫ t

0
W(t, s)σ(s, x(s))dω(s), t ≥ 0.

(3.3)

where φ0 = x(0), it is easy to see that x(t) given by (3.3) is the solution of system (2.2)
according to [2] and Lemma 2.2 in [27].

By Lemma 2.6 and the conditions of Theorem, we have

‖W(t, s)‖ ≤ ηe−λ(t−s), t ≥ s, t, s ∈ R. (3.4)

For z(t) ∈ D, we define the operator L in the following way

(Lz)(t) =
∫ t

0
W(t, s)

[
Bf(s, z(s)) + Cg(s, z(s − h)) + I(s)]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(z(tk)) + βk

]
+
∫ t

0
W(t, s)σ(s, z(s))dω(s).

(3.5)

Define subset D∗ ⊂ D, D∗ = {z ∈ D : E‖z − z0‖2 ≤ ρK/(1 − ρ)}, and z0 =
∫ t
0W(t, s)

I(s)ds +
∑

0≤tk<t W(t, tk)βk.
We have

E‖z0‖2 ≤ 2E

∥
∥
∥
∥
∥

∫ t

0
W(t, s)I(s)ds

∥
∥
∥
∥
∥

2

+ 2E

∥
∥
∥
∥
∥

∑

0≤tk<t
W(t, tk)βk

∥
∥
∥
∥
∥

2

≤ 2

[∫ t

0
ηe−λ(t−s)sup

s
‖I(s)‖ds

]2

+ 2

[
∑

0≤tk<t
ηe−λ(t−tk)max

k

∣
∣βk
∣
∣

]2

≤ 2η2γ20

(
1
λ
+

N

1 − e−λ
)2

= K.

(3.6)

Then for ∀z ∈ D∗, from the definition of D∗ and (3.6), since (a + b)2 ≤ 2a2 + 2b2, we have

E‖z‖2 = E‖(z − z0) + z0‖2 ≤ 2E
(
‖z − z0‖2 + ‖z0‖2

)

≤ 2

(
ρK

1 − ρ +K

)

=
2K
1 − ρ .

(3.7)
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For ∀z ∈ D∗, we have

‖Lz − z0‖ =

∥
∥
∥
∥
∥

∫ t

0
W(t, s)

[
Bf(s, z(s)) + Cg(s, z(s − h))]ds

+
∑

0≤tk<t
W(t, tk)Vk(z(tk)) +

∫ t

0
W(t, s)σ(s, z(s))dω(s)

∥
∥
∥
∥
∥
.

(3.8)

Since (a + b + c)2 ≤ 3a2 + 3b2 + 3c2, it follows

E‖Lz − z0‖2 ≤ 3E

(∫ t

0
‖W(t, s)‖∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥ds

)2

+ 3E

(∥
∥
∥
∥
∥

∑

0≤tk<t
W(t, tk)Vk(z(tk))

∥
∥
∥
∥
∥

)2

+ 3E

(∫ t

0
‖W(t, s)σ(s, z(s))dω(s)‖

)2

.

(3.9)

For first term of the right-hand side, using (3.7), (A3) and Cauchy-Schwarz inequality, we
have

E

(∫ t

0
‖W(t, s)‖∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥ds

)2

≤ η2
(∫ t

0
e−λ(t−s)ds

)

·
(∫ t

0
e−λ(t−s) · E∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥2ds

)

≤ η2
(∫ t

0
e−λ(t−s)ds

)

·
[∫ t

0
e−λ(t−s) ·

(
2‖B‖2L2

fE‖z(s)‖2 + 2‖C‖2L2
gE‖z(s − h)‖2

)
ds

]

≤ η2 · 2K
1 − ρ

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)]

.

(3.10)

As to the second term, using (3.7), (A6) and Cauchy-Schwarz inequality, we can write

E

(∥
∥
∥
∥
∥

∑

0≤tk<t
W(t, tk)Vk(z(tk))

∥
∥
∥
∥
∥

)2

≤ η2
(
∑

0≤tk<t
e−λ(t−tk)

)

·
(
∑

0≤tk<t
e−λ(t−tk)E‖Vk(z(tk))‖2

)

≤ η2
(
∑

0≤tk<t
e−λ(t−tk)

)

·
(
∑

0≤tk<t
e−λ(t−tk)L2

VE‖z(tk)‖2
)

≤ η2 · 2K
1 − ρ

[

L2
V · N2

(1 − e−λ)2
]

.

(3.11)
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As far as last term is concerned, using (3.7), (A4), and the Itô isometry theorem, we obtain

E

(∫ t

0
‖W(t, s)σ(s, z(s))dω(s)‖

)2

≤
∫ t

0
‖W(t, s)‖2E‖σ(s, z(s))‖2ds

≤ η2
∫ t

0
e−2λ(t−s)L2

σE‖z(s)‖2ds ≤ η2 ·
2K
1 − ρ · L

2
σ

2λ
.

(3.12)

Thus, by combining (3.9)–(3.12), it follows that

E‖Lz − z0‖2 ≤ 3η2 · 2K
1 − ρ

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

=
ρK

1 − ρ . (3.13)

By Lemmas 2.5 and 2.6, one can obtain

‖W(t + τ, s + τ) −W(t, s)‖ ≤ εΓe−(λ/2)(t−s). (3.14)

Let τ ∈ T, q ∈ Q, where the sets T and Q are determined in Lemma 2.7, and we assume that
0 < ε < 1, then

‖Lz(t + τ) − Lz(t)‖

=

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)]

[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s − h)) + I(s)]ds}

+
∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]

+
∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥
∥
∥
∥
∥
.

(3.15)
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Therefore, we have

E‖Lz(t + τ) − Lz(t)‖2

≤3E
∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ)−W(t, s)]

[
Bf(s+τ, z(s + τ))+Cg(s + τ, z(s+τ−h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ))+Cg(s + τ, z(s + τ − h))+I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s + −h)) + I(s)]ds}
∥
∥
∥
∥
∥

2

+ 3E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]
∥
∥
∥
∥
∥

2

+ 3E

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥
∥
∥
∥
∥

2

.

(3.16)

We first evaluate the first term of the right hand side

E

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)]

[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s + −h)) + I(s)]ds}
∥
∥
∥
∥
∥

2

≤ 2E

[∫ t

0
‖W(t + τ, s + τ) −W(t, s)‖

× ∥∥Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)∥∥
]2

ds

+ 2E

[∫ t

0
‖W(t, s)‖∥∥B(f(s + τ, z(s + τ)) − f(s, z(s)))

+ C
(
g(s + τ, z(s + τ − h)) − g(s, z(s − h)))(I(s + τ) − I(s))

]∥
∥
∥
∥
∥

2

ds

≤ c1ε,
(3.17)

where c1 = (96η2/λ2)[‖B‖2L2
f
· ((K/(1 − ρ)) + 1) + ‖C‖2L2

g · ((K/(1 − ρ)) + 1) + γ20 + 1].
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For the second term, we can estimate that

E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]
∥
∥
∥
∥
∥

2

≤ 2E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W(t + τ, tk+q) −W(t, tk)

][
Vk+q(z(tk+q)) + βk+q

]
∥
∥
∥
∥
∥

2

+ 2E

∥
∥
∥
∥
∥

∑

0≤tk<t
W(t, tk)[Vk+q(z(tk+q)) − Vk(z(tk)) + βk+q − βk]

∥
∥
∥
∥
∥

2

≤ c2ε,

(3.18)

where c2 = (8η2N2/(1 − e−λ))[L2
V · ((K/(1 − ρ)) + 1) + γ20 + 1].

For the last term, using (A4) and Itô isometry identity, we have

E

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s)]dω(s)

∥
∥
∥
∥
∥

2

≤ 2E

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ) −W(t, s), σ(s + τ, z(s + τ))]dω(s)

∥
∥
∥
∥
∥

2

+ 2E

∥
∥
∥
∥
∥

∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥
∥
∥
∥
∥

2

≤ 2E
∫ t

0
‖W(t + τ, s + τ) −W(t, s)‖2‖σ(s + τ, z(s + τ))‖2ds

+ 2E
∫ t

0
‖W(t, s)‖2‖σ(s + τ, z(s + τ)) − σ(s, z(s))‖2ds

≤ c3ε,

(3.19)

where c3 = (2/λ)[Γ2L2
σ(K/(1 − ρ)) + 1].

Combining (3.17), (3.18) and (3.19), it follows that

E‖Lz(t + τ) − Lz(t)‖2 ≤ c0ε, (3.20)

where c0 = 3(c1 + c2 + c3).
So, Lz ∈ D∗, that is L is self-mapping from D∗ to D∗ by (3.13) and (3.20).
Secondly, we will show L is contracting operator in D∗.
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For ∀x, y ∈ D∗,

∥
∥Lx − Ly∥∥ =

∥
∥
∥
∥
∥

∫ t

0
W(t, s)B

[
f(s, x(s)) − f(s, y(s))]

+ C
[
g(s, x(s − h)) − g(s, y(s − h))]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(x(tk)) − Vk

(
y(tk)

)]

+
∫ t

0
W(t, s)

[
σ(s, x(s)) − σ(s, y(s))]dω(s)

∥
∥
∥
∥
∥
.

(3.21)

By a minor modification of the proof of (3.13), we can obtain

E
∥
∥Lx − Ly∥∥2

≤ 6η2
[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

sup
t

E
∥
∥x(t) − y(t)∥∥2

= ρ
∥
∥x − y∥∥2∞,

(3.22)

and therefore, ‖Lx−Ly‖∞ ≤ ρ‖x−y‖∞, it follows that L is contracting operator inD∗, so there
exists a unique mean square almost periodic solution of (2.2) by the fixed points theorem.

4. Example

Consider the following impulsive stochastic differential equation with delay

dxi(t) =

⎡

⎣aixi(t) +
2∑

j=1

bijfj
(
xj(t)

)
+

2∑

j=1

cijgj
(
xj(t − 0.1)

)
+ Ii(t)

⎤

⎦dt

+ 0.5xi(t)dωi(t), t ≥ 0, t /= tk,

Δx(t) = x(tk) − x
(
t−k
)
= Dkx

(
t−k
)
+ Vk

(
x
(
t−k
))

+ βk, t = tk, k ∈ N,

x(t) = φ(t), −h ≤ t ≤ 0,

(4.1)

where tk = k, k ∈ N, f(x(t)) = [sin x1(t), sin x2(t)]
T , g(x(t−0.1)) = [cos x1(t−0.1), cos x2(t−

0.1)]T , Vik = [0.01 sin x1(t), 0.01 cos x2(t)]
T , βk = 0.1, I(t) = [0.1, 0.1]T , γ0 = 0.1, for

convenience, we can choose

A =
[−2 0
0 −3

]

, B =
[−0.1 0

0 −0.1
]

, C =
[
0.2 0
0 −0.2

]

, Dk =
[−0.5 0

0 −0.5
]

. (4.2)

Then μ(A) = −2, ‖I + Dk‖ = 1/2, ‖B‖ = 0.1, ‖C‖ = 0.2, Lf = Lg = 1, LV = 0.01, Lσ = 0.5.
Choose θ = infk{t1k} = 0.01, η = 1,N = 6. By simple calculation, we have λ = −(μ(A) +
(lnη/θ)) = 2, ρ .= 0.8139 < 1, K .= 1.107, (ρK/(1 − ρ)) .= 4.841.
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Let D∗ = {z ∈ D : E‖z − z0‖2 ≤ 4.841}, so, by Theorem 3.1, system (4.1) has a unique
mean square almost periodic solution in D∗.

Remark 4.1. Since there exist no results for almost periodic solutions for impulsive stochastic
differential equations with delays, one can easily see that all the results in [10, 11, 20–22, 28]
and the references therein cannot be applicable to system (4.1). This implies that the results
of this paper are essentially new.

5. Conclusion

In this paper, a class of Itô impulsive stochastic differential equations with delays has been
investigated. We conquer the difficulty of coexistence of impulsive, delay and stochastic
factors in a dynamic system, and give a result for the existence and uniqueness of mean
square almost periodic solutions. The results in this paper extend some earlier works reported
in the literature. Moreover, our results have important applications in almost periodic
oscillatory stochastic delayed neural networks with impulsive control.
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