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The aim of this work is to perform a complete Lie symmetry classification of a generalized Lane-
Emden type system in two dimensions which models many physical phenomena in biological and
physical sciences. The classical approach of group classification is employed for classification. We
show that several cases arise in classifying the arbitrary parameters, the forms of which include
amongst others the power law nonlinearity, and exponential and quadratic forms.

1. Introduction

For many years extensive studies using various approaches have been done on the Lane-
Emden type equation

Δy + F
(
y
)
= 0, (1.1)

which has applications in astrophysics. Recently, the Lane-Emden type systems have attract-
ed a lot of attention in modelling physical phenomena in biological and physical sciences [1,
2]. In many of these investigations the nonlinearity in the system is often assumed. However,
the symmetry-based approach provides a systematic way to specify the nonlinearities in the
models of physical importance and mathematical interest.
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The bidimensional Lane-Emden system [3]:

uxx + uyy + vq = 0,

vxx + vyy + up = 0,
(1.2)

is studied from the view point of both Lie and Nöether point symmetry classification where
p, q /∈ {0, 1} are arbitrary constants. In particular, the Lie point symmetry classification is
obtained for the cases p /= q (p = 1/q) and p = q where q /= 0,±1 including the special case
p = q = −1.

In the current study we generalize the last system by considering the bidimensional
Lane-Emden system of the form

uxx + uyy + f(v) = 0,

vxx + vyy + g(u) = 0,
(1.3)

where f(v) and g(u) are nonzero arbitrary functions of their respective arguments. The
underlying system (1.3) is a two-dimensional Euler-Lagrange model system in elastostatics
[4].

Recently, in [5] Nöether point symmetry classification of system (1.3) is performed
and various forms of the arbitrary functions are obtained which include linear, power,
exponential, and logarithmic types.

The plan of this work is organized as follows. In Section 2 we generate the classifying
relations (determining equations for the arbitrary elements). The computation of the equiva-
lence transformations is presented in Section 3. In Section 4 the Lie group classification of the
underlying system is performed. Finally, we summarize our investigations in Section 5.

2. Generator of Symmetry Group and Classifying Relations

According to the Lie algorithmwe seek the generator of Lie point symmetries for system (1.3)
of the form

X = ξ1
(
x, y, u, v

)
∂x + ξ2

(
x, y, u, v

)
∂y + η1(x, y, u, v

)
∂u + η2(x, y, u, v

)
∂v. (2.1)

The application of the second prolongation of (2.1) on the underlying system yields the
determining equations which are solved for ξ1, ξ2, η1, and η2, see for details [4, 6, 7]. The
manual generation and manipulation of determining equations is a tiring task. Fortunately,
nowadays the Lie algorithm has been implemented using the computer software packages for
symbolic computation such as the YaLie package [8] which is used in this work. Therefore,
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with the help of the YaLie package written in Mathematica the following determining equa-
tions are generated:

ξ1u = ξ1v = 0, ξ2u = ξ2v = 0, η1
uu = η1

vv = 0, η2
uu = η2

vv = 0,

η1
uv = η1

yv = η1
xv = 0, η2

uv = η2
yu = η2

xu = 0,

ξ2y − ξ1x = 0, ξ1y + ξ2x = 0,

ξ1xx + ξ1yy − 2η1
xu = 0, 2η1

yu − ξ2yy − ξ2xx = 0,

ξ1xx + ξ1yy − 2η2
xv = 0, 2η2

yv − ξ2yy − ξ2xx = 0,

η2f ′(v) − η1
vg(u) +

(
2ξ1x − η1

u

)
f(v) + η1

xx + η1
yy = 0,

η1g ′(u) +
(
2ξ2y − η2

v

)
g(u) − η2

uf(v) + η2
xx + η2

yy = 0,

(2.2)

where subscripts denote partial differentiation with respect to the indicated variables and
“prime” indicates total derivative with respect to the given argument.

The manipulation of (2.2) yields the general generator of symmetry group for system
(1.3) in the form

X = a
(
x, y

)
∂x + b

(
x, y

)
∂y +

[
C1u + c

(
x, y

)]
∂u +

[
C2v + d

(
x, y

)]
∂v, (2.3)

where C1, C2 are arbitrary constants and a, b, c, d are the arbitrary smooth functions which
satisfy

ax − by = 0, ay + bx = 0, axx + ayy = 0, bxx + byy = 0, (2.4)

(2ax − C1)f(v) + (C2v + d)f ′(v) + cxx + cyy = 0, (2.5)
(
2by − C2

)
g(u) + (C1u + c)g ′(u) + dxx + dyy = 0. (2.6)

The determining equations (2.5) and (2.6) are known as the classifying relations/equations.
Since the variables x and y do not appear explicitly in the underlying system (1.3), the

principal symmetry Lie algebra admitted by this system is spanned by at least two operators,
namely, X1 = ∂x and X2 = ∂y (to be established in Section 3).

3. Equivalence Transformations

Following the infinitesimal approach [9] we consider the generator of equivalence group of
the form

Y = ξ1∂x + ξ2∂y + η1∂u + η2∂v + μ1∂f + μ2∂g, (3.1)

where ξj = ξj(x, y, u, v), ηj = ηj(x, y, u, v), and μj = μj(x, y, u, v, f, g) for j = 1, 2.
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The operator (3.1) is the generator of equivalence group for system (1.3) provided it is
admitted by the extended system

uxx + uyy + f = 0, vxx + vyy + g = 0,

fx = fy = fu = 0, gx = gy = gv = 0.
(3.2)

We require the prolonged operator for the extended system (3.2) having the form

Ỹ = Y [2] +ω1
1∂fx +ω1

2∂fy +ω1
3∂fu +ω1

4∂fv +ω2
1∂gx +ω2

2∂gy +ω2
3∂gu +ω2

4∂gv , (3.3)

where Y [2] is the second prolongation of (3.1) given by

Y [2] = ξ1∂x + ξ2∂y + η1∂u + η2∂v + μ1∂f + μ2∂g

+ ζ111∂uxx + ζ211∂vxx + ζ122∂uyy + ζ222∂vyy .
(3.4)

The variables ζij and ωi
k
are given by the prolongation formulae

ζ1xx = Dx

(
Dx

(
η1
)
− uxDx

(
ξ1
)
− uyDx

(
ξ2
))

− uxxDx

(
ξ1
)
− uxyDx

(
ξ2
)
,

ζ1yy = Dy

(
Dy

(
η1
)
− uxDy

(
ξ1
)
− uyDy

(
ξ2
))

− uxyDy

(
ξ1
)
− uyyDy

(
ξ2
)
,

ζ2xx = Dx

(
Dx

(
η2
)
− uxDx

(
ξ1
)
− uyDx

(
ξ2
))

− uxxDx

(
ξ1
)
− uxyDx

(
ξ2
)
,

ζ2yy = Dy

(
Dy

(
η2
)
− uxDy

(
ξ1
)
− uyDy

(
ξ2
))

− uxyDy

(
ξ1
)
− uyyDy

(
ξ2
)
,

ω1
1 = D̃x

(
μ1
)
− fxD̃x

(
ξ1
)
− fyD̃x

(
ξ2
)
− fuD̃x

(
η1
)
− fvD̃x

(
η2
)
,

ω1
2 = D̃y

(
μ1
)
− fxD̃y

(
ξ1
)
− fyD̃y

(
ξ2
)
− fuD̃y

(
η1
)
− fvD̃y

(
η2
)
,

ω1
3 = D̃u

(
μ1
)
− fxD̃u

(
ξ1
)
− fyD̃u

(
ξ2
)
− fuD̃u

(
η1
)
− fvD̃u

(
η2
)
,

ω2
1 = D̃x

(
μ2
)
− gxD̃x

(
ξ1
)
− gyD̃x

(
ξ2
)
− guD̃x

(
η1
)
− gvD̃x

(
η2
)
,

ω2
2 = D̃y

(
μ2
)
− gxD̃y

(
ξ1
)
− gyD̃y

(
ξ2
)
− guD̃y

(
η1
)
− gvD̃y

(
η2
)
,

ω2
4 = D̃v

(
μ2
)
− gxD̃u

(
ξ1
)
− gyD̃u

(
ξ2
)
− guD̃u

(
η1
)
− gvD̃u

(
η2
)
,

(3.5)

respectively, where

Dx = ∂x + ux∂u + vx∂v + · · · , Dy = ∂y + uy∂u + vy∂v + · · · (3.6)
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are the total derivative operators and the total derivative operators for the extended system
are given by

D̃x = ∂x + fx∂f + gx∂g + · · · ,

D̃y = ∂y + fy∂f + gy∂g + · · · ,

D̃u = ∂u + fu∂f + gu∂g + · · · ,

D̃v = ∂v + fv∂f + gv∂g + · · · .

(3.7)

Upon application of the prolongation (3.3), the invariance conditions of system (3.2) read

μ1 + ζ111 + ζ122 = 0, μ2 + ζ211 + ζ222 = 0,

ω1
1 = ω1

2 = ω1
3 = 0, ω2

1 = ω2
2 = ω2

4 = 0.
(3.8)

The solution of system (3.8) is given by

ξ1 = c5x + c6y + c7, ξ2 = c5y − c6x + c8, η1 = c1u + c2,

η2 = c3v + c4, μ1 = (c1 − 2c5)f, μ2 = (c3 − 2c5)g,
(3.9)

where c1, . . . , c8 are arbitrary constants.
Therefore, system (1.3) has 8-dimensional equivalence Lie algebra spanned by the

operators

Y1 = ∂x, Y2 = ∂y, Y3 = y∂x − x∂y, Y4 = ∂u, Y5 = ∂v,

Y6 = x∂x + y∂y − 2f∂f − 2g∂g, Y7 = u∂u + f∂f , Y8 = v∂v + g∂g.
(3.10)

The composition of the one-parameter group of transformations for each Yi yields the
equivalence group for system (1.3) given by the transformations

x = α1x + α2y + β1, y = −α2x + α1y + β2,

u = α3u + β3, v = α4v + β4, f = α5f, g = α6g,
(3.11)

where α1, . . . , α6 /= 0 and β1, . . . , β4 are arbitrary constants.
Next we use the theorem on projections of equivalence Lie algebras [9] to establish the

principal Lie algebra for system (1.3). The projections of the equivalence generator (3.1) are
given by

X = pr(x,y,u,v)(Y ) ≡ ξ1∂x + ξ2∂y + η1∂u + η2∂v, (3.12)

Z = pr(u,v,f,g)(Y ) ≡ η1∂u + η2∂v + μ1∂f + μ2∂g, (3.13)
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where pr(x,y,u,v) denotes projection onto the space (x, y, u, v) and pr(u,v,f,g) onto the space
(u, v, f, g).

An operatorX spans the principal Lie algebra provided the following condition holds:

Z = pr(u,v,f,g)(Y ) = 0. (3.14)

In view of (3.1) taking into account (3.9) and (3.13), equation (3.14) is recast as

(c1u + c2)∂u + (c3v + c4)∂v + (c1 − 2c5)f∂f + (c3 − 2c5)g∂g = 0. (3.15)

Thus, we have

c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0. (3.16)

Now the generator of equivalence group (3.1) reduces to

Y =
(
c6y + c7

)
∂x + (c8 − c6x)∂y, (3.17)

and therefore the principal Lie algebra for system (1.3) is three-dimensional and it is spanned
by the operators

X1 = ∂x, X2 = ∂y, X3 = y∂x − x∂y. (3.18)

Remark 3.1. The principal Lie algebra (3.18) can be achieved alternatively by solving the
resulting equations obtained from splitting the determining equations (2.5) and (2.6) with
respect to the arbitrary elements and their derivatives.

Our goal in Section 4 is to extend the principal Lie algebra, that is, we obtain
the functional forms of the arbitrary elements f(v) and g(u) which provide additional
operator(s).

4. Group Classification

Case 1. Following the classical approach of group classification [7], the classifying relations
(2.5) and (2.6) become

(h + kv)f ′(v) + 	f(v) +m = 0, (4.1)
(
n + pu

)
g ′(u) + qg(u) + r = 0, (4.2)

where h, k, 	, m, n, p, q, and r are arbitrary constants.
It is noted that the analysis of (4.1) and (4.2) is similar.
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Upon the use of equivalence transformations (3.11), the classifying equations (4.1) and
(4.2) take the form

(
h +

α5

α4
β4k + α5kv

)
f ′(v) + α5	f(v) +m = 0,

(
n +

α6

α3
β3p + α6pu

)
g ′(u) + α6qg(u) + r = 0,

(4.3)

provided

h = h +
α5

α4
β4k, k = α5k, 	 = α5	, m = m;

n = n +
α6

α3
β3p, p = α6p, q = α6q, r = r.

(4.4)

As an illustration in the analysis of (4.3) we consider the case k /= 0 (h = 0) and p /= 0 (n = 0).
Thus, we obtain

vf ′(v) + αf(v) + β = 0; α, β = 0,±1,
ug ′(u) + γg(u) + δ = 0; γ, δ = 0,±1,

(4.5)

where 	 = αk, m = α5kβ, q = γp, and r = α6pδ.
Consider also the case k = 0 (h/= 0) and p = 0 (n/= 0), then we have

f ′(v) + λf(v) + μ = 0; λ, μ = 0,±1,
g ′(u) + νg(u) + ρ = 0; ν, ρ = 0,±1,

(4.6)

where hλ = α5m, m = μh, nν = α6q, and r = ρn.
From (4.5)-(4.6) we obtain the functional forms of the arbitrary parameters f(v) and

g(u) together with their corresponding extra operator(s) given by

f = f0v
−α, g = g0u

−γ ;

X4 =
(
αγ − 1

)
x∂x +

(
αγ − 1

)
y∂y + 2(α − 1)u∂u + 2

(
γ − 1

)
v∂v,

(4.7)

f = f̃0e
−λv, g = g̃0e

−νu, λ, ν /= 0;

X4 = λν
(
y − x

)
∂x − λν

(
x + y

)
∂y − 2λ∂u − 2ν∂v,

X5 = λν
(
x2 − 2xy − y2

)
∂x + λν

(
x2 + 2xy − y2

)
∂y

+ 4λ
(
x − y

)
∂u + 4ν

(
x − y

)
∂v,

(4.8)

where f0, g0, f̃0, and g̃0 are nonzero arbitrary constants.
The cases k /= 0 (p = 0) and k = 0 (p /= 0) yield the classification results given in Table 1.
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Table 1: Classification results: k /= 0 (p = 0) and k = 0 (p /= 0).

f g Condition on const. Extra operator(s)

f̃0e
−λv g0u

−γ λ /= 0 X4 = λγx∂x + λγy∂y + 2λu∂u + 2(γ − 1)∂v

g0 λ/= 0 X4 = λu∂u − ∂v, Xc = c(x, y)∂u

f0v
−1 δ lnu δ = ±1 X4 = x∂x + y∂y + 2v∂v

g0u
−γ μ = ±1 X4 = (1 + γ)x∂x + (1 + γ)y∂y + 4u∂u + 2(1 − γ)v∂v

μv g̃0e
−νu ν /= 0 X4 = νx∂x + νy∂y + 4u∂u − 2νv∂v

ρu ρ = ±1 X4 = u∂u + v∂v, Xd = d(x, y)∂v

β lnv g0 β = ±1 X4 = x∂x + y∂y + 2u∂u + 2v∂v, Xc = c(x, y)∂u

f(v) g0u
−1 X4 = x∂x + y∂y + 2u∂u

g0 Xc = c(x, y)∂u

Case 2. Suppose that f(v) and g(u) are nonlinear functions. Differentiation of (2.5) and (2.6)
twice with respect to v and u, respectively, leads to

(2ax − C1 + 2C2)f ′′ + (d + C2v)f ′′′ = 0,
(
2by − 2C1 + C2

)
g ′′ + (c + C1v)g ′′′ = 0.

(4.9)

Thus, the last equations prompt consideration of the following set of cases:

f ′′′(v) = 0, g ′′′(u) = 0, (4.10)

f ′′′(v) = 0, g ′′′(u)/= 0, (4.11)

f ′′′(v)/= 0, g ′′′(u) = 0, (4.12)

f ′′′(v)/= 0, g ′′′(u)/= 0. (4.13)

Consider case (4.10) for illustration. We obtain f = Av2 + Bv + C, g = Au2 + Bu + C,
respectively, where A, A, B, B, C and C are arbitrary constants of integration. We make use
of the equivalence transformations (3.11) in order to have simplified forms of f and g.

Firstly consider f , then

f = α5f = α5A

(
v − β4
α4

)2

+ α5B

(
v − β4
α4

)
+ α5C

≈ α5v
2 +

α5√
A
Bv + α5C.

(4.14)
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Therefore, when we drop the bars and set α5 = 1, β4 = 0 the equivalence relation for f is given
by v2 + σv + τ , where B = σ

√
A and τ = C. Likewise, g = u2 + φu + ω for arbitrary constants

φ and ω. Substitution of the forms of f and g into (2.4)–(2.6) yields

C1 = C2, ãy + b̃x = 0, ãyy = 0, b̃xx = 0,

(σ + 2v)d − C2(2τ + σv) + cxx + cyy = 0,
(
φ + 2u

)
c − C1

(
2ω + φu

)
+ dxx + dyy = 0,

(4.15)

where

a
(
x, y

)
=
(
C1

2
− C2

)
x + ã

(
y
)
,

b
(
x, y

)
=
(
C2

2
− C1

)
y + b̃(x),

(4.16)

according to (4.9)
The solution of (4.15) leads to the four-dimensional symmetry Lie algebra spanned by

the generators

X1 = ∂x, X2 = ∂y, X3 = y∂x − x∂y, X4 = x∂x + y∂y − 2u∂u − 2v∂v, (4.17)

provided f and g are quadratic in v and u, respectively, that is,

f = v2, g = u2. (4.18)

However, the last result (4.18) is included in (4.7) for α = γ = −2.
Next, in considering case (4.11), we obtain the classification result that if f = v2 and

g = eu, then the principal Lie algebra is extended by the operator

X4 = x∂x + y∂y − 3∂u − v∂v. (4.19)

The classification results of case (4.11) can be mapped into those of (4.12) by the use of the
equivalence transformations u �→ v and f �→ g. The last case (4.13) does not yield the forms
of f(v) and g(u) such that the principal Lie algebra is extended.

Note. It should be noted that not included in the preceding classification results are the cases
for which the functional forms of the arbitrary elements do not extend the principal Lie
algebra, this includes amongst others the case for which both functions are of logarithmic
forms. Moreover, the cases which are the same under the equivalence transformations u �→ v
and f �→ g are also excluded. The constant coefficient case is also excluded.
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5. Conclusion

In this work we performed the Lie symmetry classification of a generalized bidimensional
Lane-Emden type system. The functional forms of the arbitrary parameters were specified via
the classical method of group classification, and these include the combination of power law
nonlinearity, exponential, logarithmic, quadratic, linear, and constant forms. Many cases
yielded four symmetries apart from the five-dimensional symmetry Lie algebra obtained in
the case for which both parameters are of exponential forms. The other cases possess infinite
dimensional symmetry Lie algebra.
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