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This paper is concerned with the problem of the asymptotic stability of the characteristic model-
based golden-section control law for multi-input and multi-output linear systems. First, by
choosing a set of polynomial matrices of the objective function of the generalized least-square
control, we prove that the control law of the generalized least square can become the characteristic
model-based golden-section control law. Then, based on both the stability result of the generalized
least-square control system and the stability theory of matrix polynomial, the asymptotic stability
of the closed loop system for the characteristic model under the control of the golden-section
control law is proved for minimum phase system.

1. Introduction

Since the late 1950s, the first adaptive control system was presented by the Massachusetts
Institute of Technology, the adaptive control has been attracted extensively. Fruitful results
have been achieved in theory and application. However, the adaptive control in practice has
not been widely used. The reason is that there are some problems of the existing adaptive
control theory in practical engineering applications, such as the following: the transient
response is very poor, the number of parameters need to be estimated is too many, the
convergence of parameter estimation is difficult to be guaranteed, and parameters that need
to be adjusted artificially are too many [1].

To solve the above problems, Wu et al. [1, 2] presented an integrated and practical
all-coefficient adaptive control theory and method based on characteristic models, which
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has been gradually improved in the application course of more than 20 years. This
theory and method provide a new approach for the modeling and control of the complex
systems. It should be mentioned that the theory and method have already been applied
successfully to more than 400 systems belonging to nine kinds of engineering plants in the
field of astronautics and industry. In particular, the engineering key points of the method
are creatively applied to the reentry adaptive control of a manned spaceship, which the
accuracy of the parachute-opening point of the spaceship reaches the advanced level of the
world.

The method given by Wu is simple in design, easy to adjust and with strong
robustness, and in some ways solves the above-mentioned problems. This method includes
the following three aspects: (1) all-coefficient adaptive control method; (2) golden-section
adaptive control law; (3) characteristic model [1].

It is worth mentioning that the golden-section control law is a new control law, which
can solve the problem that adaptive control cannot guarantee the stability of a closed-
loop system during the transient process when the parameters have not converged to
their “true value.” The so-called golden-section control law means that the golden section
ratio (0.382/0.618) is used to controller designs, see [1, 2] or Section 3 of this paper in
detail.

For a second-order single-input and single-output (SISO) invariant linear system,
Xie et al. [3, 4] proved that the golden-section control law has strong robust stability. The
sufficient conditions for the stability of the closed-loop system based on golden-section
control law for SISO and 2-input-2-output invariant linear systems have been reported; see,
Qi et al. [5], Sun and Wu [6, 7], and Meng et al. [8]. Recently, Sun [9] gave sufficient
conditions for the stability of the golden-section control system for 3-input-3-output invariant
linear systems, but these conditions are difficult to verify. Among these references, we notice
that the closed-loop control properties based on the golden-section control law are given
by using the stability results of the generalized least-square control system and Jury stability
criteria, aiming at the characteristic model of a second-order continuous SISO invariant linear
system.

In summary, for the MIMO system, the stability of golden-section control systems is
still an open question.

In this paper, for the MIMO linear system, we investigate the stability of the
characteristic model-based golden-section control law by using the stability results of the
multivariable generalized least-square control system.

2. Preliminaries

2.1. Introduction to Generalized Least-Square Controller

Consider the following system described by the linear vector difference equation:

A
(
z−1
)
Y (k) = z−dB

(
z−1
)
U(k) + C

(
z−1
)
ξ(k), (2.1)

whereU(k) and Y (k) are the n×1 input and output vectors, respectively, and ξ(k) is the n×1
zero-mean white-noise vector with covariance matrix E(ξ(k)ξT (k)) = rξ, d denotes the system
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time delay, and A, B, and C are polynomial matrices in backward shift operator z−1 given
by

A
(
z−1
)
=I +A1z

−1 + · · · +Anaz
−na ,

B
(
z−1
)
=B0 + B1z

−1 + · · · + Bnbz
−nb , B0 nonsingular,

C
(
z−1
)
=I + C1z

−1 + · · · + Cncz
−nc ,

(2.2)

here Ai, Bi, and Ci are matrix coefficients. The cost function to be considered is described by

J = E

(∥∥∥P
(
z−1
)
Y (k + d) − R

(
z−1
)
Yr(k)

∥∥∥
2
+
∥∥∥Q′
(
z−1
)
U(k)

∥∥∥
2
)
, (2.3)

where Yr(k) is an n-vector defining the known reference signal. P, R, and Q′ are n × n
weighting polynomial matrices. The notation ‖X‖2 = XTX has been used.

The optimal control law is [10]

H
(
z−1
)
U(k) = −E

(
z−1
)
Yr(k) − G̃

(
z−1
)
Y (k), (2.4)

where

H
(
z−1
)
= F̃
(
z−1
)
B
(
z−1
)
+ C̃
(
z−1
)
Q
(
z−1
)
, (2.5)

E
(
z−1
)
= −C̃

(
z−1
)
R
(
z−1
)
, (2.6)

Q
(
z−1
)
=
[
(P0B0)T

]−1[
Q′(0)

]T
Q′
(
z−1
)
, B0 = B(0), P0 = P(0), (2.7)

C̃
(
z−1
)
P
(
z−1
)
= F̃
(
z−1
)
A
(
z−1
)
+ z−dG̃

(
z−1
)
, (2.8)

C̃
(
z−1
)
F
(
z−1
)
= F̃
(
z−1
)
C
(
z−1
)
, (2.9)

here the order of the polynomial matrix F is equal to d − 1.

2.2. Two Important Lemmas

Let an (m ×m) nonsingular real matrix polynomial of nth-order P(z) be given by

P(z) = anz
n + an−1zn−1 + an−2zn−2 + · · · + a1z + a0, (2.10)

where an, an−1, an−2, . . . , a1, and a0 are (m ×m) real matrices, m ≥ 1.
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We can construct an (mn×mn) symmetric matrix C = [cij] by the Christoffel-Darboux
formula as follows. cij ’s are defined as

cij =
i∑

k=1

aT
n+k−ian+k−j − aT

j−kai−k, i ≤ j,

cji = cTij , i > j

(2.11)

for i, j = 1, 2, . . . , n.
For example, when n = 2 [11],

C =

⎡
⎣
aT
2a2 − aT

0a0 aT
2a1 − aT

1a0

aT
1a2 − aT

0a1 aT
2a2 − aT

0a0

⎤
⎦. (2.12)

Lemma 2.1 (see [11, Theorem 1]). If C = [cij] defined in (2.11) is positive definite, then all the
roots of the determinant of the matrix polynomial (2.10) lie inside the unit circle.

It is well known that the following lemma holds.

Lemma 2.2. Let A be an (n × n) real symmetric matrix and I be an (n × n) identity matrix. Then
there exists a sufficiently small positive number ε such that I + εA becomes a positive definite matrix.

3. Problem Formulation

Suppose that a second-order multi-input andmulti-output dynamic process can be expressed
as

Y (2)(t) +A1Y
(1)(t) +A0Y (t) = B1U

(1)(t) + B0U(t), (3.1)

where U(k) and Y (k) are the n × 1 input and output vectors, respectively, and A0, A1, B0,
and B1 are polynomial matrices. By using forward difference method, the corresponding
difference equation can be given as

Y (k + 1) = A1Y (k) +A2Y (k − 1) + B0U(k) + B1U(k − 1) + e(k + 1), (3.2)

where

A1 = 2I −A1Δt, A2 = −I +A1Δt −A0(Δt)2,

B0 = −B1Δt, B1 = −B1Δt + B0Δt2,

(3.3)

and e(k) is the modeling error vector.
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For a linear multi-input and multi-output constant high-order plant, if sampling
period Δt is sufficiently small, when the control requirement is position keeping or tracking,
we can prove that its characteristic model can be also expressed with (3.2).

It is easily to be seen that (3.2) can be written as (2.1), that is,

A
(
z−1
)
Y (k) = z−1B

(
z−1
)
U(k) + C

(
z−1
)
e(k), (3.4)

where

A
(
z−1
)
=I −A1z

−1 −A2z
−2,

B
(
z−1
)
=B0 + B1z

−1,

C
(
z−1
)
=I.

(3.5)

The characteristic model-based golden-section control law is designed as follows:

U(k) = (1 + λ)−1B
−1
0

[
Yr(k) − B1U(k − 1) − l1A1Y (k) − l2A2Y (k − 1)

]
, (3.6)

where λ ≥ 0 is a constant; l1 = 0.382 and l2 = 0.618 are golden-section coefficients.

4. Main Result and Proof

In this section, by selecting a set of polynomial matrices in the objective function (2.3), for
the characteristic model (3.2), we find the generalized least-square control law under the
objective function. By comparison, we can see that this control law is just the same law as the
golden-section control law based on characteristic model. Finally, based on the stability result
of generalized least-square control law, we will give the stability result of the closed-loop of
the golden-section control law.

For the objective function (2.3), we choose that

P
(
z−1
)
= I − l2A1z

−1 − l1A2z
−2, R

(
z−1
)
= I, Q′

(
z−1
)
=
√
λ B0, F̃

(
z−1
)
= I.

(4.1)

Note that d = 1, and hence F(z−1) = I. By C(z−1) = I, F̃(z−1) = I, and (2.9), we get
C̃(z−1) = I. Using C̃(z−1) = I, R(z−1) = I, and (2.6), E(z−1) = −I.

From P0 = I, B(0) = B0, Q′(z−1) =
√
λ B0, and (2.7), it follows that

Q
(
z−1
)
=
[
(P0B0)T

]−1[
Q′(0)

]T
Q′
(
z−1
)
=
[
B
T
0

]−1[√
λ B0

]T√
λ B0 =

[
B
T
0

]−1
B
T
0λB0 = λB0.

(4.2)
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By using Diophantine equation (2.8), we obtain that

I − l2A1z
−1 − l1A2z

−2 = I −A1z
−1 −A2z

−2 + z−1G̃
(
z−1
)
. (4.3)

Therefore,

G̃
(
z−1
)

= l1A1 + l2A2z
−1. (4.4)

Using (2.5), we have

H
(
z−1
)
= F̃
(
z−1
)
B
(
z−1
)
+ C̃
(
z−1
)
Q
(
z−1
)

= B0 + B1z
−1 + IλB0

= B0 + B1z
−1 + λB0

= (1 + λ)B0 + B1z
−1.

(4.5)

According to (2.4), it follows that

[
(1 + λ)B0 + B1z

−1
]
U(k) = IYr(k) −

(
l1A1 + l2A2z

−1
)
Y (k). (4.6)

That is,

U(k) = (1 + λ)−1B
−1
0

[
Yr(k) − B1U(k − 1) − l1A1Y (k) − l2A2Y (k − 1)

]
. (4.7)

The above control law obtained by generalized least-square control law is exactly
the characteristic model-based golden-section control law designed in (3.6). Hence, the
stability of the closed-loop system based on the characteristic model-based golden-section
control law is determined by the distribution of zero points on z-plane of the following
equation:

detH
(
z−1
)
det
[
A
(
z−1
)
+ z−dB

(
z−1
)
H−1
(
z−1
)
G̃
(
z−1
)]

= 0. (4.8)

We note that

H
(
z−1
)

= F̃
(
z−1
)
B
(
z−1
)
+ C̃
(
z−1
)
Q
(
z−1
)
= IB

(
z−1
)
+ IλB0 = B

(
z−1
)
+ λB0. (4.9)
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Now, taking λ = 0, we have H(z−1) = B(z−1), and, furthermore,

A
(
z−1
)
+ z−dB

(
z−1
)
H−1
(
z−1
)
G̃
(
z−1
)

= A
(
z−1
)
+ B
(
z−1
)[

B
(
z−1
)]−1[

C̃
(
z−1
)
P
(
z−1
)
− F̃
(
z−1
)
A
(
z−1
)]

= A
(
z−1
)
+
[
IP
(
z−1
)
− IA

(
z−1
)]

= A
(
z−1
)
+
[
P
(
z−1
)
−A
(
z−1
)]

= P
(
z−1
)
.

(4.10)

Then, when B(z−1) is stable, the stability of the closed-loop system formed by the
characteristic model-based golden-section control law is determined by the stability of P(z−1).

Theorem 4.1. Assume that (3.2) is a minimum phase system and λ = 0. Then, the closed-loop system
involving the characteristic model-based golden-section control law (3.6) is asymptotic stable.

Remark 4.2. Since the corresponding relationship between the zero positions of continuous
controlled objects and that of the discrete-time systems is complex, here the minimum phase
system means that the zero points of the characteristic model (3.2) lie inside the unit circle.

Proof. First, we notice that P(z−1) = I − l2A1z
−1 − l1A2z

−2, and take

a2 = I, a1 = −l2A1, a0 = −l1A2. (4.11)

By (2.12), we have

C =

⎡
⎣ I − l21A

T
2A2 −l2A1 − l1l2A

T
1A2

−l2A
T
1 − l1l2A

T
2A1 I − l21A

T
2A2

⎤
⎦. (4.12)

Now, we show that C is positive definite when Δt is sufficiently small.
It is easy to see that

C =

[
B N

NT αI

]
+

⎡
⎣αI − l21A

T
2A2 O

O αI − l21A
T
2A2

⎤
⎦, (4.13)

where B = αI,N = −l2A1 − l1l2A
T
1A2, 0.764 = 2l1 < α < 1 − l21 = 0.8541, and α = 1 − α.

To show C be positive definite, we will prove that

[
B N

NT αI

]
, (4.14)

and αI − l21A
T
2A2 are all positive definite when Δt is sufficiently small as follows.
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First, we notice that

⎡
⎣

I O

−NTB−1 I

⎤
⎦
⎡
⎣

B N

NT αI

⎤
⎦
⎡
⎣ I −(B−1)TN

O I

⎤
⎦

=

⎡
⎣B −B(B−1)TN +N

O αI −NTB−1N

⎤
⎦ =

⎡
⎣
B O

O αI −NTB−1N

⎤
⎦ =

⎡
⎣
αI O

O αI −NTB−1N

⎤
⎦.

(4.15)

We claim that αI − NTB−1N is positive definite when Δt is sufficiently small. In fact,
since

NTB−1N =
[
−l2A

T
1 − l1l2A

T
2A1

]
B−1
[
−l2A1 − l1l2A

T
1A2

]

=
[
l2A

T
1 + l1l2A

T
2A1

]
B−1
[
l2A1 + l1l2A

T
1A2

]

=
1
α

[
l2A

T
1 + l1l2A

T
2A1

][
l2A1 + l1l2A

T
1A2

]
,

l2A
T
1 + l1l2A

T
2A1 = l2

(
2I −AT

1Δt
)
+ l1l2

[
−I +AT

1Δt −AT
0 (Δt)2

]
[2I −A1Δt]

= 2l2I − l2A
T
1Δt − 2l1l2I + l1l2A1Δt + l1l2

[
AT

1Δt −AT
0 (Δt)2

]
[2I −A1Δt]

= 2l2(1 − l1)I − l2A
T
1Δt + l1l2A1Δt + l1l2

[
AT

1Δt −AT
0 (Δt)2

]
[2I −A1Δt]

= 2l22I − l2A
T
1Δt + l1l2A1Δt + l1l2

[
AT

1Δt −AT
0 (Δt)2

]
[2I −A1Δt]

= 2l22I − l2A
T
1Δt + l1l2A1Δt +

[
l1l2A

T
1Δt − l1l2A

T
0 (Δt)2

]
[2I −A1Δt]

= 2l22I − l2A
T
1Δt + l1l2A1Δt + 2l1l2AT

1Δt − 2l1l2AT
0 (Δt)2

− l1l2A
T
1A1(Δt)2 + l1l2A

T
0A1(Δt)3

= 2l22I + (−l2 + 2l1l2)AT
1Δt + l1l2A1Δt −

(
2l1l2AT

0 + l1l2A
T
1A1

)
(Δt)2

+ l1l2A
T
0A1(Δt)3,

(4.16)
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we get

NTB−1N =
1
α

[
4l42I + 2l22(−l2 + 3l1l2)

(
A1 +AT

1

)
Δt + · · · + (l1l2)

2AT
0A1A

T
1A0(Δt)6

]
,

αI −NTB−1N = αI − 1
α

[
4l42I + 2l22(−l2 + 3l1l2)

(
A1 +AT

1

)
Δt + · · · + (l1l2)

2AT
0A1A

T
1A0(Δt)6

]

=

(
α − 4l42

α

)
I − 1

α

[
2l22(−l2 + 3l1l2)

(
A1 +AT

1

)
Δt + · · · + (l1l2)

2AT
0A1A

T
1A0(Δt)6

]
.

(4.17)

Using α > 2l1 = 2l22 yields α − 4l42/α = (α2 − 4l42)/α > 0. Thus, we have

αI −NTB−1N

=

(
α2 − 4l42

α

){
I +

Δt

α2 − 4l42

[
−2l22(−l2 + 3l1l2)

(
A1 +AT

1

)
− · · · − (l1l2)

2AT
0A1A

T
1A0(Δt)5

]}
.

(4.18)

By Lemma 2.2, it is follows that αI−NTB−1N is positive definite whenΔt is sufficiently small.
Therefore, there exists nonsingular matrixD such thatDT(αI −NTB−1N)D = I. Furthermore,
we have

⎡
⎣

1√
α
I O

O DT

⎤
⎦
⎡
⎣αI O

O αI −NTB−1N

⎤
⎦
⎡
⎣

1√
α
I O

O D

⎤
⎦

=

⎡
⎣

α√
α
I O

O DT
(
αI −NTB−1N

)

⎤
⎦
⎡
⎣

1√
α
I O

O D

⎤
⎦ =

⎡
⎣ I O

O I

⎤
⎦.

(4.19)

That is, by the congruent transformation twice,

[
B N

NT αI

]
(4.20)

can be transformed into the identity matrix. From this, it is positive definite when Δt is
sufficiently small.
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We also claim that αI − l1
2A

T
2A2 is positive definite when Δt is sufficiently small. In

fact, it can be seen that

αI − l21A
T
2A2

= αI − l21

[
−I +AT

1Δt −AT
0 (Δt)2

][
−I +A1Δt −A0(Δt)2

]

=
(
α − l21

)
I − l21

[
−A1Δt +A0(Δt)2 −AT

1Δt +AT
1A1(Δt)2 −AT

1A0(Δt)3

+AT
0 (Δt)2 −AT

0A1(Δt)3 +AT
0A0(Δt)4

]
.

(4.21)

Using α < 1 − l21 and α = 1 − α, we have α − l21 > 0. Thus,

αI − l21A
T
2A2

=
(
α − l21

){
I − l21Δt

α − l21

[
−A1 −AT

1 +A0Δt +AT
1A1Δt −AT

1A0(Δt)2

+AT
0Δt −AT

0A1(Δt)2 +AT
0A0(Δt)3

]}
.

(4.22)

By Lemma 2.2, αI − l21A
T
2A2 is also positive definite when Δt is sufficiently small.

Thus, it follows from (4.13) that C is positive definite when Δt is sufficiently small.
By Lemma 2.1, P(z−1) is a stable matrix polynomial. Hence, the asymptotic stability of the
closed-loop system follows immediately. This completes the proof.

Remark 4.3. It is well known that an eigenvalue of a matrix is a continuous function with
respect to elements of the matrix. From this, (4.18), and (4.22), we can also see that αI −
NTB−1N and αI − l21A

T
2A2 are positive definite when Δt is sufficiently small.

Remark 4.4. By using a constructive proof of Lemma 2.2, we can determine minimum

sampling period Δt so that αI −NTB−1N and αI − l21A
T
2A2 are all positive definite.

Conjecture 4.5. If (3.2) is a nonminimum phase system, we may investigate the stability of the
closed-loop system involving the characteristic model-based golden-section control law (3.6)
by using the approach of the root locus in linear multivariable systems.
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